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ABSTRACT

use DNNs for extracting frame-by-frame speech featuresh $a-
tures are than used in the usual way (e.g. input to i-vecteedba

This work studies the usage of the Deep Neural Network (DNN)system [8]). The features can be directly derived from the\at-

Bottleneck (BN) features together with the traditional ME@a-
tures in the task of i-vector-based speaker recognitiond&éeuple
the sufficient statistics extraction by using separate GMbtetfs
for frame alignment, and for statistics normalization arelamalyze
the usage of BN and MFCC features (and their concatenaticthii
two stages. We also show the effect of using full-covaria@téM
models, and, as a contrast, we compare the result to thet iRbidi
alignment approach. On the NIST SRE2010, telephone condliti
we show 60% relative gain over the traditional MFCC basefare
EER (and similar for the NIST DCF metrics), resulting in 084
EER.

put posterior probabilities [%] and combined with the conventional
features (PLP or MFCC) [10]. More commonly, however, bettle
neck (BN) DNNs are trained for a specific task, where the featu
are taken from a narrow hidden layer compressing the reféman
formation into low dimensional feature vectors [6, 5, 11]tefna-
tively, standard DNN (with no bottleneck) can be used, wihee
high-dimensional outputs of one of the hidden layers candre c
verted to features using a dimensionality reduction tesplmisuch
as PCA[12].

The DNN for feature extraction needs to be trained first for a
specific frame-by-frame classification task. It can be &difor the

Index Terms— automatic speaker identification, deep neuralt@rget task (i.e. classification of languages [7] or speakEs, 12,

networks, bottleneck features, i-vector

1. INTRODUCTION

During the last decade, neural networks have experiencedaisr
sance as a powerful machine learning tool. Deep Neural N&svo
(DNN) have been also successfully applied to the field of dpee
processing. After their great success in automatic spesabgni-
tion (ASR) [1], DNNs were also found very useful in other field
of speech processing such as speaker [2, 3, 4] or languagg-rec
nition [5, 6, 7). In speech recognition, DNNs are often ditec
trained for the "target” task of frame-by-frame classifioat of
speech sounds (e.g. phones). Similarly, a DNN directlynéehi
for frame-by-frame classification of languages was sudolgs
used for language recognition in [7]. However, this system p
vided competitive performance only for speech utterandeshort
durations.

14]), but only limited success was reported with this apphod-or
both speaker and language recognition, excellent reswdts wb-
served with features extracted using BN DNN trained for ghdas-
sification (i.e. similar to ASR) [11]. It is reasonable to expsuch
BN features to be suitable for language recognition, as itith-
ination between speech sounds is also important for theichisz-
tion between languages. However, it is somewhat countetiire to
see these features perform well for speaker recognitiore OTKN
trained for phone classification should have the tendensyppress
the "unimportant” speaker related information.

In the standard i-vector-based approach [8], Gaussianukxt
Model (GMM) is used first to partition the feature space. Faxte
utterance, feature frames are aligned with the GMM compisnen
Using this alignment, sufficient statistics are collectgtich are in
turn used to extract i-vector as the fixed length low dimemesioep-
resentation of the utterance. Large improvement in speaeay-
nition performance was, however, obtained [2, 3, 4, 15] vaith

In the field of speaker and language recognition, DNNs are usualignment given by phone classification DNN as compared ¢o th

ally used in more elaborate and indirect way: One approacb is
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alignment from the unsupervised GMM. This is another exanopl
successful DNN-based approach to speaker recognition.

The importance of the phone specific frame alignment may also
explain the counterintuitive success with the BN featurdsaeted
using the DNN trained for phone classification. A GMM traired
such features will likely partition the feature space intmpe-like
clusters and the alignment obtained using such GMM may Iglose
resemble the one obtained directly from the DNN outputs as pr
posed in [2, 3]. The appropriate alignment may be more impor-
tant than the possible loss of speaker related informatiaghe BN
features. However, if this assumption is correct, then wg ose
GMM trained on BN features only to obtain the good frame align
ment. Like in [2, 3], the alignment can be used to collectistat
tic and extract i-vectors using different set of featureg.(econ-
ventional MFCC feature) where we do not risk the loss of speak
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related information. In this paper, we experimentally fyethese
hypotheses. Note that the approach with the additionalfsstgm-
ment features has been independently studied in [16], afudtieer
analyzed in [17]. In this paper, however, provides a moredgh
analysis and comparison with related approaches such &3Nhe

the frame alignment. As was described in the introductiatice,
DNNs can be used directly for posterior computation [2]. Hist
work (as was independently studied in [16] and [17]), a s=tear
alignment GMM is being used for computing the frame posterio
The natural condition for this approach to work is that the di

based alignment or system based on concatenated BN and MFQfiensionality of the alignment has to match between the twdaiso

features [11, 18].

2. THEORETICAL BACKGROUND

2.1. i-vector Systems
The i-vectors [8] provide an elegant way of reducing largaehsional
input data to a small-dimensional feature vector while inétg
most of the relevant information. The main principle is thiz
utterance-dependent Gaussian Mixture Model (GMM) supmtove
of concatenated mean vecterss modeled as

s=m+ Tw, (€8]
where m ™ .. w7 is the Universal Background
Model (UBM) GMM mean supervector (af' components)T' =
[T, T is a low-rank matrix representing/ bases
spanning subspace with important variability in the megresvec-
tor space, anav is a latent variable of siz&/ with standard normal
distribution.

The i-vectorg is the Maximum a Posteriori (MAP) point esti-
mate of the variablev. It maps most of the relevant information
from a variable-length observatiol’ to a fixed- (small-) dimen-
sional vectorL x is the precision of the posterior distribution.

The closed-form solution for computing the i-vector can ke e
pressed as a function of ttzero-andfirst-order statistics nx

NG N andee = [ £0)Y, where
NY = 3

fz(\f'c> = X’YEC)OM
t

where 'yt@ is the posterior (or occupation) probability of frame
t being generated by the mixture component The tuple,

('yf@, .. ,7,@) is usually referred to aframe alignment Note

(@)
(©)

(e.g., number of GMM mixtures has to be equal number of DNN
posteriors). Also note that theormalization GMM UBM(i.e. the
1) andX(©) parameters) should be computed via the same align-
ment as used in eq. (2) and (3).

We have decoupled the procedure into two stages—alignment
and base statistics extraction and normalization. Let aesefbre
use theAlignment-Baséerminology when referencing other rele-
vant blocks, most importantly the feature extraction.

2.2. Stacked Bottleneck Features (SBN)

Bottleneck Neural-Network (BN-NN) refers to such topologfya
NN, one of whose hidden layers has significantly lower dinems
ality than the surrounding layers. A bottleneck featurameis gen-
erally understood as a by-product of forwarding a primapuirfea-
ture vector through the BN-NN and reading off the vector dbiga
at the bottleneck layer. We have used a cascade of two sucfiddNs
our experiments. The output of the first networlsiackedn time,
defining context-dependent input features for the secondhéNce
the term Stacked Bottleneck Features.

The NN input features are 24 log Mel-scale filter bank outputs
augmented with fundamental frequency features from 4 rdiffef,
estimators (Kaldi, Sna¢kand two according to [19] and [20]). To-
gether, we have 1}, related features, see [21] for more details. The
conversation-side based mean subtraction is applied owltiode
feature vector. 11 frames of log filter bank outputs and fumelatal
frequency features are stacked together. Hamming windbewfed
by DCT consisting of §" to 5 base are applied on the time trajec-
tory of each parameter resulting (@4 + 13) x 6 = 222 coefficients
on the first stage NN input.

The configuration for the first NN 822 x Dy X Dy x Dpn X
Dy x K, whereK is the number of targets. The dimensionality
of the bottleneck layerDgn was fixed to 80. This was shown as

that this variable can be computed either using the GMM UBM oroptimal in [6]. The dimensionality of other hidden layerssiset

using a completely different model [2, 16, 17]. We will referthis

to 1500. The bottleneck outputs from the first NN are sampted a

approach as two-modelapproach later in this paper. The i-vector timest—10, -5, ¢, t+5 and¢+10, wheret is the index of the cur-

is then expressed as

$r =Ly T'fx @)

whereLx is the precision matrix of the posterior distribution, com-

puted as:

C
Ly =1+ NYTOTO, (5)

c=1

with ¢ being the GMM UBM component index, and the ‘bar’ sym-

bols denote normalized variables:
-3 (fgfc) _ Nﬁ?u“))
2(0)—%1\(0)

£

T

(6)
@)

whereX(9~% is a symmetrical decomposition (such as Cholesky

decomposition) of an inverse of the GMM UBM covariance matri
(),
2.1.1. Two-Model Approach

The true frame alignment is a hidden variable in GMM modeling

Traditionally, it is computed using the GMM UBM. Howeverwas
shown that it can be beneficial to use a different model formating
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rent frame. The resulting 400-dimensional features aratitpthe
second stage NN with the same topology as first stage. Thet80 bo
tleneck outputs from the second NN (referred as SBN) arentake
features for the conventional GMM/UBM i-vector based SIB-sy
tem.

We experimented with monolingual and multilingual BN fea-
tures. In the case of multilingual training, we adopted nirad
scheme with block-softmax, which divides the output lay&oi
parts according to individual languages. During trainiagly the
part of the output layer is activated that corresponds tdethguage
that the given target belongs to. Detailed description cafobnd
in [22, 23].

3. EXPERIMENTS

3.1. SBN training data

For training the neural networks, the IARPA Babel Prograreda
were mainly used. This data simulate the case of what onelcoul
collect in limited time from a completely new language. Ihststs
mainly of telephone conversational speech, but scriptedrdings

Lhttp://kaldi.sourceforge.net, www.speech.kth.se/shac
2Collected by Appenht t p: / / www. appenbut | erhil | . com



Table 1. Comparison of Multilingual SBN features. We show resultssfstems using 512 component UBM with diagonal or full (F)
covariance matrices. We used 400 dimensional i-vectordl iceaes. (The subscript numbers to the right of the feataibels denote their

dimensionality.)

Alignment Features

Base Features ~ DCFhan DCFLY EER

1 MFCC 60 MFCC so 0.518433 0.134960 0.025645
2 BN 80 BN so  0.290264 0.087904 0.019258
3 BN+MFCC w0 BN+MFCC 10 0.247710 0.059497 0.015008
4 BN 80 MFCC o 0.344090 0.088209 0.019264
5 BN 80 BN+MFCC 10 0.227594 0.061843 0.014236
6 BN+MFCC w0 MFCC o 0.327048 0.081493 0.016975
7 F-MFCC e F-MFCC o 0.498147 0.122591 0.023369
8 F-BN o F-BN o 0.268191 0.078103 0.017026
9 F-BN+MFCC 10 F-BN+MFCC 10 0.231375 0.061035 0.013422
10 BN s F-MFCC o 0.375041 0.078981 0.015487
11 BN o F-BN+MFCC 10 0.256686 0.059143 0.012602
12 F-BN 80 BN+MFCC w0 0.257967 0.066634 0.015065
13 F-BN o F-BN+MFCC 10 0.262086 0.061344 0.013177

Table 2. Comparison of Multilingual SBN features (both alignmend &#ase are identical). Results for systems using 2048 coemp&BM.
We used 600 dimensional i-vectors. (The subscript numbetetright of the feature labels denote their dimensiogalit

Alignment Features Base Features ~ DCF™Z® DCFRZin EER
1 MFCC 60 MFCC o 0.383004 0.103862 0.019917
2 BN 80 BN so  0.225030 0.066790 0.016824
3 BN+MFCC 140 BN+MFCC 10 0.159120 0.047686 0.010597
4 F-MFCC e F-MFCC o 0.310579 0.082529 0.015846
5 F-BN so  F-BN so 0.201339 0.057185 0.012364
6 F-BN+MFCC 140 F-BN+MFCC 10 0.185950 0.051507 0.012120

as well as far field recordings are present. We used 11 laeguag SNR to 30% of the database. NN has 2 hidden layers with 300 neu-
to train our multilingual SBN feature extractor. The langes are
Cantonese, Pashto, Turkish, Tagalog, Viethamese, AssarBes-
gali, Haitian, Lao, Tamil, Zulu. More details about the cteris-
tics of the languages can be found in [24]. The phone-stageta
labels were obtained using forced-alignment with our BABEER

system [25].

We also report results for monolingual English SBN vari&kiée
use selection of 250 hours of data derived from Fisher Emlat 1

and 2 with 2423 tied triphone states.

3.2. Test Set and Evaluation Metric

NIST SRE 2010 data extended core condition (telephonghelee)
female part was used as the evaluation data. The detectsin cQejjy|ar Parts 1 and 2, Fisher English Parts 1 and 2 giving) 367
function (DCF) is used as a primary evaluation metric. Weorep
two numbers: DCFZiPand DCF2iZwhich correspond to the pri-
mary evaluation metric for the NIST speaker recognitiorieation
in 2008 and 2010 respectively. The difference is that in 2Q18T
focus more on lower false alarm scenario. Third operatirigtpe
EER is also reported. For more details see evaluation pfaR§ST

SRES.

3.3. System Description

Voice Activity Detection (VAD) was performed by Neural negvk
with two outputs—speech/non-speech. The NN is trained @tiCz
CTS data where we artificially added noise with differenelevof

Swww.itl.nist.gov/iad/mig/tests/sre/
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rons. We used a block of 31 frames of 15 Mel filter bank energies
as input features. For thaterview data we removed interviewer
based on ASR transcripts provided by NIST.

As the baseline features, we used MFCC 19 + energy augmented
with their delta and double delta coefficients, making 60etisional
feature vectors. The analysis window was 20 ms long witht siif
10ms. First we removed silence frames according to VAD rafte
which we applied short-time (300 frames) cepstral mean amd v
ance normalization.

The PRISM set [26] was chosen as the base training dataset pla
form. It contains the following telephone data: NIST SRE 200
2005, 2006, 2008, 2010 Switchboard Il Phases 2 and 3, Svaiéetb

male speakers.

Female gender-dependent UBM was represented as a full or di-
agonal covariance 512- or 2048-component GMM. It was tchore
a subset of PRISM, giving 7815 files equally distributed testw
telephone and microphone condition. The variance floorieg w
used in each iteration of EM algorithm during the UBM trampin

Female gender-dependent i-vector extractors were trgindd
iterations of a joint Expectation Maximization and MinimuDiver-
gence steps) using the entire PRISM set. The results areteepo
with 400 or 600 dimensional i-vectors.

LDA and PLDA were trained on the same data as the i-vector
extractor, except for the Fisher data that was excludeditieg in
2472 female speakers.



Table 3. Comparison of SBN features trained on 250 hours from Engfisher. Systems setup: 2048G UBM, 600 dim. i-vectors. (The
subscript numbers to the right of the feature labels derfoéé timensionality.)

Alignment Features Base Features DCF™ DCF&iP EER

MFCC 60 MFCC o 0.383004 0.103862 0.019917
BN 80 BN so  0.222194 0.077508 0.020246
DNN(2423) <0 MFCC o 0.209405 0.055947 0.012080

BN+MFCC 140  BN+MFCC 10 0.139851 0.040596 0.009381

Table 4. All NIST SRE 2010 conditions for MFCC baseline vs. MFCC+By$t&ns setup: 2048G UBM, 600 dim. i-vectors

DCFZin DCF3y EER
MFCC  MFCC+BN MFCC MFCC+BN MFCC MFCC+BN
sre10c01 0.204324  0.159257 0.052725 0.030333 0.011898 06486
sre10c02 0.327492  0.249305 0.083562 0.057635 0.018893 11716
sre10c03 0.343349  0.229487 0.116152 0.055021 0.023327 10T®6
sre10c04 0.224067  0.156400 0.049074  0.033239 0.009591 06862
sre10c05 0.383004  0.159120 0.103862 0.047686 0.019917 10590
4. RESULTS marizing the results for the large system, we generally sea e

Tab. 1 presents a thorough analysis with scaled-down m¢@&ié1  bigger gains than for the small system in Tab. 1. Using mere BN
with 512 components and 400 dimensional i-vector), whictbuit  Single-model system, we see improvement 35% in EER and 56%
to allow fast turnaround of the experiments. We used muoffilal i DCFrey, and when using the concatenated MFCC+BN features-
BN features, which proved to be the best in our previous laggu Single model, we report relative improvement almost 60% HRE
recognition experiments [27]. and almost 70% i CF} ., 0ver the baseline results. As with the
Firstthree lines of Tab. 1 present the conventional GMMdtge ~ Small system, we see the same behavior for full covarianc&/iGM
system with different feature extractions. The first linewh the ~ Which calls for further analysis.
baseline results with MFCC coefficients. The results with 18h- Tab. 3 shows results for similar system as Tab. 2 for big sys-
tures from the second line show relative improvement 25%BRE tem, but the BN features are trained on 250 hours of datateelec
and 45% inDCF™ over the baseline. Line 3 presents results for thefrom Fisher English part 1 and 2. The relative gains over tseb
concatenated MFCC+BN features. Here, the relative impnavee  line are lower for BN features, which proves to use Multilia BN
over the baseline is 40% in EER, and 5090 F™i2. features over the monolingual even if the language is médt¢ive
Second part of the Tab. 1 presents the results for the twaemod do not have English language in our Multilingual setup). B
approach. The result on line 4 is with MECC base features and B concatenated MFCC+BN features yielded better results titm
alignment features. The relative improvement over thelmeses ~ Multilingual BN. The relative gains over the baseline aré/&68
25% for EER and 35% foDCFIin. This verifies the hypothesis EER which is 0.94% and relative gain 73%IrCF ;. This sys-
that the BN features provides the frame alignment supesiMgCC ~ tem also beats the DNN alignment approach—alignment fosger
features, and with such alignment MECC can be successfatig u Were extracted using the same DNN, except final DNN outpute we
as the base features. Nevertheless, the BN features seeorstan ~ Used as posteriors, resulting in 2423 output states, i.23 BMM
enough information relevant for speaker discriminatiohjol also ~ components [2].
seem to be complementary to MFCC features: The system based Tab. 4 compares the baseline MFCC system with the concate-
purely on BN features from line 2 still performs slightly teet Fur-  nated MFCC+BN features (2048-component diagonal GMM) bn al
thermore, with BN alignment, an additional improvementitained ~ NIST SRE 2010 conditions.
with concatenated MFCC+BN base features as shown in lin&is. T
combination produce the best results with diagonal comagama- 5. CONCLUSION
trix yielding 45% in EER and 55% in both DCF points. We have analyzed the i-vector based systems with Deep Neatal
The bottom half of Tab. 1 summarizes and compares the rework (DNN) Bottleneck (BN) features together with the trtzmtial
sults of full-covariance GMM for both alignment and basetdeas.  MFCC features, and we have demonstrated substantial ga\i$a
We see 10% relative improvement from full-covariance GMMewh  SRE 2010, telephone condition. Our best results, with Bihéch
the same features are used as alignment and base featuréBe Onon Fisher English and BN stacked with baseline MFCC, outper-
other hand, the results are somewhat mixed in the case oivthe t formed the baseline system relatively by 63% at EER and 70% at
model approaches. We usually see about 10% relative degma@a  the DCFXiZpoint. This system also outperformed the DNN align-
DCFjinpoint. At the same time, for line 11, where full-covariance ment approach by 20% relative at ERR and 30% relatieGF:2
matrices are used to normalize statistics for base feaseeseq. (6) We have also analyzed decoupling of the sufficient stasigitrac-
and (7)), we obtain the best overall results oCFi'and EER. tion by using separate GMM models for frame alignment, amd fo
Tab. 2 shows the results with the same Multilingual featimgs statistics normalization, and we have analyzed the use oBMN
bigger system with 2048 components in UBM and 600 dimensionaMFCC features (and their concatenation) in the two stagesh&Ve
i-vector. There is 18% relative improvement in all condisovhen  also shown the effect of using full-covariance variantshef GMM
going from small(512/400) to big(2048/600) system. Whemsu models.
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