
Improving Multi-view Object Recognition by
Detecting Changes in Point Clouds

Martin Velas1, Thomas Fäulhammer2, Michal Spanel1, Michael Zillich2, Markus Vincze2

Abstract—This paper proposes the use of change detection
in a multi-view object recognition system in order to improve
its flexibility and effectiveness in dynamic environments. Multi-
view recognition approaches are essential to overcome problems
related to clutter, occlusion or camera noise, but the existing
systems usually assume a static environment. The presence
of dynamic objects raises another issue – the inconsistencies
introduced to the internal scene model. We show that by
incorporating the change detection and correction of the inherent
scene inconsistencies, we reduce false positive detections by 70%
in average for moving objects when tested on the publicly
available TUW dataset. To reduce time required for verifying
a large set of accumulated object pose hypotheses, we further
integrate a clustering approach into the original multi-view object
recognition system and show that this reduces computation time
by 16%.

I. INTRODUCTION

Industrial as well as service robot applications include the
tasks of detecting changes in the environment while navigat-
ing, recognizing objects and estimating the object pose for
grasping or similar tasks. In recent years, the accessibility of
reliable depth sensors, mainly RGB-D cameras, contributed to
significantly improve the 3D localization precision of objects
detected in the environment.

Nevertheless, several challenges remain. For example, the
standard techniques of object recognition, e.g., [1], [2], often
fail to detect the objects correctly when objects are partially
occluded, the camera view is not favorable or cannot be altered
(which is often the case for mobile robots) or when the
environment is cluttered. To overcome these problems, recent
works [3], [4], [5], [6] exploited techniques combining multi-
ple observations of the same scene from different viewpoints.
Since these works assume a static environment, there naturally
arises the problem of false detections in environments with
moving objects (Fig.1). Removal of objects from the scene is
not reflected in the internal model (e.g., scene reconstruction)
or the model is not flexible to cope with changes. In this paper,
we address the issue of a flexible reconstruction and update of
a dynamic scene model using change detection in point clouds.

The research was funded by the TACR project V3C (no. TE01020415),
the IT4IXS – IT4Innovations Excellence in Science project (LQ1602), the
European Community’s Seventh Framework Programme FP7/2007-2013 (No.
600623), STRANDS and the AKTION cooperation project 72p7.

1Department of Computer Graphics and Multimedia, Faculty of In-
formation Technology, Brno University of Technology, Czech Republic
{ivelas|spanel} at fit.vutbr.cz

2Vision4Robotics group (ACIN), Faculty of Electrical En-
gineering and Information Technology, Vienna University of
Technology, Austria {faeulhammer|zillich|vincze} at
acin.tuwien.ac.at

Fig. 1: Two views of a scene (top row) observed in time from
left to right. In between the observations an object (yellow
toy car) is moved in position. The bottom row shows the
reconstructed 3D scene after the two observations, subse-
quently used as input for object recognition. In [6], the scene
incorrectly contains two object instances of the yellow toy car
in the reconstructed scene (bottom left). Using our proposed
change detection module, only the instance in the current
position is preserved (bottom right).

We show how this can be used to build a reliable multi-view
3D object recognition pipeline for mobile robots.

The key contributions are summarized as follows: (i) ex-
tension of the change detection method proposed by [7] for
non-omnidirectional RGB-D sensors, (ii) improved precision
of a multi-view object recognition system in changing en-
vironments by incorporating the change detection module,
(iii) reduced complexity of the object verification stage by
clustering object hypotheses, and (iv) publicly available source
code and an extended RGB-D dataset including annotations of
objects and changes in the scene.

The paper proceeds as follows. After reviewing related work
regarding multiview object recognition and change detection,
we present the proposed system in Section III with object
recognition and change detection modules deeply elaborated.
The impact of our work is evaluated in Section IV and
concluded in the final section.

II. RELATED WORK

Detection of changes in 3D scenes proved to be useful
in many robotic applications. Although there is a lot of
literature related to object retrieval such as unsupervised object
discovery, to our knowledge, change detection has not been
applied to improve object recognition yet.

A. Multi-view object recognition

While there is a vast amount of literature related to object
recognition (see [8] for an extensive review), only a small

fraction of it deals with multiple viewpoints of the scene.
Pillai and Leonard [5] proposed a multi-view object recog-

nition approach on top of a monocular SLAM system. Using
a reconstruction of the observed environment, they cluster
points based on density generating object candidates described
by efficient feature encodings. They then classify these can-
didates in each view and infer the most probable object
class across multiple views. Lai et al. [4] build a voxel grid
for 3D reconstruction of the scene from multiple RGB-D
frames. They classify each point in the scene by two separate
classifiers (a sliding window detector in each RGB-D image
and hierarchical matching pursuit for 3D voxel data). Their
responses are then combined using a Markov Random Field.

Collet et al. [9] uses a similar approach to our work as
they (i) generate object hypotheses from clustered feature
correspondences within each single images, (ii) merge similar
hypotheses across views and (iii) refine their pose by an Itera-
tive Clustering Estimation. Our work is different in following
aspects. First, we use a multi-pipeline recognizer [10] for
extracting features of multiple modalities (both the shape and
the appearance). Next, we use a graph-based correspondence
grouping which is computationally more complex but eases
the detection of multiple object instances appearing next to
each other. Furthermore, we reject potential false positives by
an additional hypotheses verification [11].

All of the approaches mentioned above assume an environ-
ment where objects are static. Our work particularly addresses
situations where this is not the case (e.g. objects move,
appear or disappear). The multi-view method in [12] projects
object candidates generated from immediate observations into
the currently observed RGB-D frame and tries to cope with
dynamic changes by an additional global verification step
which checks for outliers and other cues [11]. While this
rejects false object detections, the verification (i) does not
exploit the full information available from multiple views,
and (ii) has to check all possible configurations of accumu-
lated object candidates which becomes computationally very
expensive. In this work, we verify the accumulated hypotheses
not only against a single observation of the current scene but
against a fully reconstructed 3D scene considering all available
viewpoints.

B. Change detection

Mason et al. [13] exploited information of object disap-
pearance for automatic and unsupervised object discovery and
tracking. To detect disappearing objects, they built a sparse
feature map by employing visual features (ORB) over RGB-D
data. Missing feature points in new observations are clustered
and removed objects are discovered by supporting plane based
segmentation. Herbst et al. [14] discover objects unsupervised
by building a dense surfel-based scene representation and com-
paring two states of the scene. To reconstruct and compare the
scene, a probabilistic model over the dense surfel-based map
is adopted. Although such system has proved to successfully
find moving objects especially in the clear tabletop scenes, it
is computationally quite expensive.

A continuous object segmentation for dynamic environ-
ments was published by Finman et al.[15]. Objects discovered
by the change detection are used as a training data for
unsupervised learning of the segmentation algorithm. Since
both the map and the observation are processed in the form of
raw point clouds, change detection is based on point cloud dif-
ferencing (described in III-B1). The authors of the Meta-rooms
system [7] proposed an iterative environment scanning from
predefined vantage points. Once the autonomous robot had
scanned the environment (usually office, room, storage, etc.),
a new observation is compared to the meta-room by change
detection also adopting a point cloud difference. Discovered
objects are described by VFH features and clustered into the
classes without any supervision.

An important aspect in detecting changing objects is the
way of reasoning about occlusion. Since there is no evidence
about the presence of occluded objects, these objects can not
be considered as a change. While [15] ray-traces voxel grid
from the position of camera looking for occlusions in occupied
voxels, approaches [16] and [7] use reasoning in the spherical
coordinates. Since its superior computational performance
achieved by efficient spherical structure, we decided to base
our work on [7] and relax the assumption of omnidirectional
scans of the scene (see details in III-B1).

In this work, we show that integration of this proposed
change detection into an existing multi-view recognition sys-
tem [6] significantly improves recognition of objects appearing
and/or changing position in-between different scene obser-
vations. Since there is (to our best knowledge) no related
method able to cope with dynamic scenes in terms of multi-
view recognition, we evaluate this proposed solution with
respect to the original recognition system to demonstrate the
improvement.

III. SYSTEM DESCRIPTION

Our goal is to detect the identity o and pose P of pre-trained
object models in a test scene S. The scene is hereby observed
from multiple view points k and represented by a set of point
clouds S = {Sk} sensed by an RGB-D camera (ASUS Xtion
Primesense used in our experiments). Each of these views
potentially contains one or multiple instances of the objects
which can (dis-)appear and/or change position during the
observation period K. For each view, we assume the camera
pose is known (e.g. by tracking the camera with Structure-
from-Motion techniques like [17] or using common object
hypotheses [6]) which allows us to integrate the observations
into a common coordinate system. The overall recognition
system used to achieve this goal is shown in Fig.2 where novel
components are highlighted in red. The following sections
describe the individual components in more detail.

A. Multi-view object recognition

Our multi-view recognition system (MVR-CHD) is based
on the existing framework (MVR) [6] briefly explained in this
section. In particular, we divide the steps in training the object
models, generating object hypotheses Ĥk in each test view,

SIFT

SHOT

RGB

XYZ

Local Recognition Pipeline

Filter

Sk

Hypotheses
Verification

Hypotheses
Generation

Hk

Memoryk

Ĥk−1

Dynamic scene
reconstruction

Change
detection

Sk−1

Hypotheses
Clustering

Hypotheses
merging

Ĥk

Ĥk−K

Hk+
Matching

Matching

verified hypotheses

Models

Sk−K

Sk

Fig. 2: Overview of our multi-view object recognition system with the proposed change detection and hypotheses clustering
(red boxes). The scene Sk is observed by an RGB-D sensor at different points in time k. A local recognition pipeline (purple
box) extracts local features and matches them with pre-trained features from the object models. Hypotheses Ĥk are generated
from the corresponding keypoints of these feature matches and accumulated over multiple scene observations into Hk+. Finally,
these hypotheses are clustered and verified against a scene reconstruction from the last K observations with dynamic segments
already removed.

merging these hypotheses into a common coordinate system
Ĥk+ and verifying a subset to give the final result.

In the first step, we train models for each object of interest
using [17]. While the object is presented from 360◦ to the
camera, this approach tracks the position of the object and
extracts training views after significant viewpoint change (15◦

in our experiments). The training stage outputs (i) a registered
and organized RGB-D point clouds and (ii) a set of keypoints
with associated feature descriptors. We use two different
local features; uniformly sampled SHOT [2] describing the
geometrical traits and the SIFT [1] extracted in DoG keypoints
capturing the appearance.

To generate object hypotheses, a multi-pipeline recog-
nizer [11] extracts features from the current test view Sk
and matches them to the corresponding model features by a
k-Nearest Neighbor search in both feature spaces. To allow
detecting multiple object instances within a scene, keypoint
correspondences between model and scene are stored as nodes
within a graph and connected to each other if they are
geometrically consistent, i.e. if point distance and respective
surface normals hold consensus [11]. This allows to compute
cliques and for each clique we estimate a 6DoF rigid body
transformation P = [R|t] aligning scene and model keypoints.
The output is a set of object hypotheses Ĥk =

{
ojk,P

j
k

}
with

j indexing the detected objects.
To exploit the information gain from observing the scene

from multiple view points, we merge all object hypotheses
generated for the last K test views into a common set Ĥk+.
Given we know the camera pose to each test view, we are
able to transfer generated object hypotheses from previous
test views into a merged hypotheses set Ĥk+. At this end,
the set contains all objects detected in the last K views which
elements can be highly redundant. To reduce the computational
cost of final verification stage which grows with the number of
hypotheses, we additionally cluster nearby hypotheses based
on their position and orientation. In particular, starting with
randomly selected seed object hypotheses hj ∈ Ĥk+ we

iteratively cluster hypotheses hi ∈ Ĥk+ iff

oj = oi and ‖tj − ti‖ < δt and

Rj→i(α),Rj→i(β),Rj→i(γ) < δr,
(1)

where Rj→i = RjRiT gives the relative orientation of the
two hypotheses (hypothesis i with respect to j) and R(α),
R(β) and R(γ) are yaw, pitch and roll angles of rotation
matrix R. The threshold parameters δt and δr define the
maximum allowed relative distance and orientation for two
object hypotheses to be clustered together; they influence com-
putation time and accuracy. As a trade-off between these two,
we empirically chose δt = 2cm and δr = 10◦. We additionally
refine the pose of each clustered object hypothesis by a final
RANSAC based rigid body transformation estimation which
considers all keypoint correspondences within a cluster that
were used for generating the individual hypotheses.

Finally, we verify the set of clustered object hypotheses Ĥk+
against the registered point clouds of the last K test views
by a global optimization function [18]. It tries to maximize
the number of visible model points that can be explained by
nearby scene points and vice versa. At the same time it tries
to penalize false detections by geometrical cues described in
detail in [18]. Different to [18] which assumes a static scene,
this work only checks nearby points for test views where the
object is indicated as present by our change detection method
influencing the set of explained model and scene points. The
optimization function is solved by local search and outputs the
final set of object hypotheses.

B. Incorporating change detection into recognition system

The approach used in MVR [6] assumes a static environment
and verifies generated object hypotheses against a scene re-
constructed from all points from previous observations. As the
scene reconstruction gets corrupted for environments changing
during the observation period K (see Fig. 1 for instance), this
method tends to either falsely detect objects disappearing or
(due to an underestimated ratio of explained points) to falsely

reject objects appearing during this observation period. To
address these issues, we integrate a change detection module
which is based on the Meta-Rooms framework [7]. Since
this work assumes omnidirectional observations and in our
work we have to deal with general RGB-D camera positions,
we additionally include a view frustum test described in the
following section.

Given the previous scene reconstruction Ψk−1 for the
observations Sk−1, . . . ,Sk−K , we find changes with respect
to each current scene observation Sk as a set of novel N and
removed D points. These changes are taken into account for
reconstructing the current 3D scene Ψk. The change detection
and reconstruction algorithm is summarized in Alg. 1 and
described in detail in the following sections.

1) Change detection: The goal of our change detection is
the retrieval of novel N and removed D points as shown step
by step in Fig. 3. Analogously to [7], we first compute the
raw difference between the current scene reconstruction and
the new observation. The difference of two point clouds A
and B is defined by

A \B = {a ∈ A | ∀b ∈ B : ‖a− b‖ > ε}. (2)

Assuming all points are transformed into a common coordi-
nate system, we define novel points N and estimate the initial
set of removed points D′′ by

N = Sk \Ψk−1 D′′ = Ψk−1 \ Sk. (3)

Since the initial estimation D′′ also contains points oc-
cluded in the current frame Sk, potentially causing false
detections of changes (see Fig.3c), we deploy an additional
occlusion test to deal with such cases.

As in [7], we reason about occlusion of points using a
spherical z-buffer (Fig.4). Without loss of generalization, we
assume the camera is positioned at the origin of the coordinate
system (this can be always arranged since the camera position
is known) and transform each point p = [px, py, pz] into
spherical coordinates [pφ, pθ, pd] with

pd = ‖p‖, pθ = π+ acos(pz/pd), pφ = π+ atan(py/px).
(4)

The spherical coordinate system is divided into regular spher-
ical bins (see Fig.4). In our experiments, we used bins of size
2◦ in both θ and φ directions.

To find occluded points in cloud A with respect to another
cloud B (the one which causes the occlusion), we assign each
point into a bin. A point q ∈ A is then considered occluded
if pd < qd for each point p ∈ B sharing the same bin as q. In
our case, points obtained by the previous scene reconstruction
difference Ψk−1 \ Sk can be occluded by newly observed
points Sk. Such points can not be considered as changed.

Similar to the case of occlusion, change detection can
not reason about points outside the camera’s field of view.
Therefore, we add a view-frustum test to check for each point
whether it is within the camera’s view frustum (see Fig. 3f
and step 3 of Alg. 1). Given the camera intrinsic and extrinsic
parameters Ck (position t, orientation R, horizontal αh and

(a) first observation S0 (b) second observation S1

(c) before occlusion reasoning (d) after occlusion reasoning

(e) before view frustum test (f) after view frustum test

Fig. 3: A dynamic scene observed from two different view-
points (a),(b) with their respective camera position depicted as
red and green frustums in (c),(d). The point cloud difference is
shown in (c) with removed points marked red and novel points
green. Points occluded in the new viewpoint are incorrectly
marked as removed (yellow ellipses). These false change
detections are excluded by the occlusion test (d). The view
frustum test shown in (e), (f) excludes points outside the
camera view frustum (purple).

vertical αv field of view, minimal zmin and maximal zmax view
distance), the point cloud can be transformed such that the
camera is at the origin of the coordinate system and facing
parallel with the z-axis by multiplying each point by [R|t]−1.
A transformed point is within the current field of view iff

(
|px|√
p2x + p2z

< αh

)
∧

(
|py|√
p2y + p2z

< αv

)
∧ pz ∈ (zmin, zmax).

(5)

2) Scene reconstruction: In the original system, each point
in S is associated with a noise term which estimates the lateral
and axial noise level according to Nguyen et al. [19] as well
as the distance to the closest depth discontinuity. In a nutshell,
the noise term is large for points far away from the sensor’s
origin or principal axis or close to any depth discontinuities.
The scene is then reconstructed by putting all points in a voxel
grid structure and only selecting the points with the lowest
noise term in each voxel.

{

{

p

Θ

ᵠ
min
d

q
d

Fig. 4: Occlusion reasoning using a spherical z-buffer. First,
the newly observed points (green) are transformed into spher-
ical coordinates with its origin located at the current camera
position. For each spherical bin, the minimal distance pmind

is stored. Then distance qd of each potentially removed point
(red) is compared against the z-buffer value of the respective
bin. If pmind < qd, a point from the previous frame is occluded
and preserved for the subsequent reconstruction.

Algorithm 1 Dynamic scene reconstruction

Input: Observations S = {Sk,Sk−1, . . . ,Sk−K}, previous
reconstruction Ψk−1 and current camera parameters Ck

Output: Current scene reconstruction Ψk

1: D′′ := Ψk−1 \ Sk
2: D′ := NOTOCCLUDED(D′′, Sk)
3: D := INVIEWVOLUMEOF(D′, P ck)
4: for i = k, k − 1, . . . , k −K do
5: Si := Si \D
6: Ψk := NOISEMODELBASEDINTEGRATION(S)

After the changes have been identified, the most straightfor-
ward way of using them for the reconstruction improvement
would be their direct removal from the reconstruction. How-
ever, to ensure that the detected changes will be reflected in
the assignment of the noise terms to the respective points,
the filtering of removed points is done individually for each
frame before modeling the noise. The solution used in this
work is summarized in lines 4 − 6 of Alg.1. It processes
each observation individually and discards all points which
has been marked as removed by the change detection. (Since
the implementation of noise model we used requires organized
point clouds, the points are only set to NaN values).

IV. EVALUATION

We evaluated the impact of the change detection described
in previous chapters on an extended TUW dynamic dataset3.
The dataset consists of 9 sequences (203 keyframes in total)
of captured office environments with objects of everyday
use (bottles, books, toys, . . .). Some of these objects (dis-
)appear or are moved in-between observations which causes
the aforementioned issues in state-of-the-art multi-view recog-
nition systems. Using [18], we annotated all objects with
their 6DoF pose in each RGB-D view. Moreover, we have

3repo.acin.tuwien.ac.at/tmp/permanent/dataset index.php

0

0,5

1

1,5

2

2,5

3

1 2 3 4 5 6 7Fa
ls

e
 d

et
e

ct
io

n
s

Observation period K

MVR [6]

MVR-CHD

Fig. 5: Average number of false detections caused by the
change (removal or move) of the object instance. Both the
original MVR and the improved MVR-CHD system were
evaluated for different values of K (number of previous scene
observations used for recognition).

MVR [6] MVR-CHD
K Precision Recall F-score Precision Recall F-score
0 0.93 0.50 0.65 0.93 0.50 0.65

1 0.89 0.66 0.76 0.90 0.66 0.77

2 0.86 0.67 0.76 0.89 0.68 0.77

3 0.82 0.68 0.74 0.87 0.68 0.76

4 0.78 0.67 0.72 0.84 0.68 0.75

5 0.76 0.67 0.71 0.84 0.67 0.75

6 0.74 0.65 0.69 0.84 0.67 0.75

7 0.73 0.65 0.68 0.84 0.68 0.75

TABLE I: Overall results of the object recognition in the
dynamic scenes with and without change detection for dif-
ferent observation periods K. Significant improvement can be
observed in terms of precision for multiple views, since the
change detection module reduces number of false positives. It
also illustrates the benefits of a multi-view recognition system
compared to a single-view approach (K = 0). In a single-
view system, the change detection reasoning can not bring
any improvement.

developed publicly available tools for annotation of changes
in the presence of object instance4.

A. Integration of change detection
A qualitative example of a scene reconstructed by the orig-

inal (MVR) system and by our proposed system incorporating
change detection (MVR-CHD) is shown in Fig. 6.

The following experiment quantitatively evaluates the effect
of the change detection module on the recognition of objects
disappearing from the scene or being moved to another posi-
tion. In particular, we are interested in the number of views
the object is falsely detected at its original position after the
change. On average, incorporating change detection decreases
false detections of objects which disappeared or were moved
to a different position in the scene by 70%.

To demonstrate the effect of our proposed change detection
module on the overall results, we evaluated precision and recall
on the extended TUW dataset. As summarized in Table I, the
change detection improves both precision and recall for all
values of K (observation period). On average, there is a 8.3%
improvement in precision, 1.4% in recall and 4.3% in f-score
(i.e., harmonic average of precision and recall).

4github.com/martin-velas/v4r

Fig. 6: Multiple observations of a scene observed in time from left to right with an object (yellow toy car) being moved twice
within the sequence (top). Initial and new position of the object are marked red and green, respectively. The static environment
assumed by the MVR [6] framework (middle row), incorrectly reconstructs the scene such that points from the object’s original
position remain present during the whole observation period K (number of frames used) which was set to 3 in this experiment.
Therefore, it took four observations for invalid points of the moved object to be discarded. Using our proposed change detection
(bottom), the scene is correctly reconstruced at each time step. It removes points belonging to the old position of the object
and keeps all points observed during the observation period that belong to the new object’s position or are static.

The improvement of the recognition performance averaged
over the whole dataset (Table I) is not as significant as
evaluated on the dynamic objects only (Fig. 5). This is because
many of the object instances are static (or at least temporarily
static) in the dataset. For these static objects, the recognition
performance is, as expected, the same with and without change
detection.

Since the false detection rate increases with the observation
period (the removed object is falsely detected for a longer
time), the precision drops accordingly. This is significantly
reduced in MVR-CHD but can not be totally eliminated. For
cases, when the location of a previously removed object is
not well observed afterwards (e.g. because of occlusions), the
reasoning about the changes and the object presence can not
be done.

B. Time performance

Regarding the computational cost, the change detection
adds only minor overhead. In average, the recognition of
original MVR system took 28.6s per frame, comparing to
29.8s per frame for MVR-CHD system. The computational
cost was estimated using whole TUW dynamic dataset and
the hypotheses were accumulated over K = 5 previous views.

The most demanding part of the recognition pipeline is
hypotheses verification module, which is optimized by hy-
potheses clustering evaluated in the next chapter.

C. Clustering of object hypotheses

As shown in Table II and III our proposed clustering method
significantly reduces the computation time of the verification
stage at approximately the same overall recognition rate.
In fact, the average f-score is even increased by 1%. This
can be explained by the lower dimensional problem that
needs to be solved during the global hypotheses verification
which decreases the chance the local search gets stuck in

Precision Recall F-score
w/o clustering [6], [11] 0.71 0.68 0.69
with clustering 0.72 0.69 0.70

TABLE II: Recognition rate with and without hypotheses
clustering.

clustering time 216ms
preserved object hypotheses after clustering 66.0%

reduction of verification time 3.6s (15.7%)

TABLE III: Influence of our clustering approach on the
hypotheses verification (δd = 2cm, δr = 10◦) averaged over
all sequences in the TUW dataset.

an unfavourable local minima (details can be found in [11]).
The additional computation time needed to cluster the object
hypotheses is on average just a fraction (6%) of the time
saved for verifying the object hypotheses. The trend of the
computation time needed for hypotheses verification over time
is shown in Fig.7. In this experiment we accumulate object
hypotheses over K = 5 views. Therefore, the computation
time does not significantly increase after the fifth view.

V. CONCLUSION

In this paper we propose improvements over the existing
multi-view object recognition system that are able to deal
with both the occlusion of objects and with dynamic objects
in the scene. The improvements have been mainly achieved
by integration of the change detection module, playing a role
of “dynamic segments filtering” in the scene observations.
After this filtering, a consistent scene reconstruction is built
and used for the verification of hypotheses. The result is a
significant drop of the false positives rate for dynamic objects
by 70%. This has been proved by the experimental evaluation
using a newly collected and annotated dataset that is publicly

4

9

14

19

24

29

34

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V
e

ri
fi

ca
ti

o
n

ti

m
e

 [
s]

View id k

Without clustering [6]

With clustering

Fig. 7: Computation time of the hypotheses verification with
and without clustering of object hypotheses for frames of
single data sequence.

available together with source code of the implementation.
Moreover, the novel hypotheses clustering module has been
also introduced into the system to reduce the hypotheses
verification time by 16%.

Future research should attempt a deeper incorporation of the
change detection method into the mobile robot navigation and
scene reconstruction scheme to fully benefit from its potential
to speed-up the recognition process. Those areas of the scene
where novelties are discovered will be considered as salient
regions such that computational effort is concentrated and
computing time significantly reduced.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[2] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of His-
tograms for local surface description,” in ECCV, 2010.

[3] A. Collet and S. Srinivasa, “Efficient multi-view object recognition and
full pose estimation,” in Robotics and Automation (ICRA), 2010 IEEE
International Conference on, May 2010, pp. 2050–2055.

[4] K. Lai, L. Bo, X. Ren, and D. Fox, “Detection-based object labeling in
3d scenes,” in ICRA. IEEE, 2012.

[5] S. Pillai and J. Leonard, “Monocular slam supported object recognition,”
arXiv preprint arXiv:1506.01732, 2015.

[6] T. Fäulhammer, M. Zillich, and M. Vincze, “Multi-view hypotheses
transfer for enhanced object recognition in clutter,” in IAPR Conference
on Machine Vision Applications (MVA), 2015.

[7] R. Ambrus, N. Bore, J. Folkesson, and P. Jensfelt, “Meta-rooms:
Building and maintaining long term spatial models in a dynamic
world,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, Sept 2014, pp. 1854–1861.

[8] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3d object
recognition in cluttered scenes with local surface features: A survey,”
PAMI, vol. 36, no. 11, pp. 2270–2287, 2014.

[9] A. Collet, M. Martinez, and S. S. Srinivasa, “The moped framework:
Object recognition and pose estimation for manipulation,” The Interna-
tional Journal of Robotics Research, vol. 30, no. 10, pp. 1284–1306,
2011.

[10] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, “A global
hypothesis verification method for 3d object recognition,” in European
Conference on Computer Vision (ECCV), 2012.

[11] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, “A global
hypothesis verification framework for 3d object recognition in clutter,”
PAMI, 2015.

[12] T. Fäulhammer, A. Aldoma, M. Zillich, and M. Vincze, “Temporal
integration of feature correspondences for enhanced recognition in
cluttered and dynamic environments,” in ICRA. IEEE, 2015.

[13] J. Mason, B. Marthi, and R. Parr, “Object disappearance for object
discovery,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, Oct 2012, pp. 2836–2843.

[14] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward object discovery
and modeling via 3-d scene comparison,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, May 2011, pp. 2623–
2629.

[15] R. Finman, T. Whelan, M. Kaess, and J. Leonard, “Toward lifelong
object segmentation from change detection in dense rgb-d maps,” in
Mobile Robots (ECMR), 2013 European Conference on, Sept 2013, pp.
178–185.

[16] J. Underwood, D. Gillsjo, T. Bailey, and V. Vlaskine, “Explicit 3d change
detection using ray-tracing in spherical coordinates,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on, May 2013,
pp. 4735–4741.

[17] J. Prankl, A. Aldoma, A. Svejda, and M. Vincze, “Rgb-d object
modelling for object recognition and tracking,” in IROS. IEEE, 2015.

[18] A. Aldoma, T. Fäulhammer, and M. Vincze, “Automation of ground truth
annotation for multi-view RGB-D object instance recognition datasets,”
in IROS. IEEE, 2014.

[19] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise
for improved 3d reconstruction and tracking.” in 3DIMPVT. IEEE,
2012, pp. 524–530.

