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ABSTRACT

This work studies the usage of the Deep Neural Network (DNN)
Bottleneck (BN) features together with the traditional MFCC fea-
tures in the task of i-vector-based speaker recognition. Wedecouple
the sufficient statistics extraction by using separate GMM models
for frame alignment, and for statistics normalization and we analyze
the usage of BN and MFCC features (and their concatenation) in the
two stages. We also show the effect of using full-covarianceGMM
models, and, as a contrast, we compare the result to the recent DNN-
alignment approach. On the NIST SRE2010, telephone condition,
we show 60% relative gain over the traditional MFCC baselinefor
EER (and similar for the NIST DCF metrics), resulting in 0.94%
EER.

Index Terms— automatic speaker identification, deep neural
networks, bottleneck features, i-vector

1. INTRODUCTION

During the last decade, neural networks have experienced a renais-
sance as a powerful machine learning tool. Deep Neural Networks
(DNN) have been also successfully applied to the field of speech
processing. After their great success in automatic speech recogni-
tion (ASR) [1], DNNs were also found very useful in other fields
of speech processing such as speaker [2, 3, 4] or language recog-
nition [5, 6, 7]. In speech recognition, DNNs are often directly
trained for the ”target” task of frame-by-frame classification of
speech sounds (e.g. phones). Similarly, a DNN directly trained
for frame-by-frame classification of languages was successfully
used for language recognition in [7]. However, this system pro-
vided competitive performance only for speech utterances of short
durations.

In the field of speaker and language recognition, DNNs are usu-
ally used in more elaborate and indirect way: One approach isto
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use DNNs for extracting frame-by-frame speech features. Such fea-
tures are than used in the usual way (e.g. input to i-vector based
system [8]). The features can be directly derived from the DNN out-
put posterior probabilities [9,?] and combined with the conventional
features (PLP or MFCC) [10]. More commonly, however, bottle-
neck (BN) DNNs are trained for a specific task, where the features
are taken from a narrow hidden layer compressing the relevant in-
formation into low dimensional feature vectors [6, 5, 11]. Alterna-
tively, standard DNN (with no bottleneck) can be used, wherethe
high-dimensional outputs of one of the hidden layers can be con-
verted to features using a dimensionality reduction technique such
as PCA [12].

The DNN for feature extraction needs to be trained first for a
specific frame-by-frame classification task. It can be trained for the
target task (i.e. classification of languages [7] or speakers [13, 12,
14]), but only limited success was reported with this approach. For
both speaker and language recognition, excellent results were ob-
served with features extracted using BN DNN trained for phone clas-
sification (i.e. similar to ASR) [11]. It is reasonable to expect such
BN features to be suitable for language recognition, as the discrim-
ination between speech sounds is also important for the discrimina-
tion between languages. However, it is somewhat counterintuitive to
see these features perform well for speaker recognition. The DNN
trained for phone classification should have the tendency tosuppress
the ”unimportant” speaker related information.

In the standard i-vector-based approach [8], Gaussian Mixture
Model (GMM) is used first to partition the feature space. For each
utterance, feature frames are aligned with the GMM components.
Using this alignment, sufficient statistics are collected,which are in
turn used to extract i-vector as the fixed length low dimensional rep-
resentation of the utterance. Large improvement in speakerrecog-
nition performance was, however, obtained [2, 3, 4, 15] withan
alignment given by phone classification DNN as compared to the
alignment from the unsupervised GMM. This is another example of
successful DNN-based approach to speaker recognition.

The importance of the phone specific frame alignment may also
explain the counterintuitive success with the BN features extracted
using the DNN trained for phone classification. A GMM trainedon
such features will likely partition the feature space into phone-like
clusters and the alignment obtained using such GMM may closely
resemble the one obtained directly from the DNN outputs as pro-
posed in [2, 3]. The appropriate alignment may be more impor-
tant than the possible loss of speaker related information in the BN
features. However, if this assumption is correct, then we may use
GMM trained on BN features only to obtain the good frame align-
ment. Like in [2, 3], the alignment can be used to collect statis-
tic and extract i-vectors using different set of features (e.g. con-
ventional MFCC feature) where we do not risk the loss of speaker
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related information. In this paper, we experimentally verify these
hypotheses. Note that the approach with the additional set of align-
ment features has been independently studied in [16], and isfurther
analyzed in [17]. In this paper, however, provides a more thorough
analysis and comparison with related approaches such as theDNN
based alignment or system based on concatenated BN and MFCC
features [11, 18].

2. THEORETICAL BACKGROUND

2.1. i-vector Systems
The i-vectors [8] provide an elegant way of reducing large-dimensional
input data to a small-dimensional feature vector while retaining
most of the relevant information. The main principle is thatthe
utterance-dependent Gaussian Mixture Model (GMM) supervector
of concatenated mean vectorss is modeled as

s = m + Tw, (1)
where m = [µ(1)′ , . . . , µ(C)′ ]′ is the Universal Background
Model (UBM) GMM mean supervector (ofC components),T =

[T(1)′ , . . . ,T(C)′ ]′ is a low-rank matrix representingM bases
spanning subspace with important variability in the mean supervec-
tor space, andw is a latent variable of sizeM with standard normal
distribution.

The i-vectorφ is the Maximum a Posteriori (MAP) point esti-
mate of the variablew. It maps most of the relevant information
from a variable-length observationX to a fixed- (small-) dimen-
sional vector.LX is the precision of the posterior distribution.

The closed-form solution for computing the i-vector can be ex-
pressed as a function of thezero-andfirst-order statistics: nX =
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t ) is usually referred to asframe alignment. Note

that this variable can be computed either using the GMM UBM or
using a completely different model [2, 16, 17]. We will referto this
approach as atwo-modelapproach later in this paper. The i-vector
is then expressed as

φ
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with c being the GMM UBM component index, and the ‘bar’ sym-
bols denote normalized variables:
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whereΣ
(c)− 1

2 is a symmetrical decomposition (such as Cholesky
decomposition) of an inverse of the GMM UBM covariance matrix
Σ

(c).
2.1.1. Two-Model Approach
The true frame alignment is a hidden variable in GMM modeling.
Traditionally, it is computed using the GMM UBM. However, itwas
shown that it can be beneficial to use a different model for computing

the frame alignment. As was described in the introduction section,
DNNs can be used directly for posterior computation [2]. In this
work (as was independently studied in [16] and [17]), a separate
alignment GMM is being used for computing the frame posterior.

The natural condition for this approach to work is that the di-
mensionality of the alignment has to match between the two models
(e.g., number of GMM mixtures has to be equal number of DNN
posteriors). Also note that thenormalization GMM UBM(i.e. the
µ(c) andΣ

(c) parameters) should be computed via the same align-
ment as used in eq. (2) and (3).

We have decoupled the procedure into two stages—alignment
and base statistics extraction and normalization. Let us therefore
use theAlignment–Baseterminology when referencing other rele-
vant blocks, most importantly the feature extraction.

2.2. Stacked Bottleneck Features (SBN)

Bottleneck Neural-Network (BN-NN) refers to such topologyof a
NN, one of whose hidden layers has significantly lower dimension-
ality than the surrounding layers. A bottleneck feature vector is gen-
erally understood as a by-product of forwarding a primary input fea-
ture vector through the BN-NN and reading off the vector of values
at the bottleneck layer. We have used a cascade of two such NNsfor
our experiments. The output of the first network isstackedin time,
defining context-dependent input features for the second NN, hence
the term Stacked Bottleneck Features.

The NN input features are 24 log Mel-scale filter bank outputs
augmented with fundamental frequency features from 4 differentf0

estimators (Kaldi, Snack1, and two according to [19] and [20]). To-
gether, we have 13f0 related features, see [21] for more details. The
conversation-side based mean subtraction is applied on thewhole
feature vector. 11 frames of log filter bank outputs and fundamental
frequency features are stacked together. Hamming window followed
by DCT consisting of 0th to 5th base are applied on the time trajec-
tory of each parameter resulting in(24+13)×6 = 222 coefficients
on the first stage NN input.

The configuration for the first NN is222×DH ×DH ×DBN ×

DH × K, whereK is the number of targets. The dimensionality
of the bottleneck layer,DBN was fixed to 80. This was shown as
optimal in [6]. The dimensionality of other hidden layers was set
to 1500. The bottleneck outputs from the first NN are sampled at
timest−10, t−5, t, t+5 andt+10, wheret is the index of the cur-
rent frame. The resulting 400-dimensional features are input to the
second stage NN with the same topology as first stage. The 80 bot-
tleneck outputs from the second NN (referred as SBN) are taken as
features for the conventional GMM/UBM i-vector based SID sys-
tem.

We experimented with monolingual and multilingual BN fea-
tures. In the case of multilingual training, we adopted training
scheme with block-softmax, which divides the output layer into
parts according to individual languages. During training,only the
part of the output layer is activated that corresponds to thelanguage
that the given target belongs to. Detailed description can be found
in [22, 23].

3. EXPERIMENTS

3.1. SBN training data
For training the neural networks, the IARPA Babel Program data2

were mainly used. This data simulate the case of what one could
collect in limited time from a completely new language. It consists
mainly of telephone conversational speech, but scripted recordings

1http://kaldi.sourceforge.net, www.speech.kth.se/snack/
2Collected by Appen,http://www.appenbutlerhill.com
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Table 1. Comparison of Multilingual SBN features. We show results for systems using 512 component UBM with diagonal or full (F)
covariance matrices. We used 400 dimensional i-vectors in all cases. (The subscript numbers to the right of the feature labels denote their
dimensionality.)

Alignment Features Base Features DCFmin
new DCFmin

old EER

1 MFCC 60 MFCC 60 0.518433 0.134960 0.025645
2 BN 80 BN 80 0.290264 0.087904 0.019258
3 BN+MFCC 140 BN+MFCC 140 0.247710 0.059497 0.015008
4 BN 80 MFCC 60 0.344090 0.088209 0.019264
5 BN 80 BN+MFCC 140 0.227594 0.061843 0.014236
6 BN+MFCC 140 MFCC 60 0.327048 0.081493 0.016975

7 F-MFCC 60 F-MFCC 60 0.498147 0.122591 0.023369
8 F-BN 80 F-BN 80 0.268191 0.078103 0.017026
9 F-BN+MFCC 140 F-BN+MFCC 140 0.231375 0.061035 0.013422
10 BN 80 F-MFCC 60 0.375041 0.078981 0.015487
11 BN 80 F-BN+MFCC 140 0.256686 0.059143 0.012602
12 F-BN 80 BN+MFCC 140 0.257967 0.066634 0.015065
13 F-BN 80 F-BN+MFCC 140 0.262086 0.061344 0.013177

Table 2. Comparison of Multilingual SBN features (both alignment and base are identical). Results for systems using 2048 component UBM.
We used 600 dimensional i-vectors. (The subscript numbers to the right of the feature labels denote their dimensionality.)

Alignment Features Base Features DCFmin
new DCFmin

old EER

1 MFCC 60 MFCC 60 0.383004 0.103862 0.019917
2 BN 80 BN 80 0.225030 0.066790 0.016824
3 BN+MFCC 140 BN+MFCC 140 0.159120 0.047686 0.010597
4 F-MFCC 60 F-MFCC 60 0.310579 0.082529 0.015846
5 F-BN 80 F-BN 80 0.201339 0.057185 0.012364
6 F-BN+MFCC 140 F-BN+MFCC 140 0.185950 0.051507 0.012120

as well as far field recordings are present. We used 11 languages
to train our multilingual SBN feature extractor. The languages are
Cantonese, Pashto, Turkish, Tagalog, Vietnamese, Assamese, Ben-
gali, Haitian, Lao, Tamil, Zulu. More details about the characteris-
tics of the languages can be found in [24]. The phone-state target
labels were obtained using forced-alignment with our BABELASR
system [25].

We also report results for monolingual English SBN variant.We
use selection of 250 hours of data derived from Fisher English Part 1
and 2 with 2423 tied triphone states.

3.2. Test Set and Evaluation Metric
NIST SRE 2010 data extended core condition (telephone-telephone)
female part was used as the evaluation data. The detection cost
function (DCF) is used as a primary evaluation metric. We report
two numbers:DCFmin

old and DCFmin
newwhich correspond to the pri-

mary evaluation metric for the NIST speaker recognition evaluation
in 2008 and 2010 respectively. The difference is that in 2010NIST
focus more on lower false alarm scenario. Third operating point—
EER is also reported. For more details see evaluation plans of NIST
SRE3.

3.3. System Description
Voice Activity Detection (VAD) was performed by Neural network
with two outputs—speech/non-speech. The NN is trained on Czech
CTS data where we artificially added noise with different levels of

3www.itl.nist.gov/iad/mig/tests/sre/

SNR to 30% of the database. NN has 2 hidden layers with 300 neu-
rons. We used a block of 31 frames of 15 Mel filter bank energies
as input features. For theinterview data, we removed interviewer
based on ASR transcripts provided by NIST.

As the baseline features, we used MFCC 19 + energy augmented
with their delta and double delta coefficients, making 60 dimensional
feature vectors. The analysis window was 20 ms long with shift of
10 ms. First we removed silence frames according to VAD, after
which we applied short-time (300 frames) cepstral mean and vari-
ance normalization.

The PRISM set [26] was chosen as the base training dataset plat-
form. It contains the following telephone data: NIST SRE 2004,
2005, 2006, 2008, 2010 Switchboard II Phases 2 and 3, Switchboard
Cellular Parts 1 and 2, Fisher English Parts 1 and 2 giving 9670 fe-
male speakers.

Female gender-dependent UBM was represented as a full or di-
agonal covariance 512- or 2048-component GMM. It was trained on
a subset of PRISM, giving 7815 files equally distributed between
telephone and microphone condition. The variance flooring was
used in each iteration of EM algorithm during the UBM training.

Female gender-dependent i-vector extractors were trained(in 10
iterations of a joint Expectation Maximization and MinimumDiver-
gence steps) using the entire PRISM set. The results are reported
with 400 or 600 dimensional i-vectors.

LDA and PLDA were trained on the same data as the i-vector
extractor, except for the Fisher data that was excluded, resulting in
2472 female speakers.
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Table 3. Comparison of SBN features trained on 250 hours from EnglishFisher. Systems setup: 2048G UBM, 600 dim. i-vectors. (The
subscript numbers to the right of the feature labels denote their dimensionality.)

Alignment Features Base Features DCFmin
new DCFmin

old EER

MFCC 60 MFCC 60 0.383004 0.103862 0.019917
BN 80 BN 80 0.222194 0.077508 0.020246
DNN(2423) 60 MFCC 60 0.209405 0.055947 0.012080
BN+MFCC 140 BN+MFCC 140 0.139851 0.040596 0.009381

Table 4. All NIST SRE 2010 conditions for MFCC baseline vs. MFCC+BN. Systems setup: 2048G UBM, 600 dim. i-vectors

DCFmin
new DCFmin

old EER

MFCC MFCC+BN MFCC MFCC+BN MFCC MFCC+BN

sre10c01 0.204324 0.159257 0.052725 0.030333 0.011898 0.006436
sre10c02 0.327492 0.249305 0.083562 0.057635 0.018893 0.011745
sre10c03 0.343349 0.229487 0.116152 0.055021 0.023327 0.010755
sre10c04 0.224067 0.156400 0.049074 0.033239 0.009591 0.006862
sre10c05 0.383004 0.159120 0.103862 0.047686 0.019917 0.010597

4. RESULTS
Tab. 1 presents a thorough analysis with scaled-down models(GMM
with 512 components and 400 dimensional i-vector), which webuilt
to allow fast turnaround of the experiments. We used multilingual
BN features, which proved to be the best in our previous language
recognition experiments [27].

First three lines of Tab. 1 present the conventional GMM i-vector
system with different feature extractions. The first line shows the
baseline results with MFCC coefficients. The results with BNfea-
tures from the second line show relative improvement 25% in EER
and 45% inDCFmin

newover the baseline. Line 3 presents results for the
concatenated MFCC+BN features. Here, the relative improvement
over the baseline is 40% in EER, and 50% inDCFmin

new.
Second part of the Tab. 1 presents the results for the two-model

approach. The result on line 4 is with MFCC base features and BN
alignment features. The relative improvement over the baseline is
25% for EER and 35% forDCFmin

new. This verifies the hypothesis
that the BN features provides the frame alignment superior to MFCC
features, and with such alignment MFCC can be successfully used
as the base features. Nevertheless, the BN features seems tocontain
enough information relevant for speaker discrimination, which also
seem to be complementary to MFCC features: The system based
purely on BN features from line 2 still performs slightly better. Fur-
thermore, with BN alignment, an additional improvement is obtained
with concatenated MFCC+BN base features as shown in line 5. This
combination produce the best results with diagonal covariance ma-
trix yielding 45% in EER and 55% in both DCF points.

The bottom half of Tab. 1 summarizes and compares the re-
sults of full-covariance GMM for both alignment and base features.
We see 10% relative improvement from full-covariance GMM when
the same features are used as alignment and base features. Onthe
other hand, the results are somewhat mixed in the case of the two-
model approaches. We usually see about 10% relative degradation at
DCFmin

newpoint. At the same time, for line 11, where full-covariance
matrices are used to normalize statistics for base features(see eq. (6)
and (7)), we obtain the best overall results forDCFmin

old and EER.
Tab. 2 shows the results with the same Multilingual featuresbut

bigger system with 2048 components in UBM and 600 dimensional
i-vector. There is 18% relative improvement in all conditions when
going from small(512/400) to big(2048/600) system. When sum-

marizing the results for the large system, we generally see even
bigger gains than for the small system in Tab. 1. Using mere BN
single-model system, we see improvement 35% in EER and 56%
in DCFmin

new, and when using the concatenated MFCC+BN features-
single model, we report relative improvement almost 60% in EER
and almost 70% inDCFmin

newover the baseline results. As with the
small system, we see the same behavior for full covariance GMM
which calls for further analysis.

Tab. 3 shows results for similar system as Tab. 2 for big sys-
tem, but the BN features are trained on 250 hours of data selected
from Fisher English part 1 and 2. The relative gains over the base-
line are lower for BN features, which proves to use Multilingual BN
features over the monolingual even if the language is matched (we
do not have English language in our Multilingual setup). Butthe
concatenated MFCC+BN features yielded better results thanwith
Multilingual BN. The relative gains over the baseline are 63% in
EER which is 0.94% and relative gain 73% inDCFmin

new. This sys-
tem also beats the DNN alignment approach—alignment posteriors
were extracted using the same DNN, except final DNN outputs were
used as posteriors, resulting in 2423 output states, i.e. 2423 GMM
components [2].

Tab. 4 compares the baseline MFCC system with the concate-
nated MFCC+BN features (2048-component diagonal GMM) on all
NIST SRE 2010 conditions.

5. CONCLUSION

We have analyzed the i-vector based systems with Deep NeuralNet-
work (DNN) Bottleneck (BN) features together with the traditional
MFCC features, and we have demonstrated substantial gain for NIST
SRE 2010, telephone condition. Our best results, with BN trained
on Fisher English and BN stacked with baseline MFCC, outper-
formed the baseline system relatively by 63% at EER and 70% at
theDCFmin

newpoint. This system also outperformed the DNN align-
ment approach by 20% relative at ERR and 30% relative atDCFmin

new.
We have also analyzed decoupling of the sufficient statistics extrac-
tion by using separate GMM models for frame alignment, and for
statistics normalization, and we have analyzed the use of BNand
MFCC features (and their concatenation) in the two stages. We have
also shown the effect of using full-covariance variants of the GMM
models.
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