High Performance Computing on Low Power
Devices

Vojtech Nikl
274 year, full-time study
Supervisor Jiri Jaros

Brno University of Technology
Faculty of Information Technology
Bozetechova 2, Brno, Czech Republic
inikl @fit.vutbr.cz

Abstract—Nowadays, the power efficiency of modern proces-
sors is becoming more and more important next to the overall
performance itself. Many programming tasks and problems do
not scale very well with higher number of cores due to being
memory or communication bound, therefore it is often not
beneficial to use faster chips to achieve better runtimes. In this
case, employing slower low power processors or accelerators
may be much more efficient, mainly because it is possible to
get the same results using much less energy. Dynamic runtime
adjustments applied to the system based on the properties
of a given algorithm, such as frequency and voltage scaling
or switching off unneeded parts, may further enhance power
efficiency. This paper describes the benefits of using low power
chips for building an HPC cluster, the group of algorithms where
this approach can be useful, possible system adjustments towards
better power efficiency, results achieved so far and future plans.

Keywords—HPC, parallelism, low power, processor architec-
ture, supercomputers, k-Wave, MPI, OpenMP, performance eval-
uation, numerical methods, clocking

I. INTRODUCTION AND MOTIVATION

Even though computer processors have come a long way in
terms of performance, there are still many tasks and problems
which require large amounts of computing power to be suc-
cessfully solved. For some time, hardware engineers haven’t
been purely focusing on raw performance, but the energy
consumption has also become a very important factor. Using
low powered processors can be much more efficient for certain
kinds of algorithms, mainly for memory and communication
bound problems. Unfortunately, this is where algorithms’
scalability come into play. Underclocking processsor’s cores or
switching them off during these computationally non-intensive
events may bring further energy benefits.

Today’s supercomputers are usually based on the x86 archi-
tecture, specifically the Intel Xeon Sandy Bridge or newer. One
of many examples is the Anselm cluster', located in Ostrava,
Czech Republic. It consists of 209 2x8-core Intel Xeon ES-
2665 2.6 GHz nodes, each with atleast 64 GB of RAM. Each
node requires approximately 230 W of energy under full load,
while providing about 400 GFlop/s of theoretical performance

Uhttps://docs.it4i.cz/anselm-cluster-documentation/hardware-overview

in 64-bit double precision. Most of that energy is dissipated
into heat and therefore requires very intensive and expensive
cooling system. Some systems chose a little bit different
approach towards higher power effectiveness. One of them
is the Fermi cluster?, located at the CINECA consortium,
Bologna, Italy. This cluster, on the other hand, consists of
10,240 nodes, each integrating 16-core IBM PowerA2 1.6GHz
processor. While the overall performance per node is about
half of the Anselm one’s, the peak power consumption is
only 55W. This results in almost twice as good performance
per Watt ratio. The Green 500 list® provides a ranking of
the most energy-efficient supercomputers in the world and
Fermi is close to the top at the 59" place, having over
2 GFlop/s per Watt. The most efficient supercomputer has
about 7 GFlop/s per Watt (January 2016). Current estimates
indicate that processor efficiencies will have to evolve from the
current 5 GFlop/s per Watt to 50 GFlop/s per Watt for exascale
machines to be viable [1], mainly because a realistic power
budget for an exascale system is 20 MW.

The Mont-Blanc project* [2][3] is aiming to design a new
type of computer architecture capable of setting future global
HPC standards, built from energy-efficient solutions used in
embedded and mobile devices. The project is run by the
Barcelona Supercomputing Center’ and is funded mainly by
the European Commision. The main focuses of development
are the OmpSs parallel programming model to automatically
exploit multiple cluster nodes, transparent application check
pointing for fault tolerance, support for ARMv8 64-bit pro-
cessors, and the initial design of the Mont-Blanc Exascale
architecture. The main goal is to design a new high-end
HPC platform that is able to deliver a new level of per-
formance/energy ratio when executing real applications, that
should provide exascale performance using 15 to 30 times less
energy.

Unfortunately, the approach of using ARM based kits has a

2CINECA consortium, IT, http://www.hpc.cineca.it/content/ibm-fermi-user-
guide

3http://www.green500.org/

“https://www.montblanc-project.eu/

Shttps://www.bsc.es/

few downsides. Since the low power processors are generally
less powerful, it is necessary to employ much more of them to
reach the same level of overall system performance, however
algorithms may have trouble scaling that high.

Another problem may be the amount of system memory,
where ARM based kits offer only 1-4 GB, which can quickly
become limiting for extensive simulations.

For communication-intensive algorithms, the mostly
equiped 1 Gbit/s network cards are also going to be quite
limiting.

Last but not least, one more important reason to focus more
on power effectiveness is the resource allocation policy of
supercomputing centers. Currently, resources are distributed
between users based on core-hours, however in the future,
users will most likely be billed based on consumed kWhs,
which is going to put much more pressure on algorithms’
efficiency.

II. POWER CONSUMPTION ANALYSIS

In this section, frequency scaling benchmarks on x86 Intel
Xeon Haswell architecture are presented, as the first step
of understanding algorithm’s power consumption properties.
The purpose of these tests is to show theoretical performance
impact on both compute and memory-bound problems, the
scaling of power consumption of both the processor and
memory modules in relationship to performance, define power
efficiency of different benchmarks in relation to frequency
scaling and make a conclusion about suitability of these tests
in regards to low power architectures.

The system on which all the benchmarks were run is shown
in Table I.

Server Supermicro 7048GR-TR
Motherboard Supermicro X10DRG-Q
Processor 2x Intel Xeon E5-2620v3
RAM DDR4-2133 64GB (4 channels)
SSD Crucial 250GB

TABLE I: System hardware overview.

The operating system is Ubuntu 14.04 with 3.19.0-51-
generic kernel version.

The energy measurements were taken using the PAPI
library® and its RAPL framework [4], which can directly
access the hardware counters of the CPU. PAPI measures
the energy consumption of three main components of each
CPU - package, powerplane and dram. Package measures the
whole socket including the memory controller, powerplane
measures only the cores themselves and dram measures the
corresponding dram module. Powerplane measurements were
not supported on our system (always returned 0 Joules), so
only packages and drams were taken into account.

Our Haswell CPU supports frequencies ranging from 1.2
to 2.4 GHz, excluding Turbo mode. To be able to manually
set chosen frequency, the Intel driver had to be replaced with

Shttp:/ficl.cs.utk.edu/papi/

the ACPI driver and the governor was set from balanced to
userspace using the system’s cpupower utility.

All the benchmarks were compiled using the GNU GCC
5.3.1 compiler. The flags used were

gcc —-std=c99 -03 -mavx —-ffast-math

Three main frequencies for all the cores were chosen to
be benchmarked, 1.2, 1.8 and 2.4 GHz. Turbo was turned off.
Voltages for each of the frequencies were set automatically
based on the default CPU stepping provided by Intel.

The total energy consumed of each benchmark was calcu-
lated by adding package0, packagel, dramO and dram1 power
consumptions up.

The first set of tests is focusing on memory subsystem
performance, using the lmbench [5] tool.

The Imbench memory bandwidth (see Fig. 1) benchmark
shows that while every level of CPU cache scales almost
linearly with the cpu frequency, the main memory bandwidth
is affected very little, not more than 5%.

Memory read bandwidth
1000

900 ——12GHz —1.8GHz —2.4GHz
— 800 \\
= 700
9. 600 —.\
= 500 A\
3 400 —
'g 300 \ _\
8 200 - \
100
0
B O O R YRR R R ®
GO 4}* S ,,;ﬁyxoo@q,@“

Data size per core [MB]

Fig. 1: Memory read bandwidth benchmark using Imbench.

When combined with the energy measurements, Fig. 2
presents the amount of GBs transfered per Watt during the
memory read bandwidth benchmark. When the data fits into
caches, 25% frequency drop results in 10-30% increased GBs
per Watt ratio, in the main memory the increase is only 4-5%.

Combining the bandwidth and power consumption, Fig. ??
presents the amount of GBs transfered per Watt during the
memory read bandwidth benchmark. When the data fits into
caches, 25% frequency drop results in 10-30% increased GBs
per Watt ratio, in the main memory the increase is 4-5%.

While previous benchmarks were focusing on the mem-
ory, the Linpack benchmark [6] is focusing on the raw cpu
performance. Linpack solves a set of 2D equations based
on factorization with O(n?3) operation complexity. While the
Flops per second metric should scale directly with the cpu
frequency, it may not always be the case, mainly due to the
cache and memory performance not scaling linearly with the
frequency, so the slower running cpu may not wait for the data
as long.

Package0 [W] | Packagel [W] | Dram0 [W] | Draml [W] | Gflop/s | GFlops/W
1.2GHz idle 16.1 16.4 14.0 9.7
1.2GHz burn 372 37.0 35.1 29.2 201.2 2.44
1.8GHz idle 17.0 17.0 14.0 9.7
1.8GHz burn 48.6 46.7 36.1 30.1 250.6 2.39
2.4GHz idle 17.1 17.1 14.2 9.8
2.4GHz burn 73.5 57.0 41.6 31.2 299.7 2.07
TABLE II: Linpack.
Total time [s] | Simulation time [s] | Total energy [J] | Simulation energy [J]
1.2GHz 96.21 44.08 10135 5636
1.8GHz 82.56 38.88 9435 5023
2.4GHz 67.97 32.1 9636 5113

TABLE III: Power consumption of one k-Wave simulation, 5763, 10 timesteps

Memory read power efficiency

25
20)\
£ /__\\ ——1.2GHz — 1.8GHz ——2.4GHz
—
=15
2 =
>10
(]
g N
5 ¥

Data size per core [MB]

Fig. 2: Amount of data transfered from memory per one Watt.

k-Wave 5763 10 timesteps (low freq)

v
o

IS
v

w b
vl O
L
>
=9

M
Y

w
o
|

N
v
-

|

N
o
!

[any
(%]

Al I

H

Power consumption [W]

iy
v O

package0 packagel dram0 draml

T O =+ O & O 4 O = OV 3 OV d OV " OV d OV «d O
e NN S NN O O NN OO

data load FFT planning preprocessing simulation

Time [s]

Fig. 3: k-Wave simulation, 5763, 10 timesteps (1.2 GHz)

Table II shows the average power consumption during a
single run (problem size is 25 000, leading dimension is 25 000
and memory alingment is set to 1 KB), overall performance
in GFlop/s and power efficiency in GFlop/s per Watt. The best
efficiency is achieved running on low and middle frequency,

while the top frequency is slightly behind.

As a final practical application, the OpenMP version of k-
Wave [7] was benchmarked. In [8] and [9], the scalability of
Fast Fourier transforms (FFT) and whole k-Wave simulations,
which implement these FFTs, was shown to reach 16384 and
8192 cores, respectively, with over 50% efficiency. In table
III, total time and consumed energy of one k-Wave simulation
of size 5763 with 10 timesteps is measured. Fig. 3 shows the
consumption progress of different parts of the system during
the whole simulation. While the frequency drop from 2.4 GHz
to 1.8 GHz slightly improved the overall power-efficiency,
further drop to 1.2 GHz worsened the results. This is mainly
because the dram consumption starts to dominate and the cpu
is running too slowly and stalls the simulation. While previous
benchmarks showed higher effectivity with lower frequencies,
k-Wave’s scaling ends when the cpu consumption drops below
the dram consumption.

Overall these tests showed, that lowering the frequency of
the cpu can bring significant improvements in performance-
to-power ratio, mainly for tasks that are memory-bound and
cannot benefit as much from fast CPUs and are therefore more
likely suitable for low power architectures.

III. GoALS OF THE PHD THESIS

Goals
Show that certain classes of extreme-scaling algorithms used
in HPC, mainly

e memory-bound,

« interconnect network-bound and

e 1/O-bound
can objectively benefit from the use of low power achitectures
and dynamic power consumption optimization techniques
in

« total power consumed during the computation,

« lower cooling requirements, less expensive infrastructure

at the massive deployment,

« total financial expenses,
while other important factors, such as performance,
programming complexity or reliability are affected very
little or not at all, compared to the current HPC clusters.

Achieving the goals

o Runtime algorithm analysis and profiling
Analyze given algorithms and their runtime behaviour
(power consumption, performance, level of utilization of
different parts of the system, network communication,. . .)
using hardware counters, profiling tools, etc. Based on
the data obtained, a model describing the behaviour of
a given algortihm and hardware setup is automatically
created. This paper briefly describes the analysis run
on the Intel Haswell architecture, where the frequency
scaling showed only small improvements in terms of
energy demands. Next step is to move to an ARM based
kits, namely nVidia Tegra and Samsung Odroid.

e Dynamic on-the-fly optimizations
Runtime automated measurements of performance (mem-
ory bandwidth, nop operations, utilization of cores,...)
and power consumption, making power optimizations
based on a decision model, such as dynamic on/off thread
switching, over or underclocking of specific cores, etc.

o Network communication optimizations
Automated runtime decisions whether it is beneficial to
switch off or underclock parts of the system during inten-
sive MPI communications, based on message sizes and
quantities, considering the latencies of such operations.

IV. CONCLUSION

This paper described the motivation behind the suitability
and the use of low power architectures for solving specific
tasks, mainly the ones that are memory and/or communication
bound, instead of the common architectures used today, mainly
for overall power-efficiency and the use as basic building
blocks for future exascale clusters. Power consumption analy-
sis was presented on the Haswell architecture, which showed
roughly 5% energy savings for 30% reduced frequency. Next
step is to move to ARM-based kits, namely Samsung Odroid
and nVidia Tegra.

ACKNOWLEDGMENT

This work was supported by the FIT-S-14-2297 Architec-
tures of Parallel and Embedded Computer Systems project.

REFERENCES

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S.
Williams, K. Yelick, K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Keckler,
D. Klein, P. Kogge, R. S. Williams, and K. Yelick, “Exascale computing
study: Technology challenges in achieving exascale systems peter kogge,
editor & study lead,” 2008.

[2] N. Rajovic, P. M. Carpenter, 1. Gelado, N. Puzovic, A. Ramirez, and
M. Valero, “Supercomputing with commodity cpus: are mobile socs ready
for hpc?” in High Performance Computing, Networking, Storage and
Analysis (SC), 2013 International Conference for. 1EEE, 2013, pp. 1-12.

[3] N. Rajovic, N. Puzovic, L. Vilanova, C. Villavieja, and A. Ramirez,
“The low-power architecture approach towards exascale computing,” in
Proceedings of the Second Workshop on Scalable Algorithms for Large-
scale Systems, ser. ScalA ’11. New York, NY, USA: ACM, 2011, pp.
1-2. [Online]. Available: http://doi.acm.org/10.1145/2133173.2133175

[4] V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terp-
stra, and S. Moore, “Measuring energy and power with papi,” in Parallel
Processing Workshops (ICPPW), 2012 41st International Conference on,
Sept 2012, pp. 262-268.

[5S] L. McVoy and C. Staelin, “Lmbench: Portable tools for performance
analysis,” in Proceedings of the 1996 Annual Conference on
USENIX Annual Technical Conference, ser. ATEC ’96. Berkeley,
CA, USA: USENIX Association, 1996, pp. 23-23. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268299.1268322

[6] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:
past, present and future,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803-820, 2003. [Online]. Available:
http://dx.doi.org/10.1002/cpe.728

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation
and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt., vol. 15,
no. 2, p. 021314, 2010.

[7

—

[8] V. Nikl and J. Jaros, “Parallelisation of the 3d fast fourier transform
using the hybrid openmp/mpi decomposition,” in Mathematical and
Engineering Methods in Computer Science, ser. LNCS 8934. Springer
International Publishing, 2014, pp. 100-112.

[9] J. Jaros, V. Nikl, and E. B. Treeby, “Large-scale ultrasound simulations
using the hybrid openmp/mpi decomposition,” in Proceedings of the
3rd International Conference on Exascale Applications and Software.

Association for Computing Machinery, 2015, pp. 115-119.

