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Abstract. The paper presents the boundary element method acceler-
ated by the Intel Xeon Phi coprocessors. An overview of the boundary
element method for the 3D Laplace equation is given followed by the
discretization and its parallelization using OpenMP and the offload fea-
tures of the Xeon Phi coprocessor are discussed. The results of numerical
experiments for both single- and double-layer boundary integral opera-
tors are presented. In most cases the accelerated code significantly out-
performs the original code running solely on Intel Xeon processors.
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1 Introduction

The necessity to prepare existing scientific codes for the upcoming many-core
era has been discussed in numerous works since the introduction of Intel’s Many
Integrated Core (MIC) architecture in 2010 [3,4]. According to the June edition
of 2015 Top 500 list, 35 out of 500 most powerful supercomputers are equipped
with the first generation of Intel Xeon Phi coprocessor (Knights Corner, KNC).
This number is expected to grow with the introduction of the second (Knights
Landing, KNL) and third (Knights Hill, KNH) generations. Announced sys-
tems utilizing these architectures include the NERCS’s next supercomputing
system Cori with the theoretical peak performance of 30 PFLOPS or Argonne’s
future Aurora supercomputer with the estimated peak performance of up to 450
PFLOPS, which are expected to be operational as of 2016 and 2018, respectively.

The current generation of the Xeon Phi coprocessors features up to 61 cores
with four hyper-threads per core and 350 GB/s memory bandwidth. The extended
512-bitwideAVXvector unit provides support for a concurrent SIMDoperation on
eight double-precision or 16 single-precision operands. The coprocessor offers two
main usage modes: the native execution model, when the application directly runs
on the coprocessor, and the offload model, when the application runs on the host
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processor which offloads certain parts of the code to the coprocessor (see Fig. 1). In
this paper we focus on the latter approach.The future KNL and KNH architectures
will not only be available in the form of coprocessor cards, but also as stand-alone
host processors, which will eradicate the need for data movement via the PCIe
interface.

In this paper we demonstrate the performance gain achievable by Intel Xeon
Phi acceleration in the field of boundary integral equations. The boundary ele-
ment method (BEM) is suitable for the solution of partial differential equations
which can be formulated in the form of boundary integral equations, i.e., for which
the so-called fundamental solution is known. Since BEM reduces the problem to
the boundary of the computational domain, it is well suited for problems such as
exterior sound scattering or shape optimization. However, the classical method
has quadratic computational and memory complexity with respect to the number
of surface degrees of freedom and produces fully populated system matrices. In
addition, a special quadrature method has to be applied due to the singularities in
the kernel of the underlying boundary integrals [12,14]. Although one can employ
several fast BEM techniques to reduce the complexity to almost linear (see, e.g.,
[1,11–13]) an efficient implementation and parallelization of the method is neces-
sary to enable solution of large scale problems. In [9] we have presented an explicit
vectorization of BEM, whereas in [7] a new approach based on the graph theory
for the system matrix distribution among MPI processes was introduced. In this
paper we focus on the acceleration of the classical BEM by the Intel Xeon Phi
coprocessors. Similar topic has been discussed, e.g., in [6], where the coprocessors
were employed to accelerate the evaluation of the representation formula. We, on
the other hand, investigate the assembly of the BEM system matrices necessary
to compute the complete Cauchy data of the solution.

The structure of the paper is as follows. In Sect. 2 we introduce the model
problem represented by the potential equation in 3D and present its boundary
formulation. Section 3 concentrates on the discretization of the boundary integral
equations introduced in Sect. 2 and discusses the parallelization approach used
in the numerical experiments presented in Sect. 4. We summarize the results and
conclude in Sect. 5.

Fig. 1. Using the offload mode of Intel Xeon Phi to accelerate computation.
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2 Boundary Integral Equations for the Laplace Equation

Despite its simplicity, the Laplace (or the potential) equation finds its applica-
tion in numerous fields. Harmonic functions, i.e., the solutions to the Laplace
equation, can be used to model the steady-state heat flow or as potentials of
electrostatic or gravitational fields.

In the following we consider the mixed boundary value problem for the
Laplace equation

⎧
⎪⎪⎨

⎪⎪⎩

−Δu = 0 in Ω,

u = g on ΓD,

∂u

∂n
= h on ΓN.

(1)

In (1), Ω ⊂ R
3 denotes a bounded Lipschitz domain with the boundary composed

of two components ∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, and the boundary data g ∈
H1/2(ΓD), h ∈ H−1/2(ΓN). The solution to the Laplace equation is given by the
representation formula [8,12,14]

u(x) =
∫

ΓD

γ1u(y) v(x,y) dsy +
∫

ΓN

h(y) v(x,y) dsy

−
∫

ΓD

g(y)
∂v

∂ny
(x,y) dsy −

∫

ΓN

γ0u(y)
∂v

∂ny
(x,y) dsy for x ∈ Ω

with the Dirichlet and Neumann trace operators γ0 and γ1, respectively, and the
fundamental solution v : R3 × R

3 → R,

v(x,y) :=
1
4π

1
‖x − y‖ .

The unknown Cauchy data γ0u|ΓN , γ1u|ΓD can be obtained from the symmetric
system of boundary integral equations [12,15,16]

(V s)(x) − (Kt)(x) =
1
2
g̃(x) + (Kg̃)(x) − (V h̃)(x) for x ∈ ΓD,

(K∗s)(x) + (Dt)(x) =
1
2
h̃(x) − (K∗h̃)(x) − (Dg̃)(x) for x ∈ ΓN

(2)

involving the single-layer, double-layer, adjoint double-layer, and hypersingular
boundary integral operators

(V q)(x) :=
∫

∂Ω

v(x,y) q(y) dsy, (Kt)(x) :=
∫

∂Ω

∂v

∂ny
(x,y) t(y) dsy,

(K∗q)(x) :=
∫

∂Ω

∂v

∂nx
(x,y) q(y) dsy, (Dt)(x) := −γ1

∫

∂Ω

∂v

∂ny
(x,y) t(y) dsy,

respectively. The unknown functions s, t in (2) are defined as

H̃1/2(ΓN) 	 t := γ0u − g̃, H̃−1/2(ΓD) 	 s := γ1u − h̃,

with suitable extensions g̃, h̃ of the given boundary data g, h.
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To compute the unknown functions s, t from (2) we employ the equivalent
variational formulation

a(s, t, ψ, ϕ) = F (ψ,ϕ) for all ψ ∈ H̃−1/2(ΓD), ϕ ∈ H̃1/2(ΓN) (3)

with the bilinear form

a(s, t, ψ, ϕ) := 〈V s, ψ〉ΓD − 〈Kt, ψ〉ΓD + 〈K∗s, ϕ〉ΓN + 〈Dt, ϕ〉ΓN

and the right-hand side

F (ψ,ϕ) :=
〈(

1
2
I + K

)

g̃, ψ

〉

ΓD

−〈V h̃, ψ〉ΓD+
〈(

1
2
I − K∗

)

h̃, ϕ

〉

ΓN

−〈Dg̃, ϕ〉ΓN .

3 Discretization and Parallelization

3.1 Discretization of the Problem

In order to solve the problem (3) numerically, we discretize the boundary ∂Ω
into flat shape-regular triangles τi, i ∈ {1, . . . , E}. The boundary energy spaces
are discretized by continuous piecewise linear functions (ϕj)N

j=1 ⊂ H1/2(∂Ω) and
piecewise constant functions (ψi)E

i=1 ⊂ H−1/2(∂Ω). Following [12], the discrete
system of linear equations reads

[
VDD

h −KDN
h

(KDN
h )T DNN

h

] [
s
t

]

=
[ −VDN

h
1
2M

DD
h + KDD

h
1
2 (MNN

h )T − (KNN
h )T −DND

h

] [
h
g

]

with X•• denoting the restrictions of the matrices X ∈ {Vh, Kh, Dh, Mh},

Vh[
, j] :=
∫

τ�

∫

τj

v(x,y) dsy dsx, Mh[
, i] :=
∫

τ�

ϕi(x) dsx,

Kh[
, i] :=
∫

τ�

∫

∂Ω

∂v

∂ny
(x,y)ϕi(y) dsy dsx, Dh := TTdiag{Vh,Vh,Vh}T

to the respective parts of the boundary. Since Mh is a sparse matrix with no
singularity in the integrand and Dh can be computed by a sparse transformation
of the single-layer matrix Vh (see [2,12]), in the following we only concentrate
on the efficient assembly of the matrices Vh, Kh.

To deal with the singularities in the surface integrals we use the technique
proposed in [9,14]. Using a series of substitutions

Fn ◦ . . . ◦ F1 =: F : [0, 1]4 → τ� × τj ,

F (z1, z2, z3, z4) = (x,y), dsy dsx = S(z1, z2, z3, z4) dz1 dz2 dz3 dz4,

the matrix entries for Vh (similarly for Kh) read

Vh[
, j] =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

v(F (z1, z2, z3, z4))S(z1, z2, z3, z4) dz1 dz2 dz3 dz4.
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Since the transformed integrand h := (v ◦ F )S is analytic, the values can be
computed by a standard tensor Gauss integration scheme

k∑

m=1

k∑

n=1

k∑

o=1

k∑

p=1

ωm ωn ωo ωp h(zm, zn, zo, zp). (4)

The substitution F is different for τ�, τj being identical, sharing exactly one
edge, one vertex, or being disjoint. Note that for well separated triangles, say,

‖t� − tj‖ > η max{diam τ�,diam τj}
with the centres of gravity t�, tj and a suitable coefficient η the kernel function is
smooth and the entries can be computed directly by a triangle Gauss integration
scheme (see [12], Appendix C)

k∑

m=1

k∑

n=1

ωm ωn v(xm,yn). (5)

3.2 Parallelization and Acceleration of the System Matrix Assembly

The simplified algorithm of the system matrix assembly on a CPU is depicted in
Listing 1.1. The algorithm iterates through the couples of elements and assembles
local system matrices. The Gaussian quadrature (5) is used for well separated
elements; in other cases we employ the scheme (4).

1 #pragma omp parallel for
2 for (int i = 0; i < nElements; i++) {
3 for (int j = 0; j < nElements; j++) {
4 if (areElementsDistant(i, j)) {
5 getLocalMatrixFarfield(i, j, localMatrix);
6 } else {
7 getLocalMatrixNearfield(i, j, localMatrix);
8 }
9 globalMatrix.add(i, j, localMatrix);

10 }
11 }

Listing 1.1. Simplified CPU computation of the system matrix

After the assembly of the local matrix its contribution is added to the appropriate
positions of the global system matrix (line 9 of the listing). Since the computation
is done in parallel using OpenMP, the update of the global matrix has to be
treated using atomic operations.

To accelerate the computation we distribute the workload among the avail-
able accelerators and the CPU by splitting the matrix into NMIC + 1 horizontal
blocks. Dimensions of the blocks should follow the ratio between the theoretical
peak performance of the Xeon Phi and the host. The computation on the CPU
and the coprocessors is performed simultaneously (see Fig. 1). Moreover, to keep
the computation on the coprocessors as simple as possible, the accelerators only
take care of the quadrature over disjoint elements. The quadrature over close
and identical elements are computed on the CPU.



Many Core Acceleration of BEM 121

The process consists of several steps:

1. Preallocation of data structures (mainly the system matrix) on the host.
2. Sending the necessary data from the host to the coprocessor (mesh elements,

nodes, normals, etc.).
3. Parallel computation on the coprocessor and the host.
4. Sending the partially computed system matrix from the coprocessor to the

host.
5. Combination of the host and coprocessor data.

Since the amount of memory on Xeon Phi is usually lower than on the host,
the matrix blocks assigned to the coprocessor are further split into chunks of
smaller dimensions in order to tackle large problems. Moreover, splitting the
matrix enables us to use the technique of double buffering to overlap the data
transfer of a matrix chunk with the computation of the subsequent one.

The simplified source code of the offload is provided in Listing 1.2. The under-
lying data structures are extracted from C++ objects in order to send raw data
to the coprocessor using the #pragma offload target(mic) statement pro-
vided by the Intel Compiler (see lines 1–11 of the listing). The parallelization on
the coprocessor is performed using the ordinary OpenMP pragmas. The singular
integration is skipped and left for the host. The asynchronous offloaded compu-
tation is enabled by the signal clause. After the data is sent to the coprocessor
the CPU continues in the parallel quadrature over its portion of elements.

1 // get pointers to raw data
2 double * nodes = mesh ->getNodes ();
3 int * elements = mesh ->getElements ();
4 double * matrixData = globalMatrix.getData ();
5 char s;
6

7 // initialize offload region
8 #pragma offload target(mic) signal(&s) \
9 in(nodes : length(3 * nNodes)) \

10 in(elements : length(3 * nElements)) \
11 out(matrixData : length(dataLength))
12 {
13 #pragma omp parallel for
14 for (int i = myElemStart; i < myElemEnd; i++) {
15 for (int j = 0; j < nElements; j++) {
16 if (areElementsDistant(i, j)) {
17 getLocalMatrixFarfieldMIC(i, j, nodes ,

elements ,
18 localMatrix);
19 } else {
20 continue;
21 }
22 addToGlobalmatrix(i, j, localMatrix ,

matrixData);
23 }
24 }
25 }
26 // simultaneous computation on the host CPU
27 ...
28 // receive data from the coprocessor
29 #pragma offload target(mic :0) wait(&s)
30 // combine the data from the host and the coprocessor

Listing 1.2. Simplified offloaded computation of the system matrix
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After finishing its work the CPU waits for the data from the coprocessor (see
line 29). Finally, the contributions from the host processor and the coprocessor
are combined.

Note that the method assembling the local matrix on the Intel Xeon Phi
coprocessor has to be appropriately modified. For optimal memory movement
the data have to be aligned to 64 byte boundaries. Moreover, the original loops
over quadrature points are manually unrolled and vectorization is assisted using
the simd pragma.

1 int out = nOutQPoints;
2 int in = nInQPoints;
3 double value = 0.0;
4 for (int i = 0; i < out; i++) {
5 for (int j = 0; j < in; j++) {
6 value += ...;
7 }
8 }

Listing 1.3. Gauss quadrature on CPU

1 int p = nOutQPoints*nInQPoints;
2 double value = 0.0;
3 #pragma simd vectorlength (8) \
4 reduction (+: value)
5 for (int i = 0; i < p; i++) {
6 value += ...;
7 }
8

Listing 1.4. Gauss quadrature on MIC

Although the compiler automatically vectorizes the inner loop in Listing 1.3, the
longer loop in Listing 1.4 is more suitable for the extended SIMD registers on
the coprocessor.

4 Numerical Experiments

The following numerical experiments were carried out on the MIC-accelerated
nodes of the Salomon cluster at the IT4Innovations National Supercomputing
Center, Czech Republic. The nodes are equipped with two 12-core Intel Xeon
E5-2680v3 processors, 128 GB of RAM, and two Intel Xeon Phi 7120P coproces-
sor cards. Each coprocessor offers 61 cores running at 1.238 GHz, four hyper-
threads per core, and extended 512-bit vector registers. On the coprocessor 16 GB
of memory is available with the maximum memory bandwidth of 352 GB/s.

OMP threads
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]

0

50

100

150
Single-layer matrix (single)

CPU
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Fig. 2. Assembly of Vh accelerated by the Intel Xeon Phi coprocessors (Color figure
online).
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Fig. 3. Assembly of Kh accelerated by the Intel Xeon Phi coprocessors (Color figure
online).

The coprocessor offers 1.2 TFLOPS of computing power, which is theoretically
1.26 times the power provided by the pair of the Intel Xeon processors (assuming
16 FMA instructions per cycle on both architectures [17]).

The experiments were performed using the Intel Compiler, version 15. The
thread affinity on the coprocessor is set to balanced. We enable the offload run-
time to allocate memory with 2 MB pages using the MIC USE 2MB BUFFERS=100k
environmental variable. This significantly improves the performance since the
coprocessors have to allocate data for large full system matrices. We test the
assembly of the system matrices for a mesh with 81920 surface elements and
40962 nodes, thus Vh ∈ R

81920×81920 and Kh ∈ R
81920×40962.

The results of the numerical experiments are depicted in Figs. 2 and 3. We
measure the assembly times on the coprocessor using the multiples of 60 threads
in order to leave a core for the operating system. We compare the partially
offloaded computation to the parallel assembly on 24 cores of the host’s Intel
Xeon processors. The workload was kept balanced among the coprocessors and
CPU by adjusting the size of the matrix blocks.

Table 1. Speedup of CPU+MIC vs. CPU assembly for Vh.

# threads 24 + 60 24 + 120 24 + 240 24 + 2 × 60 24 + 2 × 120 24 + 2 × 240

Double 1.39 1.59 1.77 1.72 2.27 2.66

Single 1.35 1.48 1.66 1.60 2.07 2.43

Table 2. Speedup of CPU+MIC vs. CPU assembly for Kh.

# threads 24 + 60 24 + 120 24 + 240 24 + 2 × 60 24 + 2 × 120 24 + 2 × 240

Double 1.28 1.46 1.77 1.41 2.04 2.43

Single 1.37 1.59 1.87 1.60 2.16 2.54
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Only using the physical cores of the coprocessor leads to a rather insignificant
speedup of the offloaded computation. However, by utilizing the available logical
cores of both cards the speedup improves significantly. The assembly time of the
matrix Vh is reduced from 125.56 s (86.55 s) to 47.30 s (35.69 s) in the case of
the double (single) precision arithmetic, respectively. Similarly, the computation
time for the matrix Kh reduces from 139.83 s (113.43 s) to 57.50 s (44.64 s).

Tables 1 and 2 depict the speedups of the CPU+MIC vs. CPU computa-
tion (including the overhead caused by transfers between MIC and CPU). The
necessity to employ more atomic operations in the assembly of Kh leads to only
slightly worse results.

5 Conclusion

We have presented the boundary element method for the Laplace equation acceler-
ated by the Intel Xeon Phi coprocessors. Sample codes describing the acceleration
using the offload feature of the coprocessors were provided. The accelerated code
featuring asynchronous CPU/coprocessor computation was tested on the Intel
Xeon Phi 7120P cards in combination with two 12-core Intel Xeon processors. We
have achieved a reasonable speedup in comparison with the non-accelerated code.

Although the numerical experiments were only performed for a relatively
small problem, the full assembly of similar matrices can be used in boundary
element tearing and interconnecting methods (BETI) [5,10], where the compu-
tational domain is divided into many small subdomains. The global algorithm
usually requires accurate solution of local problems, which can be achieved by
direct solvers with full matrices.

In addition to the classical BEM and BETI we turn our attention to the accel-
eration of the adaptive cross approximation method (ACA), which will enable
the solution of engineering problems of large dimensions. Moreover, the pre-
sented code can be relatively easily extended to support the accelerated solution
of the problems of elastostatics.
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