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Abstract. The reconstruction of the patient-specific 3D anatomy is a crucial step in the computer-aided preoperative

planning based on plain X-ray images. The reconstruction is performed by 2D/3D registration of a shape prior into

the set of X-ray images. We propose the robust and fast intensity-based 2D/3D registration method of fitting the

statistical shape and intensity model of a femoral bone into two orthogonal X-ray images. A user provides a rough

initial pose estimation and segmentation of the input X-ray images. We formulate the registration as a non-linear least

squares problem, allowing involvement of Levenberg-Marquardt optimisation and combining more similarity metrics

at the same time. The GP-GPU acceleration is used for time-consuming parts of the registration. The proposed

method has been evaluated on a set of 96 virtual X-ray images ray-casted from CT data sets of eight different bones

and using a shape model constructed from 22 bones. The difference between reconstructed and ground truth bone

polygonal models has been measured using a symetric Hausdorff distance. The method converged in all tested cases,

the accuracy of the reconstruction was 1.28+-1.68 mm on average, which is comparable with other published methods.

The pose estimation reached sub-milimiter accuracy in translation and less than 0.5◦ rotation error around frontal and

sagittal axes on average. The error in rotation around the longitudinal axis was less than 2.3◦ on average.

1 Description of purpose

The identification of the best fitting patient-specific bone implant is one of the common tasks of

the preoperative planning in the orthopeadic surgery. Recently, preoperative planning based on

plain X-ray images has been brought into focus. For the purposes of the planning, it is important

to reconstruct the 3D patient-specific anatomy. That is typically achieved by deformable 2D/3D

registration of the shape prior into the set of calibrated X-ray images.

Fast and reliable registration method is needed for femoral interventions planning software

intended for clinical use (project Traumatech, TA04011606). Ehlke et al.2 proposed GPU acceler-

ated registration method focused on the reconstruction of pelvic bone from one X-ray image, but

didn’t provide an evaluation of the method’s accuracy. We propose an improvement of the regis-

tration method and perform large-scale evaluation study focused on the reconstruction of femoral

bone from two calibrated X-ray images.

2 Method

The 3D bone model is reconstructed using a statistical shape and intensity model (SSIM), which

captures femoral shape variability in the population. Generally, the pipeline for the intensity-based

2D/3D registration of the SSIM into the set of calibrated X-ray images is built as a numerical

optimisation. In each iteration, digitally reconstructed radiographs (DRR) are rendered from the

statistical shape and intensity model. Differences between the original X-ray images and the cor-

responding DRRs are evaluated using image similarity metrics. The initial pose and shape param-

eters of the shape model are adjusted to minimise the disimilarities between original and rendered

images. The patient-spefic bone model is reconstruted when the value of the similarity metric is

minimised.
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2.1 Statistical shape and intensity model

The statistical shape and intensity model has been created according to Yao.1 22 tetrahedral models

of femora have been obtained from Virtual Skeleton Database CT data sets. Models have been

brought into vertex-correspondence and aligned using generalized Procrustes analysis. Principal

component analysis on aligned models has resulted in the linear model y(S) = y + ΩS, where y

is the mean bone shape, Ω is the matrix of modes of variation and y(S) is a bone model generated

according to the given shape parameters S. The constructed shape model contains 104 thousand

of tetrahedra and 26 thousand of vertices. The bone densities are described uniquely in each

tetrahedron using Bernstein polynomials of the 3rd degree. Rendering of the DRRs from the shape

model is performed using the OpenGL accelerated approach by Ehlke.2

2.2 Deformable registration

In contrast with Ehlke et al.,2 we formulate the atlas-based registration as a nonlinear least squares

problem. The whole process of the registration comprises from three subsequent optimisations.

In the first stage, the rigid 2D/3D registration of the mean shaped bone to the original X-ray

images is performed. This step is involved to avoid local minima and to speed up the following

deformable registration. The sum of squared differences (SSD) between corresponding pixels in

the original X-ray images and the DRRs rendered from the shape and intensity model is minimised.

Formally, the optimisation problem can be stated as follows:

argmin
R,T

‖g (i, x, y)− f([i, x, y] , [R, T ])‖2 (1)

where i stands for the index of X-ray and a DRR image pair, x and y are image coordinates.

Functions g and f return the pixel intensity values of the original X-ray images and the digitally

reconstructed radiographs respectively. The digitally reconstructed radiographs are rendered ac-

cordingly to the current translation T = (tx, ty, tz) and rotation R = (rx, ry, rz) parameters.

In the second stage, the pose and the shape parameters of the bone model are optimised simul-

taneously:

argmin
R,T,S

‖g (i, x, y)− f([i, x, y] , [R, T, S])‖2 (2)

where S = (s1, s2, . . . , sn) are the shape parameters of the model.

The third stage is used for the refinement of the result obtained in the previous step. Here the

optimisation combines multiple image similarity and feature similarity metrics:

argmin
R,T,S

‖fmax(j)− f(j, [R, T, S])‖2 (3)

where j is the number of used metric, fmax(j) is the maximum value of the j-th metric for an op-

timal case (i.e. two exactly similar images) and f is a single-valued metric evaluated with respect

to the R, T, S parameters. As a single-valued metric the joint histogram normalized mutual infor-

mation is used, f({0, 1} , [R, S, T ]) is the metric evaluated between j-th X-ray and corresponding

DRR image, maximum value of the metric is fmax({0, 1}) = 2. Optionally, user can pick ar-

bitrary count of pseudolandmarks located on the bone silhouette in the original X-ray to accent

the anatomy of interest. Consequently, the f(2, . . . , n + 2, [R, S, T ]) = d0,...,m are the distances

between line segments from focal point to pseudolandmarks and the nearest point on the bone
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silhouette (distance measure used by Baka et al.3), fmax(2, . . . , m) = 0, m = n + 2 and n is the

count of pseudolandmarks.

The optimisations are performed using the Levenberg-Marquardt algorithm. The bone density

parameters are set to the mean values during the whole registration.

3 Results

The proposed method has been evaluated on a set of virtual X-ray images ray-casted from seg-

mented CT images of femora. We employed leave-one-out methodology; the bone model of

currently used X-ray images was always discarded from the training data set of the used shape

model. From each CT, 12 virtual X-rays were rendered, rotated around longitudinal axis for

0, 30, 60, . . . , 330◦, resulting in a data set of 96 images in total. The initial poses of the shape

model were generated randomly with a uniform distribution. The maximum difference between

the initial and the ground-truth pose was limited to 10◦ rotation and 10 mm translation in each

direction and along each axis.

The method converged in all tested cases. The largest amount of dissimilarity between X-

rays and digitally reconstructed radiographs was reduced by the first and the second optimisation,

while the fine details of the bone shape were obtained using the mutual information metric based

optimisation, as shown in Figure 1 and in our YouTube video ∗.

Fig 1 Metric values during the registration: (left) SSD between corresponding pixels in each iteration; (right) SSD

between the mutual information evaluated on corresponding X-ray and DRR images and the maximum possible value

of the mutual information-based image similarity metric.

For the evaluation of the registration accuracy, we measure the mean and maximum symetric

Hausdorff distance between the surfaces4 of the ground-truth and the reconstructed bone model.

The results of the evaluation on 96 cases are shown in Figure 2 in the form of the empirical cumula-

tive distribution functions. The average mean error of the reconstructed bone was 1.28± 1.68mm,

average maximum error was 7.38mm. This accuracy was reached without marking the anatomy

of interest. On average, 3515 digitally reconstructed radiographs were rendered per registration.

4 New or breakthrough work to be presented

We adopted the Ehlke’s method originally designed for the reconstruction of the pelvic bone, and

further improved the method by formulating the registration as non-linear least squares problem, by

∗https://youtu.be/SfiCX6ETF8w
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Fig 2 Cumulative distribution of the mean symetric Hasdorff distance4 (left), cumulative distribution of the maximum

error (right). The average case is highlighted by the red point.

involvement of Levenberg-Marquardt optimisation method and usage of multiple image similarity

metrics. We used the improved method for a double-view reconstruction of femoral bones from

two calibrated x-ray images. We performed a large-scale evaluation study on a set of 96 pairs of

virtual X-ray images. We are currently working on the evaluation using real X-ray images. This

work has not been submitted for publication anywhere else, certain GP-GPU acceleration aspects

will be discussed at Shape Symposium 2015.

5 Conclusions

We have proposed the improved method for multiview intensity-based 2D/3D reconstruction of

the femoral bone. The method assumes that at least a rough initial estimation of the pose and

approximate segmentations of the bone in the X-ray images are given, as the method proposed

by Ehlke.2 Formulation of the registration as a non-linear least squares problem and optimisa-

tion using Levenberg-Marquardt algorithm leads to the reliable 2D/3D reconstruction method. It

converged on all tested X-rays. Ehlke2 reported that for pelvic bone reconstruction using his orig-

inal optimisation aproach approximately 6000 digitally reconstructed radiographs were rendered

on average. In comparison, 3515 digitally reconstructed radiographs on average were needed to

reconstruct the femoral bone in our case, which results in a significant speed up of the reconstruc-

tion. The proposed method reached 1.28± 1.68mm reconstruction accuracy, which is comparable

to other methods that can be found in a brief summary of the state of the art methods presented by

Baka.3 Moreover, the least squares formulation of the registration allows to combine more image

similarity metrics at the same time, which can be exloited for the manual selection of the anatomy

of interest.
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