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Abstract—One of the most important topics of today is a
packet processing in data centers with respect to the power
consumption and efficient utilization of computational resources.
The ARM architecture has proved to be an energy efficient
computational system. Together with an integrated FPGA on
a single die, it offers potentially a high performance with
respect to the power consumption. DPDK – a set of libraries
and drivers intended primarily for fast packet processing – is
becoming to be a standard approach for packet processing,
especially in data centers. In this paper, we exploit the potential of
packet processing based on DPDK and FPGA SoC architectures.
Especially, we aim at the potential of utilizing the ARM Cortex-
A9 and Cortex-A53 CPUs.

I. INTRODUCTION

DPDK1 is a set of libraries and drivers for fast packet
processing. It runs in the userspace and gets advantage of
bypassing the operating system kernel’s (Linux or FreeBSD)
networking stack to reach high throughput in network appli-
cations. The DPDK infrastructure provides a core for memory
management (utilizing the hugepages extension of certain
MMU architectures), lockless buffer rings, zero-copy com-
munication with PCI devices (network cards) and a support
for multicore processing. With this approach, it is possible
to achieve a significantly higher throughput in comparison to
the standard solutions based on the Linux Kernel. DPDK is
becoming to be de facto a standard in the fast network data
processing (utilized by e. g. FD.io [1], Open vSwitch [2]).

During the last year, DPDK has been extended to support
the ARM [3] and ARM64 [4] architectures. This brings a
possibility to reduce the overhead of packet processing (and
therefore, to reduce the power consumption) by applications
running on ARM-based systems. An interesting target ar-
chitecture for DPDK is the Xilinx Zynq (ARM Cortex-A9
dual-core at 666 Mhz) as it provides a low-power processing
capabilities (on the ARM dual-core processing system) and
achieves a high throughput by utilizing the tightly integrated
FPGA (an FPGA SoC). The next generation of this chip
(Xilinx ZynqMP [5]) is based on the ARM Cortex-A53 quad-
core processor (64-bit ARM) with improved on-chip commu-
nication channels. DPDK can help to split the processing to
multiple processes (and CPU cores) and provides capabilities
for hardware acceleration of network algorithms in the FPGA.

1Data Plane Development Kit: http://www.dpdk.org
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Fig. 1. Packet processing system for DPDK on FPGA SoCs.

This paper shows the potential of utilizing FPGA SoCs
running DPDK-based applications intended for data centers
and for processing of the network traffic.

II. ARCHITECTURE

The figure 1 shows a network packet processing system
using DPDK on FPGA SoCs It consists of a multicore
processor (MPCore), a set of Input Plugins, a set of Processing
Plugins and the network interfaces (EMACs). Operations can
be offloaded by utilizing the plugins on the RX direction (TX
would work in the opposite way):

• Input Plugins – precomputation before reaching any CPU,
• Processing Plugins – performed by CPU on demand after

a packet is received.
The Input Plugins can be utilized for packet filtering, hash
computations, LPM, early packet aggregation of uninterest-
ing traffic, etc. The Processing Plugins enable to speed up
pattern matching, encryption tasks, L7 processing and other
application-specific tasks.

Plugins can be loaded dynamically into the FPGA or can be
a part of a fixed design depending on the target application.
The plugins can be selected by parsing the P4 language [6]
specifications, especially the match-action tables part.

A. DPDK and SoCs

The greatest advantage of utilizing DPDK on ARM is a
reduction of the underlying operating system’s overhead. This
comprises a significantly lower number of context switches,
bypassing the operating system network subsystem (this can be
a disadvantage as it already implements various useful network
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Fig. 2. Packet-rate of loopback on the Xilinx Zynq.

algorithms), zero-copy approach and an included control of
migration of tasks among CPU cores.

The DPDK has been designed to support only PCI-specific
devices. There is no standard way how to integrate a SoC-
specific (non-PCI) peripherals into DPDK. As a part of this
work, we have extended DPDK to support the ARMv7 archi-
tecture [3] and recently, a support for SoC-specific peripherals
is being discussed on the DPDK’s mailing list [7] (for DPDK
16.07, to be released in July 2016).

III. RESULTS

The goal of our measurements has been to show the limits of
DPDK-based packet processing on the Xilinx Zynq and Xilinx
ZynqMP. As the ZynqMP was not widely available for testing
at the time of writing this paper, another SoC was chosen: the
Allwinner A64 (Pine64). This SoC is based on the quad-core
ARM Cortex-A53, contains a 512 kB L2 cache and operating
frequency at 1.2 GHz (ZynqMP would have 1 MB L2 cache
and CPU at 1.5 GHz).

To imagine the processing capabilities of DPDK running
on the selected platforms, we have measured the SW-only
performance of the customized DPDK null driver that works
as a software loopback. The figures 2 and 3 show the results.
The higher packet rate (light colors) was measured by a zero-
copy approach. In this case, only the necessary packet handling
is performed by the null driver. These values show the limits
of DPDK itself. The lower packet rate (darker colors) was
measured with an added overhead of copying whole packets
inside the null driver.

The nC/mQ notation denotes an utilization of n cores with
m hardware packet queues. The configurations where m > n
demonstrates that the performance would not grow without
adding more CPU cores. The real throughput of the target
system would lay between the throughput of the single-copy
and zero-copy approaches.

A. Limits of DPDK-based processing on ARM

The figure 2 shows the two measured cases for the
Xilinx Zynq. The real processing capabilities lay between
0.7 Mpps / 528 Mbps and 1.4 Mpps / 916 Mbps per core for
the shortest Ethernet frames (64 B).
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Fig. 3. Packet-rate of loopback on the Pine64.

The results on figure 3 show that the throughput of the
Cortex-A53 architecture lays between 1.8 Mpps / 1.25 Gbps
and 3.2 Mpps / 2.2 Gbps for the shortest Ethernet frames. It
provides slightly higher performace per MHz when compared
to the Xilinx Zynq (approx. from 0.9 Mpps to 1.6 Mpps at
600 MHz). However, the Allwinner A64 does not scale when
utilizing all four cores. Further investigations suggest that this
issue is related to the underestimated L2 cache size.

IV. CONCLUSION

This paper has exploited the limits of DPDK-based packet
processing on the ARM-based systems aiming at the Xilinx
Zynq and the Xilinx ZynqMP. We have measured that the
Cortex-A53 slightly improves the throughput of the system.
However, the performance per Watt should be generally higher
for the newer CPU generation. A single Cortex-A53 core at
1.2 GHz can process up to 3.2 Mpps per core on the shortest
frames. The processing capabilities can achieve 14 Gbps per
core (i. e. 10G Ethernet) on 512 B long frames.

We have proposed a system architecture for the following
reseach that will aim at mapping the P4 language to this type
of platforms.
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