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Abstract Functional approximation is one of the methods allowing designers to

approximate circuits at the level of logic behavior. By introducing a suitable func-

tional approximation, power consumption, area or delay of a circuit can be reduced

if some errors are acceptable in a particular application. As the error quantification

is usually based on an arithmetic error metric in existing approximation methods,

these methods are primarily suitable for the approximation of arithmetic and signal

processing circuits. This paper deals with the approximation of general logic (such

as pattern matching circuits and complex encoders) in which no additional infor-

mation is usually available to establish a suitable error metric and hence the error of

approximation is expressed in terms of Hamming distance between the output

values produced by a candidate approximate circuit and the accurate circuit. We

propose a circuit approximation method based on Cartesian genetic programming in

which gate-level circuits are internally represented using directed acyclic graphs. In

order to eliminate the well-known scalability problems of evolutionary circuit

design, the error of approximation is determined by binary decision diagrams. The

method is analyzed in terms of computational time and quality of approximation. It

is able to deliver detailed Pareto fronts showing various compromises between the

area, delay and error. Results are presented for 16 circuits (with 27–50 inputs) that

are too complex to be approximated by means of existing evolutionary circuit

design methods.
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1 Introduction

Reducing of energy consumption in integrated circuits is one of the key challenges

of current chip design industry [4]. Hence, various approaches to energy

consumption reduction have been developed. Energy consumption reduction can

be tackled at different system levels (such as circuit, architecture, operating system,

and software) with significantly different methodologies. One of them is approx-

imate computing trying to exploit the error resilience which is displayed by many

applications [11]. If one can relax the precision constraints, or tolerate some errors,

hardware and software can be simplified and work with less energy. Suitable ap-

plications for approximate computing were identified in the areas of multimedia,

database search, fault tolerant systems and others. They exploit the fact that human

users, as major consumers of data outputs, have limited perception capabilities and

no golden solution is usually available for validation of results [6]. An open

question is how to automate the approximation of circuits and software in order to

obtain desired quality of service (i.e. an acceptable error) and optimize available

resources.

The functional approximation is one of methods allowing designers to

approximate circuits at the level of logic behavior [40]. The idea behind the

functional approximation is that a less complex function than the original one is

implemented and used, providing that the error is acceptable and power

consumption, area on the chip or other parameters are improved adequately. The

approximations are obtained by a heuristic procedure which modifies the original,

accurate circuit. Applying genetic programming as a heuristic method for circuit

approximation has already led to finding high-quality compromises between key

circuit parameters, see, for example [35, 36].

As the vast majority of approximation methods employ an arithmetic error

metric, these methods are primarily suitable for the approximation of arithmetic

circuits (adders, multipliers) and digital signal processing circuits. This paper deals

with the approximation of general logic in which no additional information is

usually available to establish a suitable error metric. Introducing approximations to

general logic could be dangerous in many cases (e.g. for controllers), but there is

still an important class of circuits (such as combinational logic of pattern matching

circuits or complex encoders) in which the error can safely be exchanged for

reducing the energy consumption or the area on a chip. For example, see an

approximate pattern matching circuit optimized for fast classification of application

protocols in high-speed networks [9]. In these cases, the error of approximation has

to be expressed using a more general function, for example, as the average

Hamming distance between the output values produced by a candidate approximate

circuit and the accurate circuit.
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The current literature describes various approaches to the digital circuit

approximation. Regarding the methodological and evaluation approaches, two

scenarios are dominating:

1. Ad hoc methods employed for the approximation of a (single) particular circuit.

For example, see the approaches proposed to approximate multipliers [17] and

adders [10].

2. Design automation methods developed for the approximation of a class of

circuits (for example, SALSA [40], SASIMI [39] and ABACUS [23]).

In the first scenario, a lot of knowledge about a particular circuit and its typical

utilization can be incorporated into the approximation method. However, it is

difficult to apply the method for approximation of other circuits. In the second

scenario, the approximations are performed using the same procedure for all

problem instances of a given class. Approximate circuits showing different

compromises between considered circuit parameters (area, delay, power consump-

tion and errors of different types) are generated and presented to the user whose

responsibility is to choose the most suitable approximate circuit for a given

application. A detailed analysis of the impact of the approximation procedure on

circuit parameters that were not considered during the approximation is also left on

the user.

The goal of this work is to propose and evaluate an automated circuit

approximation method (scenario 2) in which the error is expressed in terms of the

average Hamming distance. We opted for the evolutionary approach based on

genetic programming because it was capable of delivering high quality approx-

imations in our previous work [35, 36]. In our method, gate-level circuits are

evolved using Cartesian genetic programming (CGP) and internally represented

using directed acyclic graphs. The method is thus suitable for approximation of

combinational circuits, i.e. digital circuits in which the output values only depend

on current input values. In the case of sequential circuits containing memory

elements, the proposed method can be applied to a combinational part of the

circuit.

The evolutionary circuit design methods in which candidate circuits are

evaluated by checking their responses for all possible input combinations are not

scalable. The main reason is that the evaluation time grows exponentially with the

number of inputs. A naı̈ve approach to evolve approximate circuits would be to

identify a suitable subset of all possible input vectors, establish the fitness value

using this subset and evolve a circuit showing a good trade-off between the error

(for this subset) and the number of gates (or area). However, as it is reasonable to

evaluate only up to about 220 test vectors for each candidate circuit in a single CGP

run on a common desktop computer [34], the resulting error would be extremely

unreliable for circuits with, for example, 30 primary inputs.

In order to overcome this problem, we propose to determine the error of

approximation by an equivalence checking algorithm operating over binary decision

diagrams (BDD) representing the candidate approximate circuit and the accurate
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circuit. The main advantage of BDDs is that the Hamming distance can be

determined in linear time with respect to the BDD size. Converting a candidate

circuit to BDD and performing the functionality comparison against the accurate

circuit, expressed again as BDD, can be performed relatively quickly for many

circuits relevant to practice. The proposed method is analyzed in terms of

computational time and quality of approximation.

The method is evaluated using 16 benchmark combinational circuits which are

difficult for the previous evolutionary approximation methods, because they have

too many primary inputs (27–50 inputs) and gates. Pareto fronts showing obtained

trade offs between the error, area and delay are also reported. Another contribution

of our work is that it is focused on general (i.e. non-arithmetic) approximate circuits

which has not been done before.

The rest of the paper is organized as follows. Section 2 summarizes relevant

work in the areas of functional approximation and digital circuit evolution. The

principles of BDD are defined in Sect. 3. The proposed method based on CGP is

introduced in Sect. 4. The experimental setup, benchmark circuits and results of

evolutionary design are presented in Sect. 5. Conclusions are given in Sect. 6.

2 Related work

This section briefly surveys conventional approaches introduced for functional

approximation and evolutionary design methods developed for the design of

common and approximate digital circuits. The survey is primarily focused on

combinational circuits as no other circuits are relevant for this paper.

2.1 Functional approximation

The goal of functional approximation is to modify a given logic circuit in such a

way that obtained error is minimal and key circuit parameters (such as delay, area

and power consumption) are improved with respect to the original logic circuit. The

approximations have been conducted manually or using systematic algorithmic

methods. The manual approximation methods whose example results are approx-

imate multipliers presented in [17] have recently been replaced by fully automated

systematic methods in order to increase the design productivity as well as the

quality and complexity of circuits that can be approximated.

The systematic design automation methods (such as SALSA [40], SASIMI [39]

and ABACUS [23]) produce Pareto fronts showing various compromise solutions

with respect to the optimized parameters (error, delay, and power consumption). It

allows the user to select the best compromise solution for a given application.

A typical automated method starts with a fully functional circuit which is

modified by means of a problem specific heuristic in order to improve key circuit

parameters, and keep the error within predefined bounds. The Pareto front is

obtained from multiple runs of a single-objective approximation (heuristic)

algorithm initialized using different parameters (for example, five target errors

are considered). Parameters of resulting approximate circuits are obtained by means
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of professional design tools. As only tens to hundreds of design alternatives are

generated, the resulting solutions do not cover the whole Pareto front and they are

typically centered around a few dominant design alternatives (e.g. [23]). The

available literature describing these methods does not present any detailed analyses

of resulting Pareto fronts, i.e. it is unknown whether and how much the obtained

results can be improved if, for example, more execution time were invested.

The key issue seems to be an efficient and reliable evaluation of candidate

approximate circuits. Various error functions have been used, for example, worst

error, relative error, average error magnitude, and error probability. While these

errors can be computed for small circuits by analyzing circuit responses for all

possible input vectors, formal methods have to be introduced to determine the error

of complex arithmetic circuits. For example, an auxiliary circuit is constructed

which instantiates the candidate approximate circuit and the accurate (golden)

circuit and compares their outputs to quantify the error for any given input. In order

to check whether a predefined worst error is violated by the candidate approximate

circuit, Boolean satisfiability (SAT) solver is employed [41]. However, for example,

no method capable of establishing the average error using a SAT solver has been

proposed up to now.

Contrasted to the methods precisely calculating the error (which were described in

the previous paragraph), the error of approximation is also often estimated using

training data sets. This is typical for image and signal processing components (filters,

classifiers) because suitable training data are usually available and calculating the

exact error is intractable because of the overall complexity of these components [23].

Fault tolerant systems are another natural class of applications of approximate

computing. Redundant circuits which are present in such systems can be

approximated in order obtain a good trade off between dependability parameters

and power consumption or area on the chip [25].

2.2 Evolutionary circuit design

The idea of evolvable hardware and digital circuit evolution was introduced by

Higuchi et al. [12], in which the evolution of a six-input multiplexer using a circuit

simulator was presented. Thompson reported first circuits evolved directly in the

hardware in 1996 [29].

A significant development of evolutionary circuit design is connected to

Cartesian genetic programming, a branch of genetic programming whose problem

representation was inspired by digital circuits. In CGP, candidate circuits are

encoded as arrays of integers and evolved using a simple search strategy. The

standard CGP, its extensions (such as self-modifying CGP) and typical applications

have been surveyed in a monograph [19]. Miller et al. demonstrated that CGP can

improve results (in terms of the number of gates and delay) of conventional circuit

synthesis and optimization algorithms in the case of small arithmetic circuits. A 4-b

multiplier was the most complex circuit evolved in this category [38].

After the year 2000, various digital (predominately combinational) circuits were

evolved. These circuits can be classified into two categories—completely specified

and incompletely specified circuits. Completely specified circuits are arithmetic
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circuits and general logic circuits in which a perfect response is requested for every

legal input vector. On the other hand, incompletely specified circuits are used in

applications such as classification, filtering, hashing and prediction in which the

correctness can only be verified using a subset of all possible input vectors.

In comparison with conventional methods, the evolutionary design method is less

scalable. It has several reasons. First, long chromosomes are needed to represent

complex circuits, and consequently, huge search spaces have to be explored in

which it is difficult to find useful designs. Second, the evaluation of complex circuits

is very time consuming. In a typical approach, 2n input vectors are applied (and

simulated) to calculate the fitness of an n-input combinational circuit. In current

practice, the maximum complexity of evolved circuits is low (about 20 inputs and

100 gates).

Several methods have been proposed to increase the complexity of circuits that

can be obtained using evolutionary algorithms (EA). Functional level evolution [22]

and decomposition methods [28, 30] enabled to reduce the search space. Combining

functional level evolution with decomposition led to another increment in the

complexity of evolved circuits [27]. Regarding the completely defined circuits,

examples of the most complex circuits evolved so far are 22-b parity [24], 9-b adder

[14] and 5-b multiplier [14]. The most complex circuit evolved using decomposition

is a 135-b multiplexer which was obtained with a learning classifier system

operating with complex building blocks. The correctness of resulting circuits was,

however, estimated using simulation and manual inspection because it was

impossible to get responses for all 2135 input vectors [15].

More promising results have been obtained by methods which try to reduce the

fitness evaluation time using formal approaches in the fitness function.

In order to minimize the number of gates in fully functional circuits produced by

well-tuned common synthesis and optimization tools, Vasicek and Sekanina [32]

proposed to replace the circuit simulation by functional equivalence checking

algorithms. For each candidate circuit and its parent, a SAT problem instance was

created and solved using a SAT solver. If both circuits are functionally equivalent,

the fitness of the candidate circuit is defined as the number of gates (with the aim to

minimize them); otherwise, the candidate circuit is discarded. This approach led to a

significant reduction in gate count for circuits having hundreds of inputs and

containing thousands of gates [31], which is unreachable by the state of the art logic

synthesis tools such as ABC [21]. The most complex circuit optimized using this

method contains 16,158 gates and has 2176 inputs and 2136 outputs [31].

The SAT-based method is applicable only if a fully functional circuit is available.

If a circuit has to be evolved from scratch (i.e. when no structural information about

the circuit is provided, but responses are defined for all possible input combina-

tions), Vasicek and Sekanina [34] combined CGP with BDD and developed a tool

which allowed for evolving circuits with tens of inputs. The BDDs in the fitness

function enable to effectively determine the Hamming distance between the output

vectors of two circuits for many important problem instances (see Sect. 3). A

28-input circuit was successfully evolved from scratch without any kind of

decomposition technique. In addition to that, the obtained circuit had less gates (a
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57 % reduction) than the result of a conventional optimization conducted by the

state-of-the-art tool.

2.3 Evolutionary circuit approximation

The use of evolutionary algorithms for functional approximation was surveyed in

[26]. Employing evolutionary algorithms seems to be natural with respect to the

goal of the approximation task. Small modifications introduced in the progress of

evolution via genetic operators to a population of circuits and the principle of the

survival of the fittest naturally lead to discovering such circuits which show very

good compromises between the error and area (power consumption). Available

evolutionary approximation methods employ CGP, which can operate either as a

single-objective or multi-objective evolutionary optimizer. Within a given time

which is available for the design, the single objective CGP provided more compact

circuits than its multi-objective version [13, 35, 36].

Because of the scalability problems, the evolutionary approach allowed obtaining

only relatively small approximate combinational circuits and arithmetic circuits (up

to 8-b adders and multipliers [33, 35] when seeded by conventional implementa-

tions). More complex circuits, such as a 25-input median circuit, were then

approximated by an evolutionary algorithm estimating the error of approximation

using a small subset (105 vectors) of all possible input vectors (1060) [36]. However,

the method evaluating candidate circuits using a subset of input vectors is not

applicable to approximate arithmetic circuits and other circuits that we treated as

completely defined in Sect. 2.2.

In order to approximate complex circuits (belonging to the class of completely

defined circuits) using the Hamming distance as a metric, we will use BDDs in the

fitness function. This idea was initially proposed in our paper [37], but without a

detailed experimental evaluation.

3 Binary decision diagrams in circuit design

3.1 Binary decision diagrams

A BDD is one of possible representations of logic functions. A BDD is a directed

acyclic graph with one root, non-terminal nodes and two terminal nodes that are

referred to ‘0’ and ‘1’. Each non-terminal node is labeled by a primary input

variable xi. If xi ¼ 0 then the outgoing zero-edge is taken; if xi ¼ 1 then the

outgoing one-edge is taken. By tracing a path from the root to terminal node ‘1’ one

obtains an assignment to input variables for which the function is evaluated to 1. An

ordered binary decision diagram (OBDD) is a BDD where variables occur along

every path from the root to a terminal node in strictly ascending order, with regard

to fixed ordering. A reduced ordered binary decision diagram (ROBDD) is an

OBDD where each node represents a unique logic function, i.e. it contains neither

isomorphic subgraphs nor nodes with isomorphic descendants. Figure 1 shows a
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Boolean function represented by truth table and corresponding BDD and ROBDD.

Two or more logic functions can be represented by a single ROBDD (i.e. there are

several root nodes) in which some subgraphs are shared by some of the functions.

ROBDDs are important because they are canonical, i.e. if two logic functions

have the same truth table, their ROBDDs are isomorphic. Unfortunately, the size of

ROBDD (i.e. the number of non-terminal nodes) for a given function is very

sensitive to the chosen variable order; in some cases it is linear, in other cases is

exponential with respect to the number of inputs [5]. Moreover, multipliers are

known for their exponential memory requirements for any variable ordering [1]. In

order to optimize the size of ROBDD, various minimization algorithms were

proposed [5]. The most efficient method is sifting, an iterative algorithm which is

based on finding the optimum position of each variable assuming that all other

variables remain fixed.

BDDs and evolutionary computing have been combined in the past. For example,

variable ordering of an BDD was optimized by EA [2], and an EA that learns

heuristics for BDD minimization was proposed in [3]. Detailed survey is available

in [5].

3.2 Operations over BDDs

ROBDDs are equipped with several operations. Let us mention two basic operations

that are relevant to our paper: apply and Sat-Count.

The apply(op, f, g) operation enables to construct a ROBDD from existing

ROBDDs. It takes a binary operator op and two ROBDDs f and g as arguments and

returns a ROBDD corresponding with the result of f op g [18]. In fact, apply is a

complex operation which can remove some nodes, add new nodes, and rearrange

existing nodes to guarantee that the resulting BDD is a ROBDD.

The Sat-Count operation computes the number of input assignments for which f

is evaluated to ‘1’, i.e. it determines the number of elements in the so-called Onset

of f. Sat-Count can be performed in time O(|F|), where F is a ROBDD

corresponding to f, just by following the leftmost path in F that leads to a non-

Fig. 1 Logic function f ¼ acþ bc expressed using truth table, BDD and ROBDD
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zero terminal. It means that the Sat-Count operator can be implemented in such a

way that the number of input assignments for which f ¼ 1 is obtained with linear

time with respect to the size of ROBDD constructed for f. This is a very important

feature in the context of evolutionary circuit design. Obtaining the same result using

simulation requires 2njCj steps for n-input circuit C containing |C| gates. On the

other hand, it has to be noted that the worst case time complexity of BDD

construction is exponential (see [5]), but it is not usually the case of circuits used in

practice.

Several libraries have been developed to effectively construct (RO)BDDs and

perform operations over them. In this work, Buddy package is employed [18].

3.3 Hamming distance using BDDs

BDDs are often used to decide whether two combinational circuits are functionally

equivalent. Let us suppose that both circuits have k inputs denoted x1. . .xk and m

outputs denoted y1. . .ym and y01. . .y
0
m, respectively. Corresponding primary inputs of

both circuits are aligned and corresponding primary outputs yi and y0i are connected
using the XOR gates. The goal is to obtain one (auxiliary) circuit with k primary

inputs x1. . .xk and m primary outputs z1. . .zm, zi ¼ yi XOR y0i. In order to disprove

the equivalence, it is then sufficient to identify at least one output zi whose OnsetðziÞ
is not empty, i.e. to find an input assignment x for which the corresponding outputs

yi and y0i provide different values. An example is given in Fig. 2 where two circuits

CA and CB with four inputs and two outputs are checked for Boolean equivalence.

Because y2 and y02 capture the same Boolean function, the ROBDD constructed for

z2 consists of a single pointer to the zero node. The outputs y1 and y01, however,
represent different Boolean functions. The ROBDD constructed for z1 thus consists

of non-zero number of nodes and there exists at least one path from the root node

determined by pointer z1 to the node 1.

The auxiliary circuit used to perform the combinational equivalence checking

can be applied to determine the Hamming distance between truth tables of circuit

Fig. 2 Auxiliary circuit used to perform equivalence checking of two combinational circuits CA and CB

(left) and ROBDD constructed for z1 and z2 (right)
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CA and CB. The Hamming distance can be obtained by applying the Sat-Count

operation on every output zi and counting up all the results. In the example shown in

Fig. 2, Sat-Count will return 2 for z1 and 0 for z2, i.e. the Hamming distance is

0þ 2 ¼ 2. It can easily be checked that if x 2 f0000; 0110g, the circuits provide

different output values. The Hamming distance is obtained in linear time with

respect to the number of outputs.

4 Proposed method

The proposed method is based on the standard CGP [19]. The main contribution of

this work is redefining the fitness calculation procedure in such a way that it can

handle circuits with tens to hundreds of inputs, and showing how various

compromises between the error, area and delay can be found.

Because many candidate approximate circuits have to be generated and evaluated

during a typical CGP run, it is impossible to evaluate everyone using a professional

design tool. Hence circuit parameters are estimated. This strategy was validated in

[35].

It is assumed that the specification (i.e. an accurate circuit behavior) is given in a

form of ROBDD (let us denote it r). If not, a corresponding ROBDD is created from

the accurate circuit using the apply operator as described in Sect. 3.2.

4.1 Circuit representation

A gate-level ni-input/no-output circuit is represented using a directed acyclic graph

which is encoded in a 1D array consisting of nc gates. The number of rows, which is

one of CGP parameters, is set to nr ¼ 1. This graph is internally stored using a string

of integers, the so-called chromosome. The set of available logic functions is

denoted C. The primary inputs are labeled 0. . .ni � 1 and the gates are labeled

ni; ni þ 1; . . .; ni þ nc � 1. For each gate, the chromosome contains three integers—

two labels specifying where the gate inputs are connected to and a code of function

in C. The last part of the chromosome contains no integers specifying either the

nodes where the primary outputs are connected to or logic constants (‘0’ and ‘1’)

which can directly be connected to the primary outputs. Example is given in Fig. 3.

AND

2

3
5

OR

2

4
6

OR

5

2
7

XOR

7

6
8

OR

7

4
9

x0

x1

x2

x3

y1 (7)

y2 (8)

x4

Fig. 3 Example of a circuit in CGP with parameters: ni ¼ 5; no ¼ 2, nc ¼ 5, C ¼ f0and; 1or; 2xorg.
Chromosome: 2, 3, 0; 2, 4, 1; 5, 2, 1; 7, 6, 2; 7, 4, 1; 7, 8. Gate 9 is not used. Its logic behavior is:
y1 ¼ ðx2 and x3Þ or x2; y2 ¼ y1 xor ðx2 or x4Þ
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The chromosome size is 3nc þ no genes (integers) if two-input gates are used.

The main feature of this encoding is that the size of the chromosome is constant for

a given ni; no and nc. However, the size of circuits represented by this chromosome

is variable as some gates can remain disconnected. The gates which are included

into the circuit after reading the chromosome are called the active gates.

4.2 From chromosome to ROBDD

Let circuit A be a candidate circuit represented using CGP. A new ROBDD, a,
which is functionally equivalent with A has to be constructed. In order to do so, the

number of BDD variables is defined firstly. Then, the apply function is called for

every active gate Nj of circuit A. It consumes the logic function performed by Nj and

two operands of Nj which are interpreted as pointers to appropriate ROBDD nodes

or input variables. The function yields a pointer to a new ROBDD which represents

the Boolean function at the output of gate Nj. Depending on the logic function of Nj,

one or several new ROBDD nodes are thus included into a by means of one call of

apply. The active nodes of A have to be processed from left to right in order to

construct the ROBDD correctly.

4.3 Design objectives

There are three design objectives considered in this work: functionality (error),

delay, and area.

4.3.1 Functionality

Circuit functionality is evaluated at the level of ROBDD and measured as the

Hamming distance between the output bits generated by a and r for all possible

input combinations. The procedure follows the principle described and illustrated

(Fig. 2) in Sect. 3.3. In particular, corresponding outputs of a and r are connected to

a set of exclusive-or gates, i.e. zi ¼ yai xor yri for i ¼ 1; 2; . . .; no. By means of the

Sat-Count operation, one can obtain the number of assignments bi to the inputs

which evaluate zi to 1. Finally, the Hamming distance between a and r, i.e. the
fitness (functionality) of A, is the sum of bi (see Eq. 1).

In order to accelerate this procedure, the ROBDD construction is optimized. We

exploit the fact that the accurate circuit and candidate circuit (which was, in fact,

created by a sequence of mutations over the accurate circuit) contain some identical

subcircuits which can be removed for purposes of the Hamming distance

calculation. ROBDD is then constructed using only those subcircuits which are

not present in both circuits, i.e. the size of ROBDD is reduced.

4.3.2 Delay

In order to estimate the electrical parameters of circuit A, the area and delay are

calculated using the parameters defined in the liberty timing file available for a
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given semiconductor technology. Delay of a gate is modeled as a function of its

input transition time and capacitive load on the output of the gate. Delay of the

whole circuit is determined as delay along the longest path.

4.3.3 Relative area

The area of a candidate circuit is calculated relatively to the area of a nand gate. The

following gates are considered in C: and, or, xor, nand, nor, xnor, buf, inv, with
corresponding relative areas 1.333, 1.333, 2, 1, 1, 2, 1.333, and 0.667. It is assumed

that power consumption is highly correlated with the area and hence it is sufficient

to optimize for the area as proposed in [35].

4.4 Search method

The search method follows the standard CGP approach [19]. The initial population

is seeded by the accurate circuit. In order to generate a new population, k offspring

individuals are created by a point mutation operator modifying h genes of the parent

individual. The parent is either the accurate circuit (in the first generation) or the

best circuit of the previous generation (in remaining generations).

One mutation can affect either the gate function, gate input connection, or

primary output connection. A mutation is called neutral if it does not affect the

circuit’s fitness. If a mutation hits a non-used part of the chromosome, it is detected

and the circuit is not evaluated in terms of functionality because it has the same

fitness as its parent. Otherwise, the error is calculated. The best individual of current

population serves as the parent of new population. The process is repeated until a

given number of generations (or evaluations) is not exhausted.

The role of mutation is significant in CGP (see detailed analysis in [8, 20]). A

series of neutral mutations can accumulate useful circuit structures in the part of the

chromosome which is not currently used. One adaptive mutation can then connect

these structures with active gates which could lead to discovering new useful

circuits. It has to be noted that the mutation operates over chromosomes (not at the

level of BDDs).

In order to construct Pareto front, we follow the approach in which a single-

objective CGP (utilizing a linear aggregation of objectives) is executed multiple

times with different target errors ei (ei [ 0). It is assumed that Pareto front has to be

constructed for v different errors e1. . .ev (each expressed as a percentage of the

average Hamming distance). An obvious criticism of this approach is that some

solutions are never obtained and a classic multi-objective EA such as NSGA-II has

to be used. Despite the fact that some hybridizations of NSGA-II and CGP have

been proposed [13, 16], our previous studies in the area of evolutionary circuit

approximation have shown that single-objective approaches provide better results

[35, 36].

We propose a two-stage procedure for evolving an approximate circuit showing

target error ei using a single-objective CGP.

The first stage starts with a fully functional solution which is always available in

practice. The goal is to gradually modify the accurate circuit and produce an
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approximate circuit showing desired error ei providing that a 5 % difference is

tolerated with respect to ei (tolerating a small error is acceptable; otherwise the

search could easily stuck in a local extreme). The 5% error tolerance means that if,

for example, ei ¼ 0:3 % then we accept all circuits showing the error

0:285. . .0:315 %. The fitness function fit1 used in the first stage is thus solely

based on the average Hamming distance (see Sect. 4.3.1),

fit1 ¼ ErrorðAÞ ¼
Pno

i¼1 bi

2ni
: ð1Þ

In the second stage, which begins after obtaining a circuit with the target error,

the fitness function reflects not only the error, but also the area and delay. Each

objective is normalized to the interval h0; 1i and multiplied with weights we, wa and

wd, respectively (we þ wa þ wd ¼ 1). Then,

fit2ðAÞ ¼ weErrorðAÞ þ waAreaðAÞ þ wdDelayðAÞ: ð2Þ

It is requested that the Error remains within 5 % tolerance with respect to ei.

Candidate circuits violating this hard constraint are discarded.

5 Results

This section firstly introduces benchmark circuits and CGP parameters used in all

experiments. In order to check whether CGP can improve the results of

conventional optimization and simultaneously obtain high-quality fully functional

circuits which will be good starting points for subsequent approximations, CGP was

employed to optimize the parameters of original (accurate) benchmark circuits. All

results of approximations are represented as points in figures showing the objective

space. Pareto fronts are constructed using the best obtained solutions.

5.1 Benchmarks

In order to evaluate the proposed approximation method which employs the

Hamming distance to determine the error, we selected different types of

combinational circuits from LGSynth, ITC and ISCAS libraries [7]. Even some

arithmetic circuits (e.g. c3540) which should be approximated under an arithmetic

error metric are included. The chosen circuits are difficult for the standard CGP,

because ni [ 25 and more than 150 gates are involved [19].

At the beginning, all benchmark circuits were optimized using BDS [42] to get a

reference solution from a ‘‘conventional’’ state-of-the art logic optimizer. Table 1

gives the number of primary inputs (ni) and primary outputs (no), and then the

number of gates (ng) and delay (in terms of logic levels) after the optimization

conducted by BDS. Table 1 also gives parameters of corresponding BDDs which

serve as reference implementations used for Hamming distance calculations. The

BDD size (see column |BDD|), obtained using [18], ranges from 321 nodes (itc_b10)

to more than one million nodes (c3540). Because the size of BDD used as a
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reference influences how fast the Hamming distance calculation and the whole

evolutionary design can be, it is beneficial to optimize the BDD. The operations

over small and optimized BDDs will then be performed faster than over original

BDDs. Hence, we applyied sifting minimization algorithm to reduce the size of

BDD. The results are reported in column jBDDoptj. The improvement due sifting,

which is 75.4 % on average, is given in the gainopt column. The last column topt is

the time spent in the sifting procedure (in s). As it can be seen, the optimization of

the variable order is able to ensure significant savings in the number of BDD nodes

required to represent a reference circuit for a small cost of runtime. Note that this

optimization is performed just once, before CGP is executed.

5.2 CGP setup

As the purpose of this paper is not to perform a detailed analysis of the CGP

parameters setting, we used CGP with parameters that are usually reported in the

literature. According to [26], the weights are chosen to be we ¼ 0:12, wa ¼ 0:5,
wd ¼ 0:38 and the CGP setup is: k ¼ 4, h ¼ 5, C as defined in Sect. 4.3.3, and nc is

the number of gates in a particular benchmark circuit (according to Table 1). The

experiments were conducted on a 64-b Linux machine running on Intel Xeon X5670

CPU (2.93 GHz, 12 MB cache) equipped with 32 GB RAM. CGP is implemented

as a single-thread application.

Table 1 Parameters of benchmark circuits

Circuit Circuit parameters Reference circuit

ni no Gates Levels |BDD| jBDDoptj gainopt (%) topt

apex1 45 45 823 15 7073 1344 81 2.5

c1355 41 32 186 11 148,003 38,481 74 4.3

c3540 50 22 868 27 1,014,533 30,436 97 57.9

c432 36 7 159 25 167,300 1673 99 9.5

clmba 46 33 641 19 6966 627 91 2.3

itc_b05a 34 56 427 24 18,788 1691 91 1.3

itc_b07a 49 49 312 25 11,055 995 91 3.1

itc_b10a 27 17 166 10 321 222 31 1.1

itc_b11a 37 31 421 18 1552 652 58 1.3

s1238a 31 31 483 18 1822 729 60 1.2

s635a 34 33 151 10 394 134 66 0.7

signet 39 8 630 17 11,471 1606 86 1.3

too_large 38 3 771 18 3508 807 77 3.3

x1dn 27 6 164 18 896 260 71 0.9

x6dn 39 5 318 14 3685 258 93 1.7

x9dn 27 7 168 20 484 218 55 0.5

The circuits that originally come from sequential benchmarks (i.e. represent a combinational subcircuit of

a sequential circuit) are marked by superscript a
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5.3 Optimization of accurate circuits

First, CGP was employed to optimize the original benchmark circuits, i.e. no errors

tolerated, ErrorðAÞ ¼ 0. This step was performed because it has been known that a

significant area reduction can be obtained by means of CGP [32].

A single CGP run was terminated after 30 min which seems to be a good

compromise between requirements of practitioners expecting short optimization

times and resources-demanding CGP. The number of generations was not specified

as the termination criterion because the benchmark circuits have significantly

different properties and, for example, different time is needed to process

corresponding BDDs.

Table 2 gives parameters of the best and average circuit (obtained out of ten

independent runs) with respect to parameters of original benchmarks: fitness (fit2),

the generation in which the best circuit was reached, and time to obtain the best

circuit (runtime). It can be seen that the evolutionary optimization can lead in many

cases to a significant delay, area (and, consequently, energy) reduction without

introducing any error into the circuit. For example, an 80 % area improvement is

reported for too_large benchmark circuit with respect to BDS. This particular circuit

is hard for conventional optimization methods. Moreover, the parameters of the

average circuits (determined as a median of all the runs) are close to the parameters

of the best obtained circuit. C3540 and C1315 circuits represent the only exception

where nearly none improvement is reported. A single gate was removed during

optimization in both cases. Because the runtimes are close to the time limit, the

majority of the benchmark circuits would be probably improved if more time is

available to the evolution.

5.4 Evolutionary approximation

The circuits evolved in Sect. 5.3 will be used as (reference) accurate circuits in

Pareto fronts. CGP-based approximations are performed from these accurate circuits

for errors from e1 ¼ 0:1 to e9 ¼ 0:9 % given in terms of the Hamming distance.

Results are presented from ten independent 30 min runs (one run one thread).

Firstly, we analyzed the first stage of the approximation. We calculated the time

required to get an approximate circuit showing desired error ei providing that an

accurate circuit is used as a seed. In most cases,\1 s is required to find such a

circuit. This corresponds with hundreds to few thousands of evaluated generations.

Table 3 summarizes the cases in which more than 1 s is needed. The most difficult

cases are c1355, c3540 and c432, and in particular 0.1–0.51 % error in case of c432,

where some of the CGP runs spent more than 5 min. This was expected for c3540

and c1355 circuits because they are large and their BDDs are complex. A possible

explanation for C432 is that the target error is too small. This findings is based on

the fact that the number of evaluated generations is high (more than 15,000

genenerations) and that the achieved reduction in the area is low compared to the

other benchmarks (see Fig. 4). We can, however, conclude that desired approxi-

mations can be reached relatively quickly if the other objectives are not taken into

account. The chosen search strategy seems to be very efficient in this task despite
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Table 3 Time (in s) spent in the first stage of the optimization

Circuit e1 ¼ 0:1 % e3 ¼ 0:3 % e5 ¼ 0:5 % e7 ¼ 0:7 % e9 ¼ 0:9 %

tQ1 tmed tQ3 tQ1 tmed tQ3 tQ1 tmed tQ3 tQ1 tmed tQ3 tQ1 tmed tQ3

c1355 9.2 27 82 32 58 100 12 48 383 12 19 30 3.2 3.2 3.2

c3540 5.9 86 168 17 70 145 7.2 17 36 18 24 49 7.7 29 56

c432 10 33 305 24 41 478 5.8 173 492 4.8 50 223 16 33 201

itc_b05 \1 \1 \1 \1 \1 2.2 \1 \1 1.6 \1 \1 1.3 \1 \1 2.3

itc_b07 \1 \1 1.3 \1 \1 1.3 \1 \1 \1 \1 \1 \1 \1 \1 \1

x1dn \1 \1 \1 \1 \1 \1 \1 \1 4.1 \1 \1 \1 \1 \1 \1

The median value (tmed), the lower bound (tQ1) and upper bound (tQ3) of the interquartile range are

calculated using all runs
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the fact that finding a circuit exhibiting a required error is in general a nontrivial

task.

Next we measured the time needed to calculate the Hamming distance between

two circuits with respect to a given error. This time (expressed as a median value)

summarized from all the experiments is given in Table 4. This value influences how

many candidate solutions can be evaluated within a period of time in average. The

lower value, the higher number of evaluated candidate solutions. Stages 1

(searching for a circuit with a given error) and 2 (optimizing the area, and delay

of the circuit) are handled separately. In most cases, the time is less than a few

milliseconds. There are two cases (c1355, c3540) in which few 100s (1000s for

c1355) of milliseconds are required to determine the Hamming distance. A

consequence is that fewer generations can be produced within a given time for this

circuit. This effect is clearly visible in Fig. 5 where the resulting circuit

approximations are mostly far from the optimum (see black dots for errors higher

than 0.4 %).

If we compare the mean time needed to determine the Hamming distance in the

first and second stage (see last five columns of Table 4 showing the ratio between

the first and second stage), it is evident that more evaluations per second can be

performed in the second stage of the optimization. The reason is that BDDs are in

average smaller than in the first stage. However, it can be also seen that the time

needed to evaluate the Hamming distance of c1355 benchmark circuit increases

with the increasing error. Thousands of milliseconds are needed in this particular

case.

The resulting Pareto fronts are displayed in Figs. 4, 5, 6 and 7 (solid lines). For

each circuit, two plots are presented: the best obtained area versus error and delay

versus error, relatively to the fully functional circuit from Table 2 labeled by 100 %.

The result of a single 30-min CGP run consisting of two stages is shown using a

black dot. The plus symbol (?) indicates the results of the first stage. In several

cases, the ? symbols are not visible because they are outside the plotted areas.

However, for example, the plot for s635 clearly shows that in most cases the first

stage produced circuits within about 80–100 % in the area axis (corresponding to

\1 s in average according to Table 3) while the second stage led in remaining

29.9 min (on average) to a significant improvement (about 30 % in the area axis).

Figures 4, 5, 6 and 7 contain the best compromises from independent CGP runs in

which all circuits parameters (error, area and delay) are optimized together. For

some applications it is interesting to know the best compromises for two objectives

only (error vs. delay and area vs. delay). These compromises are plotted as

additional Pareto fronts (dashed line). The number of gates is explicitly given for the

biggest and smallest circuits.

For example, by increasing the error, the area was reduced by 70 % in the case of

clmb circuit providing that the delay is adequately reduced. A general observation is

that an improvement in delay is smaller than in area when the error is increasing.

The reason is that fully functional benchmark circuits exhibit a relatively small

delay and hence there is a little space to improve it. Two interesting cases are c432

and c3540 because their area requirements are high even for reduced accuracy. One

reason could be that errors\1 % are too small to get a reasonable approximation.
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Another reason could be that more generations are required to reduce the area.

Hence we tried to prolong the evolution six times. However, no significant changes

in the Pareto front have been observed (not shown in the paper). On the other hand,

0.4 % seems to be a huge error for c1355 because it allowed CGP to remove almost

all gates from the circuit.

In some cases (e.g. apex1, c3540, s635), the independent CGP runs led to very

similar results for a given ei (see the black dots). In other cases (e.g. itc_b05, x1dn,

c1355), the spread in the area and delay is quite large. This indicates that circuits

have different structural properties and that their selection to our benchmark set is

justified.

Figure 7 shows a detailed analysis of some of the discovered approximations for

itc_b10 benchmark. For each of five target errors, three evolved circuits were
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chosen and their Hamming distances were calculated independently for all 17

outputs. It can be seen that the obtained solutions have in general different

properties. The same solution was obtained only in the case of e1 ¼ 0:1 %, where

run 2 and run 3 discovered a circuit with error in two outputs. The first run produced

a completely different circuit. Although five output signals are affected by error in

this case, the worst-case difference (Hamming distance) is not worse than 0.7 %.

Finally, we raised a question whether it is better to intensively optimize accurate

circuits or introduce approximations in order to reduce the area. Table 5 shows how
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subsequent optimizations reduced the number of gates in circuits displaying at least

10 % area improvement with respect to BDS. For example, CGP-based optimiza-

tion of too_large circuit caused that 80 % gates were removed without any impact

on the accuracy. A subsequent approximation (error ¼ 0.1 %) removed only 8 %

gates. It turns out that the impact of a proper logic optimization conducted in the

standard scenario (no errors are allowed) can be, in fact, higher than when the

approximations are introduced.

6 Conclusions

In this paper, we proposed a new CGP-based method which allowed us to approximate

non-trivial combinational circuits. Employing a BDD package in the fitness function

enabled to reduce the fitness evaluation time, which is the most contributing component

to the total time of evolution. The error was expressed in terms of the Hamming

distance—the error measure which can be applied for general logic approximation.

Pareto fronts show reasonable tradeoffs between key circuit parameters which one

would expect for combinational approximate circuits. Unfortunately, no results

compatible with our scenario are available in the literature for comparison.

Our method consists of two stages. In the first stage, a circuit showing desired

error is evolved from a fully functional solution. As the initial approximation is

performed in order of seconds (10s–100s of seconds in the case of more complex

circuits), the user thus quickly obtains a circuit with desired functionality.

Additional optimizations of the area and delay are then performed in the second

stage which can be terminated when a suitable tradeoff is reached. This approach

allowed us to find high quality solutions in a relatively short time, which is

important for practice. It was also shown that a significant area reduction can be

obtained just by enabling the evolutionary optimization of the accurate circuit after

performing its usual conventional optimization (Table 2).

Despite the fact that by means of BDDs we were able to approximate relatively

complex circuits (10s of inputs, 100s of gates), the usage of BDDs represents an

inherent weakness of the method. As we pointed out in Sect. 3, BDDs can grow

exponentially for some functions. Hence it is important to find a more

Table 5 The number of gates when subsequent optimizations are applied

Method BDS CGP

Error 0 % 0 % 0.1 % 0.5 % 0.9 %

clmb 641 (100 %) 410 (63 %) 250 (39 %) 167 (26 %) 129 (20 %)

s1238 483 (100 %) 416 (86 %) 298 (61 %) 241 (49 %) 213 (44 %)

signet 630 (100 %) 357 (56 %) 288 (45 %) 223 (35 %) 188 (29 %)

too_large 771 (100 %) 160 (20 %) 94 (12 %) 55 (7 %) 56 (7 %)

x1dn 164 (100 %) 85 (51 %) 61 (37 %) 44 (26 %) 36 (21 %)

x6dn 318 (100 %) 282 (88 %) 254 (79 %) 196 (61 %) 142 (44 %)

x9dn 168 (100 %) 133 (79 %) 103 (61 %) 72 (42 %) 54 (32 %)
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suitable formal model and corresponding algorithms which will allow us to further

extend the class of circuits that can be approximated by CGP.

In our future work, we also plan to combine our method with a truly

multiobjective evolutionary algorithm in order to obtain a Pareto front in a single

run. We will evaluate if the overhead associated with the multiobjective optimizer

can lead to results which are competitive with the obtained ones.
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2. R. Drechsler, B. Becker, N. Göckel, Genetic algorithm for variable ordering of obdds. IEE Proc.

Comput. Digit. Tech. 143(6), 364–368 (1996)
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