
Mobile Security for Banking on Android Platform

Lukas Aron Petr Hanacek
Faculty of Information Technology

Brno University of Technology
Bozetechova 2 Brno, Czech Republic

{iaron, hanacek}@fit.vutbr.cz

ABSTRACT

This paper discusses the proposal of protecting mo-
bile banking applications on an Android platform.
The mobile platform surpasses computers in its
popularity in many aspects of ones daily routine.
One of the basic feature is its connection to the in-
ternet and the possibility of transferring money us-
ing the mobile device. Despite threats that are avail-
able on mobile devices like security breaches, data
leakage and other types of malware, the popular-
ity of using mobile banking is more popular than a
few years ago. Mobile banking applications have
the same security protection as any other mobile
application, thus without additional specific protec-
tion for mobile banking supported by an operat-
ing system. This paper proposes novel protection
for applications which checks if the mobile bank-
ing application communicates to the current bank
company and the data (usually passwords, money
amount etc.) are not sent to someone else. There
is a discussion about another control mechanism:
permissions which are used to access mobile device
hardware.

KEYWORDS

Mobile Banking, Protection, Android, Malware,
Android security.

1 INTRODUCTION

Almost everything that users can use on their
desktop can also be accessed on their mobile
devices, in particular on smart phones. These
devices have become powerful with capabil-
ities that desktops did not even have several
years ago. Increased capabilities have come
hand in hand with increased security threats.
Nowadays, all our private and business data
is accessible on our phones or tablets. Data

can be stored on the device or accessed via In-
ternet. Thus, these devices increasingly have
become the targets of malicious attacks. The
most successful and widespread operating sys-
tem of mobile devices is Android [6]. Needless
to say, the operating system plays a key role for
the security and privacy of these devices.
Permission is the corner stone of applications
security policy on the Android operating sys-
tem. Giving permission to applications can
lead to data leaks because it may, for exam-
ple, allow these applications to provide access
to personal contacts, private messages or any
other kind of sensitive data saved on the cur-
rent device with an ability to access the Inter-
net. A malicious application may thus send all
sensitive data to a server on the other side of
the world.
Fine-grained permission setting is not yet pos-
sible in Android (it should be possible since
Android 6 [1] is in use). Due to the popular-
ity of mobile devices and the use of an inter-
net connection everywhere, internet banking is
getting usual routine of the day. However these
applications work with users money, they have
the same security protection as any other ap-
plication. There is no existing additional pro-
tection of these applications than using secure
protocols, passwords or two-sided verification.
Moreover, applications for using bank ac-
counts are usually developed by third party
companies without the exact knowledge of the
security in this banking area. This paper intro-
duces an additional protection for mobile bank-
ing applications based on Android. The basic
idea behind the proposal is to wrap the appli-
cation with an additional protection layer. This
layer sets additional checking rules for filter-
ing the connection between an application and
the server. There is real-time filtering if the ap-



plication communicates with a bank server and
there is no data leakage. When data or an in-
formation leakage attempt appears, the user is
warned and the also user has the ability to con-
firm or deny this connection. In the next part of
this paper the basic introduction into Android
security architecture is documented followed
by related work. The next section describes the
main concept of the proposal that can be im-
plemented on each version of the Android op-
erating system. The final part is the conclusion
aimed towards future research possibilities.

2 ANDROID SECURITY OVERVIEW

This part contains the basic introduction into
Android security architecture. In order to un-
derstand the main idea of this paper, the nec-
essary security basics are covered here. For
another source of deep dive in Android secu-
rity principles read [2]. Android is a privilege-
separated (or permission-separated) operating
system, in which each application runs with
a distinct system identity (Linux user ID and
group ID). Parts of the system are also sepa-
rated into distinct identities. Linux thereby iso-
lates applications from each other and from the
system. Additional finer-grained security fea-
tures are provided through a permission mech-
anism that enforces restrictions on the specific
operations that a particular process can per-
form, and per-URI permissions for granting
ad-hoc access to specific pieces of data.
The central design point of the Android secu-
rity architecture is that no application, by de-
fault, has permission to perform any operation
that would adversely impact other applications,
the operating system, or the user. This in-
cludes reading or writing the user’s private data
(such as contacts or emails), reading or writing
another applications files, performing network
access, keeping the device awake, etc. Because
each Android application operates in a process
sandbox, applications must explicitly share re-
sources and data. They do this by declaring
the permissions they need for additional capa-
bilities are not provided by the basic sandbox.
Applications statically declare the permissions
they require (declaration is setup during the de-

velopment of the application), and the Android
system prompts the user for consent at the time
the application is installed.
The application sandbox does not depend on
the technology used to build an application. In
particular, the current virtual machines (runs
the byte or native code) Dalvik/Art VM [12]
are not a security boundary, and any applica-
tion can run a native code. All types of applica-
tions - Java, native, and hybrid are sandboxed
in the same way and have the same degree of
security from each other.

2.1 User IDs and File access

During installation, Android assigns each
package a distinct Linux user ID. The iden-
tity remains constant for the duration of the
packages (applications) life on a current de-
vice. This Linus ID can be different for the
same package (application) on another device.
The most important fact is that this number is
unique per device. Because security enforce-
ment happens at the process level, the code of
any two packages cannot normally run in the
same process. Any data stored by an appli-
cation will be assigned that applications user
ID. Android does not allow direct access to the
data of one application from another.

2.2 Using permissions

A basic Android application has no permis-
sions associated with it by default, meaning
it cannot do anything that would adversely
impact the user experience or any data on
the device. In order to make use of pro-
tected features of the device, the developer
of the application has to include in the spe-
cific file AndroidManifest [8] line with one (or
more) <uses-permission> tag declaring
the permissions that the current application re-
quires.
The package installer grants the permission
during the installation of the application based
on the AndroidManifest file. No checks with
the user are done while the application is run-
ning: the application is either granted a particu-
lar permission when installed, and can use that



feature as desired, or permission is not granted
and any attempt to use the feature fails without
prompting the user.
In almost all cases, however, a permission fail-
ure will be printed to the system log. However,
in a normal user situation (such as when the ap-
plication is installed from the official Google
Play Store) an application cannot be installed
if the user does not grant the application each
of the requested permissions. This principle
should be changed since Android 6 Marshmal-
low is now available. So there is no need to
worry about runtime failures caused by miss-
ing permissions because the mere fact that the
application is installed means that the applica-
tion has been granted its desired permissions.
The application has a defined permission as
was described above. There is a basic schema
of the flow of communication between the ap-
plication and operating system, as it is imple-
mented in Android OS (see Figure 1). In the
schema is the application which uses its per-
mission defined during its development. These
permissions are mapped into operating system
calls. There are also user’s files (usually docu-
ments, pictures, etc.) stored on the current mo-
bile device.

Figure 1. Application communication flow

If the user of the device wants to work with

the files through the application, system calls
are raised for input/output operations which are
needed to communicate with the application.

3 RELATED WORK

During the evolution of the Android operating
system a lot of additional features were de-
fined. There is an enormous list of updates,
recommendations by community or novel ap-
plication approaches to upgrade this system.
In this section is a small group of the exten-
sion to the Android which is related to the topic
of security. Diverse threats are identified from
mobile services, including permission bypass
[13], [15], and fraudulent money transfers with
online banking [7], [14]. The following work
is more related to implementing improvements
of Android operating system to cover more se-
curity principles than its basic version.
First of all there is the project Aurasium [16]
which is the cornerstone of this proposal.
Aurasium introduces the solution that bypasses
the need to root the device when modification
of the Android OS is required. The behav-
ior of the application can be modified or the
flow of the information can be followed. This
project automatically repackages arbitrary ap-
plications to keep the sandboxing mechanism
and policy enforcement code, which closely
watches the behavior of security and privacy
intrusions such as attempts to retrieve a users
sensitive information, etc. Aurasium has the
ability to detect and prevent cases of privi-
lege escalation attacks. Experiments show that
these principles can apply this solution to a
larger scale of malicious applications with a
near 100 percent success rate, without signif-
icant performance and space overhead.
Dr. Android and Mr. Hide [4] Fine-grained
security policies on unmodified Android is an-
other approach for checking an Internet con-
nection. They presented a concept for replac-
ing coarse Android platform permissions with
finer-grained permissions that lower needed
privilege levels, decreasing the potential threat
from malicious apps. The system contains
two novel parts: Mr. Hide and Dr. An-
droid. Mr. Hide is an Android service that



protects sensitive device capabilities with fine-
grained permissions which the service dynam-
ically enforces. For example, Mr. Hide in-
cludes an API for accessing the Internet but
protects this API with a new permission called
InternetURL(d), which only grants ac-
cess to the Internet domain d. The Google
search application can use Mr. Hide to ac-
cess the Internet by replacing Androids full
Internet permission with the much weaker
InternetURL(www.google.com) per-
mission, providing increased confidence to
both the developer and users. The second
part is Dr. Android which stands for Dalvik
Rewriter for Android. This concept is very use-
ful and has a similar target as our concept. The
difference between our concept and Dr. An-
droid and Mr. Hide is that we do not modify
any Android permissions and we are focusing
only on protecting a specific region of appli-
cations. The weak point of this solution (Dr.
Android and Dr. Hide) is that it is only focused
for domains and unfortunately does not cover
the connection directly to the IP address.

TaintDroid [3] is another extension to the An-
droid platform that tracks the flow of pri-
vacy sensitive data by third-party applications.
TaintDroid supposes that downloaded applica-
tions are not trusted, and tracks in real-time
the way these applications access users data.
Their primary goals are to detect when sensi-
tive data leaves the system by third-party appli-
cations and to simplify analysis of applications
by mobile device users or external security ser-
vices. TaintDroid implementation modifies the
Dalvik VM of Android in order to introduce
variable level taint tracking. For tracking taint
sources, TaintDroid does variable level track-
ing for an interpreted code, method level track-
ing for a native code, message level tracking
for Inter Process Communication and File level
tracking for secondary storage files.

TrustDroid [17] implements the famously
known principle of BYOD - Bring Your Own
Device [9]. This principle is related to privacy
protection of leakage from corporate data. It
can operate on a server (offline) and also real-
time on the mobile device based on Android.

The static analysis is performed offline. Static
semantic analysis on a compiled byte code is
done for data flow tracking. From the aspect
of semantic analyzing of byte code it is con-
verted to a tree structure, which is again pro-
cessed to generate call graph. This call graph is
processed to show the source to sink paths. In
order to generate the tree structure, a parser is
built based on an open source third-party solu-
tion ANTLR parser generator. The TrustDroid
tracking is engine composed of a pair of def-
inition (source and sink), file sniffer and the
glue between these components. This engine
explores the output of the semantic analyzer
by using the file sniffer and then performs taint
tracking. TrustDroid usually works as a stan-
dalone application with permission to access
file system (which needs a specific permission
or root privilege) and scan installation pack-
ages (apk files). Restrictions of this principle
are an inability to provide an analysis of a dy-
namic loaded code and Java Native Interfaced
[5] code.

4 PROTECTION OF MOBILE BANK-
ING APPLICATION

This part is the main content of this paper.
It includes the description of the proposal of
protection for mobile banking applications on
an Android platform. Protection for a mo-
bile banking application is related to login data
leakage. This leakage usually has the follow-
ing characteristic. The corrupted bank appli-
cation has injected own domain or IP address.
A user logins his username or login number
with a password and this information is sent to
the third party server which collects this data
and then redirects the communication to the
correct bank server. Now the hacker has the
ability to login to the bank account. Another
additional protection, such as SMS confirma-
tion, is usually useless, because if the user has
corrupted the mobile banking application then
it has the permission to read the SMS messages
and can hide the incoming confirmation.
This paper proposal has been built on top of
Aurasium project [16], which is designed for
user application on the Android device and to



track all system calls that the application raises.
During real-time execution the user can see the
calling permissions, execution of I/O opera-
tions or using internet connection. This pro-
posal uses the basic features of the Aurasium
project such as decompiling the apk package
of application and adding related hooks to be
able to track the flow of the application. The
additional rules or behavior is out of the Aura-
sium project and is a part of this proposal.

Currently we have the possibility to track an
internet connection call. This has been done
through system functions: getaddrinfo()
and connect(). These functions are respon-
sible for DNS [10] resolving and socket con-
nection, thus the proposal can track all Inter-
net connections related to domains and also di-
rect IP address calls. More information about
Linux system calls can be found in [11]. Inter-
cepting them allows us to control the applica-
tions Internet access. The possibility to check
the internet calls is the main power of checking
if the bank application communicates with the
corresponding server. The proposal solution
has two parts: a mobile banking application
which can be corrupted, infected by malware
or it can be malware free, and the information
about the website domains or IP addresses of
the current bank company. The bank company
can provide this list to its users. We have a list
of website domains and IP addresses of the 5
biggest banks in the Czech Republic. This list
is necessary to provide correct checking. If the
list is not available or the bank does not provide
it, the implementation will still work, but the
user will be informed about every internet call
and then he has to decide to confirm or deny the
call. The recommendation is to use the verified
list of bank domains which can be provided by
the current bank.

The following steps are necessary to have ad-
ditional control over the data flow. At first
step we need the package file of the applica-
tion (for mobile banking) and this package has
to be repacked (unzipped) by our project. This
means that the application goes through the
process of unpacking the package, adding ad-
ditional hooks for system calls, inserting the

prepared list of website domains or IP ad-
dresses (as was discussed above) and creating
the package with a signing process.
A modified version of the package is ready to
install and the results of the installation are
the same working application that they were
before, but there is an additional feature to
track the flow of the application calls to the
kernel. This can be used to track all impor-
tant calls, especially for tracking calls like:
getaddrinfo() and connect(). On top
of tracking internet communication there is the
matching mechanism to control the use of the
permitted list of domains or IP addresses.
The proposal of mobile banking protection is
about creating the hooks and then track all in-
ternet calls of the application and provide feed-
back to the user if the application uses only per-
mitted domains provided by bank company. In
this case the proposal can detect the leakage of
the data to different website domains that is de-
fined in the information of the bank.
The correct behavior of protection against the
infected application is shown by the warning
to the user when there is an attempt to access a
different website domains which is not allowed
(is not covered by the list from the bank). The
next step is up to user if he continues the pro-
cess of the application or terminates it.
There is a graph of a proposal of the solution
for protection of a mobile banking application
(see Figure 2).
Figure 2 contains a few parts: the biggest one is
the mobile banking protection which is based
on a modified application, a list of allowed
bank websites or IP address or a combina-
tion thereof. Inside this box is mobile bank-
ing application which can have saved creden-
tials or keys. All saved files are transmitted
to the application through I/O calls which is
the whole application context with all neces-
sary files. The next part of the proposal is the
user who plays the role coordinator or decision
maker. He has the ability to deny or confirm ac-
cess to the website domain or IP address which
is not on the list of allowed address.
In this case the application permissions con-
tains at least the Internet connection request



Figure 2. Proposal of protection

or some hardware information permission. As
was proposed the solution needs two inputs:
the application which is in the cover and the
bank information. Afterwards when the user
runs the application the mobile banking pro-
tection checks all the system calls related to
the website domain of the bank according to
the bank information. This graph is the same
for all versions of Android operating system
without the need to use root. This proposal
can be modified to other kinds of protection
against data leakage. The mobile banking ap-
plications needs only Internet connection per-
mission; however, they ask during the installa-
tion process for more than that. There can be
another warning when the application tries to
access more than just the Internet connection,
such as a phone/email contacts, in order for ex-
ample.

5 EXPERIMENTS

We have chosen five banks in the Czech Re-
public for which we have a list of website do-
mains or IP addresses. We have downloaded
the corresponding applications to communi-
cate with the bank using a mobile device based
on the Android operating system. We did mod-
ifications of these applications in order to send
the entire communication to our testing server.
Afterwards, we provided the list from the re-

lated bank to a related mobile application and
setup the proposed protection. While we were
trying to login to the current bank company we
were warned about the disallowed website or
IP address that we were trying to connect. This
protection works on each application that we
were tested. We have not provided the list of
bank companies in this proposal.

6 CONCLUSION AND FUTURE WORK

The security issues in the mobile world has be-
come more and more sophisticated and their
detection is more complicated. The Main re-
sponsibility is on the user, even if he uses the
mobile device to work. The user is the weakest
point in the whole string of the security chain.
The proposal of protecting the mobile bank-
ing application is in trying to ease the user re-
sponsibility to check everything that the appli-
cation does in the background. This approach
could save the user (or corporation) money and
should deny the leakage of password from the
device. This proposal shows another type of
protection against malware infection. The user
can detect a possible malfunction of the appli-
cation related to the connection between bank-
ing application and the server. This protec-
tion can be extended by additional features to
protect the application in more ways than the
track system calls which are only responsible
for solve the DNS records. The next step of
this work will need more mathematical mod-
els and additional tracking features in order to
protect users against data or money leakage.

7 ACKNOWLEDGEMENTS

This work was supported by the Euro-
pean Regional Development Fund in the
IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070), by the project CEZ
MSM0021630528 Security-Oriented Research
in Information Technology and by project FIT-
S-11-1 Advanced Secured, Reliable and Adap-
tive IT.



REFERENCES

[1] DEITEL, P. J., WALD, A., AND DEITEL, H. M.
Android 6 for programmers.

[2] DRAKE, J. J., LANIER, Z., MULLINER, C.,
FORA, P. O., RIDLEY, S. A., AND WICHERSKI,
G. Android hacker’s handbook. John Wiley &
Sons, 2014.

[3] ENCK, W., GILBERT, P., HAN, S., TENDULKAR,
V., CHUN, B.-G., COX, L. P., JUNG, J., MC-
DANIEL, P., AND SHETH, A. N. Taintdroid: an
information-flow tracking system for realtime pri-
vacy monitoring on smartphones. ACM Transac-
tions on Computer Systems (TOCS) 32, 2 (2014),
5.

[4] JEON, J., MICINSKI, K. K., VAUGHAN, J. A.,
FOGEL, A., REDDY, N., FOSTER, J. S., AND
MILLSTEIN, T. Dr. android and mr. hide: fine-
grained permissions in android applications. In
Proceedings of the second ACM workshop on Se-
curity and privacy in smartphones and mobile de-
vices (2012), ACM, pp. 3–14.

[5] LIANG, S. The Java Native Interface: Program-
mer’s Guide and Specification. Addison-Wesley
Professional, 1999.

[6] LIU, W., ZHANG, G., CHEN, J., ZOU, Y., AND
DING, W. A measurement-based study on appli-
cation popularity in android and ios app stores. In
Proceedings of the 2015 Workshop on Mobile Big
Data (2015), ACM, pp. 13–18.

[7] MARFORIO, C., KARAPANOS, N., SORIENTE,
C., KOSTIAINEN, K., AND CAPKUN, S. Smart-
phones as practical and secure location verification
tokens for payments. In NDSS (2014).

[8] MEIER, R. Professional Android 4 application de-
velopment. John Wiley & Sons, 2012.

[9] MILLER, K. W., VOAS, J., AND HURLBURT,
G. F. Byod: Security and privacy considerations.
It Professional, 5 (2012), 53–55.

[10] MOCKAPETRIS, P., AND DUNLAP, K. J. Devel-
opment of the domain name system, vol. 18. ACM,
1988.

[11] NEGUS, C. Linux Bible 2010 Edition: Boot Up to
Ubuntu, Fedora, KNOPPIX, Debian, openSUSE,
and 13 Other Distributions, vol. 682. John Wiley
& Sons, 2010.

[12] OH, H.-S., KIM, B.-J., CHOI, H.-K., AND
MOON, S.-M. Evaluation of android dalvik vir-
tual machine. In Proceedings of the 10th In-
ternational Workshop on Java Technologies for
Real-time and Embedded Systems (2012), ACM,
pp. 115–124.

[13] ONGTANG, M., MCLAUGHLIN, S., ENCK,
W., AND MCDANIEL, P. Semantically rich
application-centric security in android. Security
and Communication Networks 5, 6 (2012), 658–
673.

[14] REAVES, B., SCAIFE, N., BATES, A., TRAYNOR,
P., AND BUTLER, K. R. Mo (bile) money, mo
(bile) problems: analysis of branchless banking
applications in the developing world. In 24th
USENIX Security Symposium (USENIX Security
15) (2015), pp. 17–32.

[15] WU, L., DU, X., AND ZHANG, H. An effective
access control scheme for preventing permission
leak in android. In Computing, Networking and
Communications (ICNC), 2015 International Con-
ference on (2015), IEEE, pp. 57–61.

[16] XU, R., SAÏDI, H., AND ANDERSON, R. Aura-
sium: Practical policy enforcement for android
applications. In Presented as part of the 21st
USENIX Security Symposium (USENIX Security
12) (2012), pp. 539–552.

[17] ZHAO, Z., AND OSONO, F. C. trustdroid: Pre-
venting the use of smartphones for information
leaking in corporate networks through the used of
static analysis taint tracking. In Malicious and Un-
wanted Software (MALWARE), 2012 7th Interna-
tional Conference on (2012), IEEE, pp. 135–143.


