
Search-Based Synthesis of Approximate Circuits
Implemented into FPGAs

Zdenek Vasicek and Lukas Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Email: vasicek@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Approximate computing is capable of exploiting the
error resilience of various applications with the aim of improving
their parameters such as performance, energy consumption and
area on a chip. In this paper, a new systematic approach for the
approximation and optimization of circuits intended for LUT-
based field programmable gate arrays (FPGAs) is proposed.
In order to deliver a good trade-off between the quality of
processing and implementation cost, the method employs a
genetic programming-based optimization engine. The circuits
are internally represented and optimized at the gate level. The
resulting LUT-based netlists are obtained using a commercial
FPGA tool. In the experimental part, four commonly available
commercial FPGA design tools (Xilinx ISE, Xilinx Vivado,
Precision, and Quartus) and state-of-the-art academia circuit
synthesis and optimization tool ABC are compared. The quality
of approximated circuits is evaluated using relaxed equivalence
checking by means of Binary decision diagrams. An important
conclusion is that the improvements (i.e. area reductions) at
the gate level are preserved by the FPGA design tools and thus
the number of LUTs is also adequately reduced. It was shown
that the current state-of-the-art synthesis tools provide (for some
instances) the results that are far from an optimum. For example,
a 40% reduction (68 LUTs) was achieved for ‘clmb‘ benchmark
circuit (Bus Interface) without introducing any error. Additional
43% reduction can be obtained by introducing only a 0.1% error.

I. INTRODUCTION

In many applications based on FPGAs, it is crucial to mini-
mize the circuit size in order to fit it into a given FPGA. This
is actually a standard task supported by FPGA synthesis tools,
which typically offer the users to specify various preferences
and constraints during the circuit synthesis, optimization and
mapping process. In the case of FPGAs, the area is usually
measured by the number of look-up tables (LUTs) and delay is
estimated from the logic levels and interconnect involved. The
requirement of circuit optimization is especially important if
the circuit is one of the modules developed for a dynamically
reconfigured area of the FPGA.

It has recently been accepted in many application domains
that errors can intentionally be introduced to the circuit with
the aim of reducing its area, delay or power consumption. This
approach, called approximate computing [1], typically exploits
the error resilience which is present in the applications such
as image processing, data mining, prediction or classification.
This “approximation” feature is not currently supported by
FPGA design tools. There is one tool enabling the user to
specify what entity and to what extent it can be approximated

(see, Axilog [2]). However, it has not been evaluated for FPGA
designs.

In this paper, we propose a search-based method capable
of optimizing and approximating combinational circuits. The
method represents candidate circuits using directed acyclic
graphs (DAG) and performs a global resynthesis and optimiza-
tion by means of Cartesian genetic programming (CGP) [3].
The main reason for adopting CGP is that this method is
capable of providing better trade-offs than commonly-used
methods which was demonstrated, for example, in [4].

The proposed method performs the so called functional
approximation. It is constructed as a general-purpose design
automation method for combinational circuits, which means
that the approximations are performed using the same proce-
dure for all problem instances of a given class. The difference
lies in the error computation which is specific for each appli-
cation class. Various approximate implementations showing
different compromises between considered system parameters
are generated and presented to the user, whose responsibility
is to choose the most suitable approximate solution for a given
application. The proposed method thus differs from the single-
purpose (“ad hoc”) approximation approaches (such as [5])
developed to approximate a particular component.

The experimental scenario introduced to evaluate the
method in the context of FPGA designs is as follows:

In order to obtain a reference implementation, a given fully
functional circuit is described using a dataflow description in
Verilog language and then synthesized and optimized by a
standard FPGA design tool with the aim of minimizing the
area. The resulting netlist consisting of LUTs is considered as
a reference implementation. This step is denoted as Scenario
I. in Fig. 1.

As our method does not put any restrictions to the magni-
tude of target error, it can be used to pre-optimize the original
circuit providing that the zero target error is used. This two-
step process is denoted as Scenario II.a in Fig. 1. A given fully
functional circuit is firstly optimized by CGP. The optimized
gate-level description is then synthesized and optimized by a
standard FPGA design tool.

In the case that a functional non-equivalence between the
original circuit and its final implementation can be tolerated,
we can apply the approximate scenario. The fully functional
circuit is optimized with the aim of minimizing the area
provided that the error between the fully functional and

optimized implementation is bounded by the required error.
Fig. 1 introduces this approach as Scenario III and Scenario
II.b (the circuit already optimized by CGP is approximated).

Fig. 1. Proposed experimental scenarios: I. – synthesis only; II.a – pre-
optimization and synthesis; II.b – pre-optimization, approximation and syn-
thesis; III. approximation and synthesis.

The proposed method is experimentally evaluated on cir-
cuits taken from LGSynth, ITC and ISCAS benchmark li-
braries. Introducing approximations to general logic could be
dangerous in many cases (e.g. for controllers), but there is
still an important class of circuits (such as pattern matching
circuits, complex encoders and arbiters) in which the error can
safely be exchanged for area reduction.

According to our best knowledge, the impact of a particular
synthesis tool in the task of synthesis and approximation of
circuits have never been evaluated. Another contribution of
this paper is to demonstrate that the improvements (i.e. area
reductions) obtained by CGP working at the gate level are, in
fact, preserved by standard FPGA design tools and thus the
number of LUTs is also adequately reduced.

II. PROPOSED METHOD

The objective is to minimize the area of circuits that have to
be implemented into an FPGA, assuming that approximations
are allowed. The proposed CGP-based approximation method,
which is employed at the level of original circuits is described
in next sections.

A. Circuit Representation

The search-based optimisation method could operate either
at the level of gates (components) used in the original circuits
or at the level of LUTs available in the FPGA. In this paper, we
employed two-input nodes (gates) because it primarily leads
to the fastest evaluation of candidate solutions and well-know
types of search spaces.

A gate-level ni-input/no-output circuit is represented using
a directed acyclic graph which is encoded in a 1D array
consisting of nc gates. This array is internally stored using
a string of integers, the so-called chromosome. The set of
available logic functions is denoted Γ. For each gate, three
integers are included in the chromosome – two labels specify-
ing indices where the gate inputs are connected to and a code
of function in Γ. The last part of the chromosome contains
no integers specifying either the nodes where the primary
outputs are connected to or logic constants which can directly

be connected to the primary outputs. The main feature of this
encoding is that while the size of the chromosome is constant,
the size of circuits represented by this chromosome is variable
as some gates can remain disconnected.

B. Search method

The search method follows the standard CGP approach [3].
The initial population P is seeded by the accurate circuit (p)
and λ offspring circuits created by a point mutation operator
modifying h genes of the parent individual p (h randomly
chosen integers are replaced by randomly generated integers).
In order to generate a new population, λ offspring individuals
are again created by a point mutation operator. The parent is
either the accurate circuit (in the first generation) or the best
circuit of the previous generation (in remaining generations).

There are two design objectives for CGP: minimizing the
functionality (error) and the number of gates.

C. Fitness function

For different types of circuits, specific fitness functions have
to be constructed. In the case of arithmetic circuits, it is natural
to minimize the arithmetic error. For general logic circuits,
no additional information is usually available to establish a
suitable error metric. Hence we measure the quality of a
given approximation as the Hamming distance between the
specification and approximate circuit. This can be obtained
by converting the approximate circuit and the specification
to corresponding Reduced Ordered Binary Decision Diagram
(ROBDD) and calling suitable operators over ROBDD.

We employed the average Hamming distance which can
be obtained from the ROBDD representation of the candidate
circuit and the specification. Let A be a candidate circuit, S
the specification (i.e. the accurate circuit) and σ be ROBDD
which represents Boolean function FS captured by S. To
calculate the Hamming distance, corresponding outputs (yj)
of candidate circuit A, represented by ROBDD α, and σ are
connected to a set of exclusive-or gates, i.e. zj = yαj ⊕ yσj ,
j = 1 . . . no. By means of the Sat-Count operation, which is
available in common BDD packages such as Buddy [6], one
can obtain the number of assignments bj to the inputs which
evaluate zj to 1. The average Hamming distance between α
and σ (and thus A and S) is then

fitness2 =

no∑
j=1

|{~t ∈ Bni : Fzj (~t) = 1}|
no2ni

=

no∑
j=1

bj
no2ni

. (1)

D. Evolutionary Approximation

In order to evolve circuits showing different compromises
between the error and size, a single-objective CGP is executed
multiple times with different parameters. Resulting solutions
are displayed using a Pareto front.

A two-stage procedure is employed for a given error ei [7].
In the first stage, a given accurate circuit (S) is gradually
modified by CGP (according to eq. 1) to exhibit error ei
providing that a 5% difference is tolerated with respect to
ei (tolerating a small error is acceptable; otherwise the search

TABLE I
PARAMETERS OF THE BENCHMARK CIRCUITS: THE NUMBER OF PRIMARY INPUTS (ni) AND OUTPUTS (no), THE NUMBER OF GATES OBTAINED FROM

ABC (nG), THE NUMBER OF GATES OBTAINED USING CGP (nopt
G) AND THE IMPROVEMENT.

circuit apex7 clma clmb comp duke2 b05 mm9a mm9b s1196 s1238 s349 s400 s420 s444 s510 s526 s526n s832 s967 signet large ttt2 x1dn x9dn

ni 49 34 46 32 22 34 39 38 31 31 24 20 35 20 25 24 24 23 22 39 38 24 27 27
no 36 35 33 3 29 56 36 35 31 31 25 23 18 23 13 21 21 22 29 8 3 21 6 7
nG 174 237 641 105 294 427 279 315 454 483 102 102 112 106 217 105 113 256 329 630 771 116 164 168
nopt
G 166 228 392 96 269 400 263 289 410 405 96 96 112 98 204 95 98 221 297 352 160 99 84 129

impr. 4% 3% 38% 8% 8% 6% 5% 8% 9% 16% 5% 5% 0% 7% 5% 9% 13% 13% 9% 44% 79% 14% 48% 23%

could easily stuck in a local extreme). In the second stage, the
number of gates is minimized, assuming that the error remains
within the required range.

III. RESULTS

The following experimental methodology was utilized. First,
the original circuits are optimized and approximated using
CGP, as summarized in Fig. 1. Note that the original circuits
are highly optimized by ABC. Then, the gate-level circuits
are converted to Verilog netlists (one gate is represented by
one logic expression) and synthesized. The goal of synthesis
is to minimize the area, i.e. the number of (up to 6-input)
LUTs. Results are presented for ABC and four commercial
tools: Precision RTL 2015.1.6, ISE 14.7, Vivado 2015.2, and
Quartus 14.1. The circuit size and delay are extracted from
the resulting technology netlists. In the case of ABC, the
synthesis and optimization is performed by 15 iterations of
resyn2 script, followed by mapping if -K 6 -a. In the
case of Xilinx and Precision, the 6-LUT FPGA chip under
label Virtex7 XC7VX330 was chosen for the implementation.
The FPGA chip EP4S40G of Altera’s StratixIV family was
taken in Quartus. Only single-output LUTs are considered (i.e.
LUT-combining is not permitted) to provide fair conditions
for all tools. The implicit setup of CGP parameters follows
the recommendations given in [3]: λ = 4, h = 5, nc = nG,
gmax = 104. Γ includes all 2-input gates.

Table I gives the parameters of the chosen benchmark
circuits. In most cases, the original circuit size (nG) obtained
by ABC was significantly reduced by CGP in Scenario II.a
(see noptG). The highest gate reduction was obtained for clmb
(38%), signet (44%), large (79%) and x1dn (48%). This
improvement is consistent with the fact that conventional logic
synthesis and optimization tools provide far from optimum
results for many problem instances [4], [8].

After optimizing the original circuits by CGP, we followed
Scenario II.b in which CGP is also employed to approximate
these circuits. Because of space restriction, results are pre-
sented for four errors (e1 = 0.2%, e2 = 0.4%, e3 = 0.6%
and e4 = 0.8% in terms of the maximum Hamming distance).
The maximum error is 2ni · no, where no is the number of
primary outputs. Figure 2 shows resulting LUT counts for the
original circuit, after the optimization by CGP (e0 = 0), and
for four target errors. The circuits are divided into two groups
– smaller circuits with up to 60 LUTs (top) and more complex
circuits with up to 200 LUTs (bottom).

Several results deserve a further analysis. Almost all fully
functional circuits were improved at the gate level by CGP.
However, a reduction counting more than 24 gates (Xilinx
counts from 6 to 24 two-input gates for one LUT depending on
the number of inputs used) was reported only in 11 cases (bold
values in Table I). The small improvement in the number of
gates obtained by CGP could led to increasing the number of
LUTs after the synthesis. This is visible, for example, in circuit
s510, which seems to be a difficult case for the synthesis tools
because the spread in the number of LUTs is almost 100%.
Another interesting case is signet, for which only Vivado
provided a good result when optimizing the original circuit.
It represents a rare case in which Scenario I provided slightly
better result than Scenario II.b.

Allowing errors led to reducing the number of LUTs in all
instances. However, the circuit response to the approximation
is hard to predict. In some cases, the size is only slightly
reduced (s349, s526n). In the case of comp and other more
complex circuits (clma, clmb, duke2, s1196, s1238, s967,
signet, and large), a considerable area reduction is visible
even for the small error of 0.2%. As expected, the number of
LUTs decreases with the increasing error. On the other hand,
there are cases where some approximated circuits require more
LUTs to be implemented compared to the approximations
exhibiting lower error (see s510, ttt2, x9n, b05).

IV. DISCUSSION

In summary, pre-optimizing of fully functional circuits
before the actual approximation is conducted seems to be a
positive step. On the selected benchmark set, the average gate
reduction is 16.3% without introducing any error to circuit
functionality. At the level of LUTs, the average reduction is
10.7% which corresponds with 18 LUTs. Additional reduction
of 26.7% LUTs was achieved by relaxing the requirement that
the circuits are exactly correct and introducing a 0.2% error.

The complexity of the chosen benchmark circuits is roughly
identical with circuits used for the evaluation of methods such
as SASIMI [9], SALSA [10] and ABACUS [11]. Targeting
these methods towards middle-size circuits is reasonable as
approximations are typically introduced to carefully selected
subcircuits which significantly contribute to power and area
characteristics of the whole complex circuit.

Unfortunately, a direct comparison with other approxima-
tion methods is hard to perform because neither the implemen-
tations of the methods nor the results for common benchmark

Fig. 2. The number of gates for original, optimized and approximate (errors of 0.2%, 0.4%, 0.6% and 0.8%) implementations of benchmark circuits.

circuits are available. The CGP runtimes are typically in the
order of tens of minutes (2.93 GHz CPU). As no execution
times are usually reported in the literature dealing with cir-
cuit approximation, we can only give the execution times
of SALSA [10] which ranged from 4 minutes to 2.5 hours
depending on the circuit complexity (2.29 GHz CPU).

An interesting result is that the gate-level optimization and
approximation conducted by CGP is preserved by common
FPGA synthesis tools, assuming that the original circuit is of
a reasonable complexity. Interestingly, this result is valid even
if the number of LUTs required to implement a given circuit is
relatively low as it was demonstrated for 8 circuits consisting
of less than 50 LUTs.

V. CONCLUSIONS

We introduced a CGP-based methodology enabling to ap-
proximate combinational circuits intended for FPGA imple-
mentations. The methodology was evaluated using standard
benchmark circuits, where the error was expressed as the
average Hamming distance and measured by means of BDDs.
Due to the limited space we did not discuss the circuit
delay; however, it has never been worsened by introducing the
approximations. By modifying only the fitness (error) function
the method can easily be extended to approximate other
types of combinational circuits such as arithmetic circuits,
image or signal processing components. We have shown that
the results provided by commercial FPGA design tools can
significantly be improved by introducing a pre-optimization
phase conducted by CGP.

ACKNOWLEDGMENTS

This work was supported by the Czech science foundation
project 14-04197S.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, pp. 1–34, 2016.

[2] A. Yazdanbakhsh, D. Mahajan et al., “Axilog: Language support for
approximate hardware design,” in Design, Automation and Test in
Europe, DATE’15. EDA Consortium, 2015, pp. 1–6.

[3] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[4] Z. Vasicek and L. Sekanina, “A global postsynthesis optimization

method for combinational circuits,” in Proc. of the Design, Automation
and Test in Europe, DATE. EDA Consortium, 2011, pp. 1525–1528.

[5] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electronics, vol. 7, no. 4, pp.
490–501, 2011.

[6] J. Lind-Nielsen and H. Cohen. BuDDy - A Binary Decision Diagram
Package. [Online]. Available: http://buddy.sourceforge.net

[7] Z. Vasicek and L. Sekanina, “Evolutionary design of complex ap-
proximate combinational circuits,” Genetic Programming and Evolvable
Machines, vol. 17, no. 2, pp. 169–192, 2016.

[8] J. Cong and K. Minkovich, “Optimality Study of Logic Synthesis for
LUT-Based FPGAs,” IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, vol. 26, no. 2, pp. 230–239, 2007.

[9] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Design, Automation and Test in Europe, DATE’13.
EDA Consortium San Jose, CA, USA, 2013, pp. 1367–1372.

[10] S. Venkataramani, A. Sabne et al., “Salsa: systematic logic synthesis of
approximate circuits,” in The 49th Annual Design Automation Confer-
ence 2012, DAC ’12. ACM, 2012, pp. 796–801.

[11] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique
for automated behavioral synthesis of approximate computing circuits,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’14. EDA Consortium, 2014, pp. 1–6.

