
Plastic Fitness Predictors Coevolved
with Cartesian Programs

Michal Wiglasz(B) and Michaela Drahosova

Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic

{iwiglasz,idrahosova}@fit.vutbr.cz

Abstract. Coevolution of fitness predictors, which are a small sample
of all training data for a particular task, was successfully used to reduce
the computational cost of the design performed by cartesian genetic pro-
gramming. However, it is necessary to specify the most advantageous
number of fitness cases in predictors, which differs from task to task.
This paper introduces a new type of directly encoded fitness predictors
inspired by the principles of phenotypic plasticity. The size of the coe-
volved fitness predictor is adapted in response to the learning phase that
the program evolution goes through. It is shown in 5 symbolic regres-
sion tasks that the proposed algorithm is able to adapt the number of
fitness cases in predictors in response to the solved task and the program
evolution flow.

Keywords: Fitness predictors · Cartesian genetic programming ·
Coevolution · Phenotypic plasticity

1 Introduction

Cartesian genetic programming (CGP) is a specific form of genetic programming
(GP) and has been successfully applied to a number of challenging real-world
problem domains [7]. In CGP, as well as in GP, every evolved program must be
executed to find out what it does. Each program in the population is assigned a
fitness value, representing the degree to which it solves the problem of interest.
Often, but not always, the fitness is calculated over a set of fitness cases. A
fitness case consists of potential program inputs and target values expected from
a perfect solution as a response to these program inputs. The outputs of the
evolved program are then compared with the desired outputs for given inputs.
The choice of how many fitness cases (and which ones) to use is often a crucial
decision since whether or not the evolved program will generalize over the entire
domain depends on this choice.

In the case of digital circuit evolution, which is a typical task for CGP, it is
necessary to verify whether a candidate n-input circuit generates correct responses
for all possible input combinations (i.e., 2n assignments). It was shown that testing
just a subset of 2n fitness cases does not lead to correctly working circuits [5].

In the symbolic regression tasks, the goal of GP system design and GP para-
meters’ tuning is to obtain a solution with predefined accuracy and robustness.
c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 164–179, 2016.
DOI: 10.1007/978-3-319-30668-1 11

Plastic Fitness Predictors Coevolved with Cartesian Programs 165

In this case, k fitness cases are evaluated during one fitness function call, where
k typically goes from hundreds to ten thousands. The time needed for evaluat-
ing a single fitness case depends on a particular application. Usually, in order to
find a robust and acceptable solution a large number of fitness evaluations has
to be performed. In order to reduce the evaluation time, fitness approximation
techniques have been employed, e.g. fitness modeling [6].

Closely related concept to the fitness modeling is a fitness prediction, which
is a low cost adaptive procedure utilized to replace the fitness evaluation. A
framework for reducing the computation requirements of symbolic regression
using fitness predictors has been introduced for standard genetic programming
by Schmidt and Lipson [9]. The method utilizes a coevolutionary algorithm which
exploits the fact that one individual can influence the relative fitness ranking
between two other individuals in the same or a separate population [4]. The
state of the art of coevolutionary principles has recently been summarized in the
chapter of Handbook of Natural Computing [8].

Inspired by [9], we have introduced coevolving fitness predictors to CGP
and have shown that by using them, the execution time of symbolic regression
can significantly be reduced [12]. Fitness predictors have been represented as a
constant-size array of pointers to elements in the fitness case set and operated
using a simple genetic algorithm. The same coevolutionary CGP and Hillis’
competitive coevolution approach [4] adapted for CGP have been used in the
evolutionary image filter design [11]. Although the time of evolution has also
been reduced, a large number of experiments had to be accomplished in order
to find the most advantageous size of the fitness predictor (the number of fitness
cases in predictor) for this particular task.

To solve this problem, we have introduced a new type of indirectly encoded
fitness predictors which can automatically adapt the number of fitness cases used
to evaluate the candidate programs [10]. However, during the evolution of fitness
predictors, also large fitness predictors have to be evaluated (and then refused
for a larger size), and thus plenty of fitness case evaluations have been wasted.

In this paper, we integrate phenotypic plasticity principles into coevolution.
The phenotypic plasticity is the ability of an individual to learn how to utilize its
genotype in order to adapt to the environment [1]. It was shown that a proper
rate of environmental change may reduce the learning cost while evolving the
solution [2,3]. Inspired by these principles, we introduce a new type of fitness
predictors, operated using a simple genetic algorithm (GA), using the phenotypic
plasticity in order to adapt the number of fitness cases for candidate solution
evaluations and thus regulate the rate of environmental change. In the case of
fitness prediction, a stable environment contains a complete fitness cases set, a
highly changing environment only a few of them.

The paper is organized as follows. Section 2 introduces cartesian genetic pro-
gramming and coevolution of fitness predictors. In Sect. 3, a new approach to
fitness predictor encoding is presented. The proposed approach is evaluated using
5 symbolic regression benchmarks. Experimental results are discussed in Sect. 4.
Finally, conclusions are given in Sect. 5.

166 M. Wiglasz and M. Drahosova

2 Fitness Prediction in CGP

In standard CGP, candidate programs are represented in the form of directed
acyclic graph, which is modeled as a matrix of nc × nr programmable elements
(nodes). Each node is programmed to perform one of na-input functions defined
in the set Γ . The number of primary inputs, ni, and outputs, no, of the program
is defined for a particular task. Each node input can be connected either to the
output of a node placed in previous l columns or to one of the program inputs.
Feedback is not allowed. The search is usually performed using a simple (1 + λ)
evolutionary algorithm, where usually λ = 4. Every new population consists of
the best individual of the previous population and its λ offspring created using
a mutation operator which modifies up to h genes of the chromosome. The state
of the art of CGP has recently been summarized in a monograph [7].

In the case of symbolic regression, the set of fitness cases is usually constructed
from experimentally obtained data. Then each of k fitness cases from the set is
used to evaluate each candidate program (see Fig. 1). The fitness function of
candidate program is often defined as the relative number of hits. Formally,

f (s) =
1
k

k∑

j=1

g (y (j)) , where (1)

g (y (j)) =
{

0 if |y (j) − t (j)| ≥ ε
1 if |y (j) − t (j)| < ε

(2)

and y is a candidate program response, t is a target response and ε is a user-
defined acceptable error. The fitness evaluation is the most time consuming part
in standard CGP (as well as tree-based GP).

Fig. 1. Fitness evaluation of a candidate cartesian program.

2.1 Fitness Predictor

In order to reduce the total number of evaluations during each one fitness func-
tion call, fitness predictor in the form of small subset of the fitness case set
have been introduced to CGP [12]. An optimal fitness predictor is sought using
a simple genetic algorithm (GA) which operates with a population of fitness

Plastic Fitness Predictors Coevolved with Cartesian Programs 167

Fig. 2. Fitness predictor representation.

predictors. Every predictor is encoded as a constant-size array of pointers to
elements in the training data (see Fig. 2). In addition to one-point crossover and
mutation, a randomly selected predictor replacing the worst-scored predictor in
each generation has been introduced as a new genetic operator of GA. The goal
of the evolution of predictors is to minimize the relative error of fitness prediction
and the expensive exact fitness evaluation.

2.2 Coevolution of Cartesian Programs and Fitness Predictors

The aim of coevolving fitness predictors and programs is to allow both solutions
(programs) and fitness predictors to enhance each other automatically until a
satisfactory problem solution is found. There are two concurrently working pop-
ulations: (1) candidate programs (syntactic expressions) evolving using CGP and
(2) fitness predictors evolving using GA. The overall scheme of the coevolution-
ary algorithm is shown in Fig. 3.

Evolution of candidate programs is based on principles of CGP. The fitness
function for CGP is defined as the relative number of hits. There are, in fact,
two fitness functions for candidate program s. While the exact fitness function
fexact(s) utilizes the complete set of fitness cases, the predicted fitness function
fpredicted (s) employs only selected fitness cases. Formally,

fexact (s) =
1
k

k∑

j=1

g (y (j)) (3)

fpredicted (s) =
1
m

m∑

j=1

g (y (j)) (4)

where k is the number of fitness cases in the set of fitness cases and m is the
number of fitness cases in the fitness predictor. The fpredicted is used to evaluate
the candidate programs in the population. The fexact is used during the predictor
training.

The predictor training is accomplished as follows. The archive of trainers
is generated and updated in response to the candidate program evolution. It
consists of candidate programs with evaluated fexact and is divided into two

168 M. Wiglasz and M. Drahosova

Fig. 3. Coevolution of candidate solutions and fitness predictors.

parts: The first part contains copies of top-ranked programs (with different fit-
ness) obtained during the program evolution and the second part is periodically
updated with randomly generated programs to ensure genetic diversity of the
archive. The size of the archive is kept constant during the coevolution and each
new trainer replaces the oldest one in the corresponding part of the archive.

The fitness value of predictor p is calculated using the mean absolute error
of the exact and predicted fitness values of programs in the archive of trainers:

f (p) =
1
u

u∑

i=1

|fexact (i) − fpredicted (i)| (5)

where u is the number of candidate programs in the archive of trainers. The
predictor with the best fitness value is used to predict the fitness of candidate
programs in the population of candidate programs [9].

3 Proposed Method

In this paper, we propose a new approach to fitness predictor encoding. The
number of fitness cases required to obtain a satisfactory solution varies from
benchmark to benchmark. In order to apply coevolutionary CGP to different
tasks, it is required to perform numerous experiments to find the most advanta-
geous number of fitness cases in fitness predictors.

Plastic Fitness Predictors Coevolved with Cartesian Programs 169

It can be observed that the population of solutions goes through various
phases as the population’s ability to adapt to the problem changes over the
time [2]. A lower fitness phase needs less stimuli to improve solutions, but the
same amount of stimuli does not lead to converge during the higher fitness phase.
This property is discussed by Ellefsen [2], in order to reduce the learning cost.
In this paper, the number of fitness cases in predictors is changed according to
the latest development in the population of the candidate programs.

3.1 Plastic Directly Encoded Predictor

We propose directly encoded fitness predictors with an adaptive number of fit-
ness cases for candidate solution evaluations. To be able to modify their size,
we employ the principles of phenotypic plasticity. This allows the individual to
produce different phenotypes from the same genotype, depending on the envi-
ronmental conditions [2]. In the plastic fitness predictors, the phenotype is con-
structed by including only selected subset of genes.

The predictor genotype is a constant-size circular array of pointers to ele-
ments in the training data. Its size is equal to the total number of fitness cases.
In order to produce the phenotype, the genes are read sequentially from specified
position (offset). The genotype may contain duplicate gene values. Therefore,
the gene with a value, which is already included in the phenotype, is skipped
in order to prevent duplicate fitness case in predictor. The reading stops after
it has processed the number of genes specified by the readLength variable. The
readLength value is determined by the flow of the candidate program evolution.

The offset is determined by an extra gene included in the genotype, evolved
by a special mutation operator, which adds a small Gaussian random number to
the current value. Figure 4 shows an example of phenotype construction when 6
out of 10 available genes are used.

The evolution of predictors is directed by the genetic algorithm (GA). The
crossover operator is modified so the split point is always selected within the
active part of the genotype, which increases phenotype diversity.

Fig. 4. Predictor phenotype construction with offset = 6 and readLength = 6.

170 M. Wiglasz and M. Drahosova

3.2 Predictor Size Adaptation

The predictor size is adapted through the readLength variable. Its value is
changed according to the latest development in the population of the candidate
programs. It can be observed that the population goes through various phases
as the population’s ability to adapt to the problem changes over the time. If
the ability is higher, the overall fitness increases towards better solutions, if it is
lower, the fitness remains almost constant. In this case the evolution probably
reached some local optimum.

The phase of evolution can be described in terms of the evolution speed which
we express as follows:

v =
Δfexact

ΔG
, (6)

where ΔG is the number of generations between two last fitness changes of CGP
population parent (top-ranked programs) and Δfexact is the difference of exact
fitness values of these parents. Although the evolution of programs is guided by
the predicted fitness, the speed can be negative, because it is calculated from
the exact fitness.

It is necessary to set the lower boundary of the predictor size. If the prediction
is based on only a few fitness cases (in extreme cases on only one fitness case),
over-fitting of predictors occurs. The prediction inaccuracy can be expressed as
the absolute difference between predicted and exact fitness:

I = |fpredicted − fexact | , (7)

In the case the prediction inaccuracy exceeds given threshold Ithr , the number
of fitness cases should be increased.

The readLength value is updated each time a new solution with better pre-
dicted fitness than parent individual is found. It can be also updated after a
user-specified number of generations during which a new solution is not found.
The evolution speed and prediction inaccuracy is updated and a corresponding
rule is selected. The rules are based on the following assumptions:

1. If the inaccuracy exceeds the threshold (I > Ithr), the size is increased.
2. If the fitness remains unchanged (v ≈ 0), the predictor size is decreased,

which should help the evolution to leave a local optimum.
3. If the fitness decreases (v < 0), the evolution is probably leaving a local

optimum and decreasing the size can accelerate this process.
4. If the fitness increases (v > 0), the predictor size is increased to make the

prediction more accurate.

The purpose of these rules is to find the lowest possible predictor size while
the evolution still converges. The new readLength value is obtained by multipli-
cation of the previous value and a coefficient, which is selected using described
rules. Experimentally obtained values of the coefficients are specified in Sect. 4.2.

Plastic Fitness Predictors Coevolved with Cartesian Programs 171

4 Results

In this section, 5 symbolic regression benchmarks are introduced. Next, we
present experimental results, in particular the proposed predictor behaviour
and the comparisons of the proposed approach with the previously presented
approaches to coevolutionary and standard CGP.

4.1 Benchmark Problems

Five symbolic regression benchmark functions (F1 – F5, see Fig. 5) were selected
as training data sources for evaluation of the proposed method:

F1 : f(x) = x2 − x3, x = [−10 : 0.1 : 10]

F2 : f(x) = e|x| sin(x), x = [−10 : 0.1 : 10]

F3 : f(x) = x2esin(x) + x + sin
(π

x3

)
, x = [−10 : 0.1 : 10]

F4 : f(x) = e−xx3 sin (x) cos (x)
(
sin2 (x) cos (x) − 1

)
, x = [0 : 0.05 : 10]

F5 : f(x) =
10

(x − 3)2 + 5
, x = [−2 : 0.05 : 8] .

To form the training data, 200 equidistant distributed samples were taken from
each function. Functions F1 – F5 are taken from [12] and all functions F1 –
F5 were used in order to evaluate coevolution of CGP and both directly and
indirectly encoded predictors [10,12].

Fig. 5. Symbolic regression benchmark functions used for evaluation.

4.2 Experimental Setup

The setup of the program evolution is used according to literature [12], i.e.
λ = 12, ni = 1, no = 1, nc = 32, nr = 1, l = 32, every node has two inputs
(i1, i2), Γ = {i1 + i2, i1 − i2, i1 · i2, i1

i2
, sin (i1), cos (i1), ei1 , log (i1)} and the

maximum number of mutations per individual is h = 8. The program fitness
function is defined as the relative number of hits (see Eqs. 3 and 4). For the
benchmarks, the user-defined acceptable errors ε are as follows: F1, F2: 0.5; F3:
1.5; F4, F5: 0.025. The acceptable number of hits is 96 %.

172 M. Wiglasz and M. Drahosova

Table 1. Rules used to adapt the readLength value.

Priority Condition Coefficient

1 I > Ithr 1.2

2 |v| ≤ 0.001 0.9

3 v < 0 0.96

4 0 < v ≤ 0.1 1.07

5 v > 0.1 1

The predictor size is adapted as follows: The readLength value is initialized
with 5 genes (the influence of the initial value is discussed in Sect. 4.3), its mi-
nimum is limited to 5 and the maximum is the total number of fitness cases.
The value is updated after a new top-ranked program is found, or after 5000
generations since last update. The new readLength value is given as readLength ·
coefficient . Experimentally obtained coefficient values are shown in Table 1. The
threshold Ithr = 15 is chosen. Conditions are set according to assumptions in
Sect. 3.2. If more conditions are fulfilled at the same time, the value is updated
according to the priority (see Table 1).

4.3 Ability to Adapt the Number of Fitness Cases

In order to confirm that the proposed algorithm is able to adapt the predictor
size on a given task, we plot the progress of the average number (out of 100
independent runs) of fitness cases in top-ranked predictor during the evolution
flow with respect to the initial predictor sizes. It can be seen in Fig. 6 that the
size converges to the similar value independently of an initial size and the final
predictor size differs for each benchmark.

The success rate is the same for each initial size setting. In the case of bench-
marks F1 – F3, a larger initial size leads to more fitness case evaluations required
to find an acceptable solution, see Fig. 6. This does not hold for benchmarks F4
and F5, where all settings lead to a comparable number of evaluations. The rea-
son is that the predictor size converges in approximately 105 generations, while
it takes much more time (approx. 3.7 · 106 generations) to find a satisfactory
solution (see Table 2), so the effect of different predictor size in the beginning
of the evolution is negligible. Note that a satisfactory solution for the bench-
mark F1 is found in less generations than it is necessary for the predictor size
to converge.

In general, it is advantageous to begin with a lower number of fitness cases
in predictor, which in some cases leads to a lower number of evaluations and
thus the design process acceleration. On the other hand, if the initial size is too
low to find an acceptable solution, it will be automatically increased without a
significant impact on the run time.

Plastic Fitness Predictors Coevolved with Cartesian Programs 173

Fig. 6. Different initial predictor sizes: The average number of fitness cases in predictors
and the number of fitness case evaluations necessary to find an acceptable solution.

174 M. Wiglasz and M. Drahosova

4.4 Predictor Behaviour

In this section, we discuss how a predictor selects a subset of training data
capable of guiding the evolution towards the satisfactory solution. We plot the
distribution of fitness cases selected by predictors during the whole coevolution-
ary process out of 100 independent runs. Figure 7 show the frequency of fitness
cases addressed by the top-ranked predictors during the coevolution flow. It can
be seen that for benchmarks F1 and F2 predictors focus more on peaks and
valleys than on flexes. On the other hand, in the case of F3 – F5, the samples
are well distributed over the data set. Considering all fitness cases addressed
by the predictor focused on the interesting regions (peaks and valleys) of the
training data, the predictor would represent the maximum error. Note that this
characteristic is desired in the Hillis’ competitive coevolutionary approach [4],
but is improper while requiring the predicted fitness corresponding to the exact
fitness. Furthermore, fitness cases addressed by the fitness predictors are vari-
able in response to the program evolution flow. The program evolution forces
the predictors to contain two types of fitness cases, some of them are easy, others
difficult, for a particular program.

Fig. 7. Frequency of fitness cases in predictors used for programs evaluations.

Plastic Fitness Predictors Coevolved with Cartesian Programs 175

4.5 Comparison of the Predictor Size

Indirectly encoded fitness predictors based on the principles of CGP (below
FP indir) were proposed in order to overcome the problem with selection of the
most advantageous number of fitness cases used for fitness evaluation. In FP indir ,
the predictor size parameter is included in the fitness function. Most of the sizable
predictors are then rejected, but evaluated during the predictor training, which
results into wasted evaluations. In order to reduce the computational cost of
predictor fitness evaluations during the training, a limit of predictor size was
introduced. Then, the maximum size of fitness predictor evolved using FP indir

was 50 fitness cases.
The size of the proposed adaptive directly encoded predictors (FPadapt)

varies only a little in the following generations, depending on coefficients (see
Table 1). The number of fitness cases in the active predictor is thus changed only
in small steps and no limit of the predictor size is necessary.

Figure 8 shows the number of fitness cases in the top-ranked predictor during
the coevolution flow (left part of figures shows FP indir , right part FPadapt). In
general, the preferred number of fitness cases differs from benchmark to bench-
mark. It can be seen that for the benchmarks F1 and F2 (in which only some of
the first predictors are used) the preferred size of fitness predictor is the max-
imum value (50 fitness cases) for FP indir and near to the initializing value for
FPadapt approach (6 – 7 fitness cases). For the benchmark F3, the maximum

Fig. 8. Number of fitness cases in predictors used for program evaluations.

176 M. Wiglasz and M. Drahosova

Fig. 9. Relation between the exact fitnesses of top-ranked candidate program and the
size of predictor during a typical run for the F5 benchmark.

value is also preferred in FP indir approach (because the evolution of predictors
does not have enough time to adapt), but in FPadapt the preferred value is
between 7 and 12 fitness cases. Benchmark F4 is an example of how the limit of
the predictor size in FP indir could be restrictive. FPadapt predictor size is dis-
tributed around 52 fitness cases, whereas FP indir leads to predictors using 45 to
50 fitness cases and must not exceed 50. For benchmark F5, we can observe two
peaks (in 12 and 38 fitness cases) for FP indir predictors, but only one peak dis-
tributed around 25 fitness cases for FPadapt . Note that FP indir evolution allows
fast changes of predictor size in contiguous generations and thus cause skips
between distant values of predictor size in response to the program evolution
flow. Conversely, FPadapt evolution provides only small changes of predictor size
in contiguous generations. The FPadapt preferred predictor size, for benchmark
F5, lies between preferred predictor sizes of the FP indir approach, in the middle.

Although the average preferred size of predictor (out of 100 runs) in FPadapt

approach converges to the single value for a particular task, this trend is not so
obvious while analyzing a single run. During a single run, the predictor size
changes in response to the current development in the program population.
Figure 9 shows the exact fitness of top-ranked program and the number of fitness
cases in predictor used for program evaluation during a typical coevolutionary
run for the F5 benchmark. It can be seen that the predictor size is first increased
towards the preferred value and then it reacts on the development of candidate
program. In this example the evolution seems to have reached a local optimum
after approximately 8 ·105 generations which leads to decreasing of the predictor
size. Around generation 8.5 · 105 the fitness of top-ranked program drops signif-
icantly as the evolution left the local optimum and the number of fitness cases
starts to increase again, to increase accuracy of the fitness prediction.

4.6 Comparisons of Various Approaches to Fitness Prediction
in CGP

The proposed coevolution employing adaptive directly encoded fitness predictors
(FPadapt) is compared with the original fixed-size directly encoded predictors

Plastic Fitness Predictors Coevolved with Cartesian Programs 177

Table 2. Comparison of standard CGP (CGPSTD), coevolutionary CGP with directly
encoded constant-size (FPconst) and adaptive predictors (FPadapt) and coevolutionary
CGP with indirectly encoded CGP-based predictors (FP indir). For each benchmark,
the best result is marked in bold font.

Algorithm F1 F2 F3 F4 F5

Success rate CGPSTD 100% 100% 91% 5% 27%

FPconst 100% 100% 100% 33% 43%

FPadapt 100% 100% 100% 99% 87%

FPindir 100% 100% 100% 100% 90%

Generations to converge CGPSTD 8.66 · 103 3.09 · 104 1.17 · 105 4.13 · 106 3.25 · 106
(median) FPconst 2.08 · 103 1.07 · 104 2.60 · 104 1.13 · 107 7.32 · 106

FPadapt 3.06 · 103 1.24 · 104 4.10 · 104 2.42 · 106 5.00 · 106
FPindir 1.00 · 103 2.25 · 103 4.11 · 104 1.47 · 106 1.74 · 106

Fitness case evaluations CGPSTD 2.09 · 107 7.45 · 107 2.82 · 108 9.96 · 109 7.84 · 109
to converge (median) FPconst 4.41 · 105 3.09 · 106 7.40 · 106 2.31 · 109 2.18 · 109

FPadapt 6.27 · 105 1.26 · 106 4.60 · 106 1.47 · 109 1.53 · 109
FPindir 7.43 · 105 1.60 · 106 1.90 · 107 8.05 · 108 8.78 · 108

(FPconst), indirectly encoded CGP-based predictors (FP indir) and standard CGP
without coevolution (CGPSTD).

FPconst is used according to literature [12], i.e. 12 fitness cases in chromo-
some, 32 individuals in predictor population, 2-tournament selection, a single-
point crossover and the mutation probability 0.2. The same setup is used for
FPadapt , except the number of fitness cases, which is variable.

The algorithms are compared in terms of the success rate (the number of
runs, giving a solution with predefined quality), the number of generations and
the number of fitness case evaluations to converge (in order to compare the com-
putational cost). Table 2 gives the median values calculated of 100 independent
runs for each benchmark F1 – F5.

It can be seen in the Table 2 that both adaptive approaches, FPadapt and
FP indir , have the highest success rate in all benchmarks. The difference is in
the number of generations and fitness case evaluations required to converge.
As described in Sect. 4.4, the FPadapt uses fewer fitness cases than FP indir for
benchmarks F1 – F3. For benchmarks F1 and F2, this leads to a larger num-
ber of generations to converge using FPadapt compared to FP indir , fewer fitness
case evaluations have to be performed using FPadapt . This does not hold for the
benchmark F3, where the number of generations is similar for both approaches.
Nevertheless, for benchmarks F4 and F5, FP indir needs fewer fitness case eval-
uations to converge, but still comparable in the order of magnitude. The size of
fitness predictors in the FP indir approach is limited to 50 fitness cases, to reduce
larger predictor evaluations. However, FPadapt approach prefers, for benchmark
F4, more fitness cases in the predictor for this particular task (see Fig. 8), there-
fore the cost-reducing limit in FP indir approach might be restrictive for more
complex tasks.

178 M. Wiglasz and M. Drahosova

In comparison with both FPadapt and FP indir approaches, FPconst required
the lowest number of evaluations for the benchmark F1. In this case the satis-
factory solution is found before the predictor size can adapt. However, let’s note
that many experiments have to be performed to find the most advantageous size
of the predictor using FPconst approach for these benchmark tasks, while the
FPadapt and FP indir adjust the size of the predictor during each single run in
response to a particular task.

Finally, all three coevolutionary approaches beats CGPSTD in terms of num-
ber of fitness case evaluations to converge and thus accelerate the design process
performed by CGP.

5 Conclusions

We have introduced the use of coevolution of cartesian programs with a new
type of directly encoded predictors with the adaptive number of fitness cases.
The proposed fitness predictors employ phenotypic plasticity and are able to
modify the number of fitness cases used for program evaluation in dependence
on the phase of program evolution.

Applied to the 5 symbolic regression tasks, we have found the proposed app-
roach to outperform the original constant-size predictors, which use only 12
fitness cases for program evaluation, in terms of success rate and computational
cost, expressed as the number of fitness case evaluations required to converge. We
have shown that the proposed algorithm is able to adapt the predictor size on the
solved problem in response to the development in candidate program evolution.
As a result, it is possible to use coevolutionary CGP on a new task without the
time-consuming experiments aimed at finding the most advantageous predictor
size for the particular task.

Compared to coevolutionary CGP with indirectly encoded fitness predictors,
the proposed predictor evolution does not produce predictors with larger pre-
dictor sizes than necessary. This reduces the number of necessary fitness case
evaluations, while maintaining comparable program accuracy and robustness.

While symbolic regression is good to investigate the system behaviour, our
future work will be devoted to applying the proposed approach to more complex
problems, such as image filter design, and let the proposed approach and the
approach employing indirectly encoded fitness predictors compete in the field in
which the behaviour of the system is not so obvious.

The CGP has been applied to many different problem domains, predom-
inantly in evolutionary design and optimization of logic networks. Hence the
proposed approach will also be useful for evolvable hardware purposes and in
real-world applications.

Acknowledgements. This work was supported by the Czech Science Foundation
project 14-04197S. The authors thank the IT4Innovations Centre of Excellence for
enabling these experiments.

Plastic Fitness Predictors Coevolved with Cartesian Programs 179

References

1. Baldwin, J.M.: A new factor in evolution. Am. Nat. 30(354), 441–451 (1896)
2. Ellefsen, K.O.: Balancing the costs and benefits of learning ability. In: Advances

in Artificial Life, ECAL 2013, vol. 12, pp. 292–299. MIT Press (2013)
3. Ellefsen, K.O.: Evolved sensitive periods in learning. In: Advances in Artificial Life,

ECAL 2013, vol. 12, pp. 409–416. MIT Press (2013)
4. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization

procedure. Physica D 42(1), 228–234 (1990)
5. Imamura, K., Foster, J.A., Krings, A.W.: The test vector problem and limitations

to evolving digital circuits. In: Proceedings of the 2nd NASA/DoD Workshop on
Evolvable Hardware, pp. 75–79. IEEE Computer Society (2000)

6. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Comput. J. 9(1), 3–12 (2005)

7. Miller, J.F.: Cartesian Genetic Programming. Springer, Berlin (2011)
8. Popovici, E., Bucci, A., Wiegand, R.P., de Jong, E.D.: Coevolutionary principles.

In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing,
pp. 988–1028. Springer, New York (2011)

9. Schmidt, M.D., Lipson, H.: Coevolution of fitness predictors. IEEE Trans. Evol.
Comput. 12(6), 736–749 (2008)

10. Sikulova, M., Hulva, J., Sekanina, L.: Indirectly encoded fitness predictors coe-
volved with cartesian programs. In: Machado, P., Heywood, M.I., McDermott, J.,
Castelli, M., Garćıa-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) Genetic Pro-
gramming. LNCS, vol. 9025. Springer, Heidelberg (2015)

11. Sikulova, M., Sekanina, L.: Acceleration of evolutionary image filter design using
coevolution in cartesian GP. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 163–172.
Springer, Heidelberg (2012)

12. Šikulová, M., Sekanina, L.: Coevolution in cartesian genetic programming. In:
Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012.
LNCS, vol. 7244, pp. 182–193. Springer, Heidelberg (2012)

	Plastic Fitness Predictors Coevolved with Cartesian Programs
	1 Introduction
	2 Fitness Prediction in CGP
	2.1 Fitness Predictor
	2.2 Coevolution of Cartesian Programs and Fitness Predictors

	3 Proposed Method
	3.1 Plastic Directly Encoded Predictor
	3.2 Predictor Size Adaptation

	4 Results
	4.1 Benchmark Problems
	4.2 Experimental Setup
	4.3 Ability to Adapt the Number of Fitness Cases
	4.4 Predictor Behaviour
	4.5 Comparison of the Predictor Size
	4.6 Comparisons of Various Approaches to Fitness Prediction in CGP

	5 Conclusions
	References

