
On Analysis of Software Interrupt Limiters for
Embedded Systems by Means of UPPAAL SMC

Josef Strnadel, Michal Riša
Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations

Brno, Czech Republic

strnadel@fit.vutbr.cz, irisa@fit.vutbr.cz

Abstract—The paper deals with a novel method of modeling
and analysis of software interrupt managers for event-driven
embedded systems by means of the stochastic timed automata
and statistical model checking instruments. The above-mentioned
system is typically formed of a real-time part expected to produce
correct responses and meet all predetermined timing constraints
at runtime, even in adverse conditions such as an excessive rate of
events caused by interrupts. Because of the asynchronous nature
of interrupts, their impact to the system being interrupted must
be modeled and analyzed very carefully for various interrupt
scenarios – either using classical analytical/formal approaches
able to cover systems and interrupts with deterministic behav-
ior or using probabilistic ones able to deal with a stochastic
behavior too. The paper is focused on the latter (probabilistic)
approaches to show a style of such a modeling and show how
and that both the analysis phase of a system can be facilitated
and the information about a system behavior under particular
configuration/scenarios can be produced using the instruments.

Index Terms—event-driven; embedded; system; interrupt;
overload; management; software; interrupt limiter; statistical
model checking; stochastic timed automaton

I. INTRODUCTION

The method presented in this paper is applicable to systems

that are i) embedded, i.e., typically control systems having

very limited computational resources, but able to comply

criteria such as low power consumption, low weight, small

size etc., ii) real-time (RT), i.e., they must react to events

both correctly and on-time, according to their specification

[1] and iii) event-driven, i.e., stimuli entering the system are

signaled by events, each of which being typically triggered by

an associated interrupt (INT). Moreover, it is supposed that

RT properties are guaranteed by an extra software (typically,

an operating system) layer being executed by a device such

as a central processor unit (CPU). To avoid an unexpected

failure of the layer (and consequently, of RT properties), one

must specify assumptions [2] about faults the system must be

resilient to (so-called fault hypothesis) and load induced by the

environment (load hypothesis). This paper abstracts from the

fault hypothesis (not reducing its weight nohow) and focuses

just on problems related to the latter.

The paper is organized as follows. Section II outlines basic

terms w.r.t. problem being solved (II-A) and basic instruments

(II-B). Section III, presents concepts of existing solutions

to the problem (III-A) and of modeling timed systems and

their statistical model checking in the UPPAAL SMC tool

(III-B). Section IV describes our approach to modeling the

problem and checking the model. Section V summarizes

results achieved on basis of our approach while section VI

concludes the paper.

II. PRELIMINARY

A. Towards the Problem Formulation

Basically, an event can be detected either on basis of a i)

polling-loop for which it is typical that a special, event-related

flag is continuously tested by a CPU to detect whether the

event has occurred or not, or ii) an interrupt (INT), main

advantage of which is that no CPU time is consumed w.r.t.

the event until an INT related to the event is triggered.

To better understand and define the problem, it should be

noted that if an INT occurs then an extra CPU time and a

memory space are required to store the recent CPU context;

after it is stored, a service routine (ISR) associated with the

(highest-priority) pending INT starts to be executed by the

CPU. After the ISR is completed (and if there is no pending

INT request, i.e. IRQ, at the moment), the context is restored

back in order to resume the CPU execution being interrupted

due to the INT triggering. Otherwise, further ISR – i.e., ISR

corresponding to the highest-priority pending IRQ – is started.

Since the CPU executes an ISR prior to the main program

loop (main() in brief), occurrence of each enabled, i.e., un-

masked, INT delays the loop for a certain time (let it be

denoted by tINTover) needed to process the CPU context and

service the INT. If tINT ≤ tINTover, where tINT is the

time between successive INTs, then no CPU time remains

to execute the main program loop because of the excessive

INT interarrival rate (fINT = t−1
INT). Let it be emphasized

herein that – excluding an ISR code – any code such as an

RT application code is executed within main(). Consequently,

a system may stop working correctly or collapse suddenly as

fINT increases – this is typically denoted as the interrupt
overload (IOV) problem, seriousness of which grows with the

criticality of main().

B. Statistical Model Checking

Various techniques can be utilized to check whether partic-

ular (typically, formally specified) properties are guaranteed

for a given behavior of a system; in this paper it is supposed

that so-called model checking (MC) [3] technique is utilized

for that purpose; it has been implemented in several powerful

tools such as SPIN [4] or SMV [5] being successfully applied

2016 24th Austrian Workshop on Microelectronics

978-1-5090-1040-0/16 $31.00 © 2016 IEEE

DOI 10.1109/Austrochip.2016.9

45

TABLE I
PARAMETERS OF SOFTWARE INTERRUPT LIMITERS ACCORDING TO [12]

Parameter Description
tpoll time needed to test an event flag
tictx overhead of saving/restoring the ISR context
tflip time needed to disable/enable INTs
tw ISR execution time
tadj overhead of adjusting and start a timer
texp overhead of timer expiration service
tcnt time to increment the counter value and test if it is below

the threshold value + overhead of clearing the counter
ttmr time to expire a timer
tcri time to disable INTs after tINT drops below the tarrival

value; during the time, unlimited number of INTs can
occur to overload the system

in practice. However, even though various optimizations and/or

heuristics exist, MC techniques suffer from the state-space

explosion. To avoid the explosion, so-called statistical model
checking (SMC) has been proposed – and implemented in

several tools such as PRISM [6] or UPPAAL SMC [7] – as a

compromise between testing and classical (binary, exhaustive)

MC techniques. Simply, SMC is based on monitoring some

simulations of the system and their statistical processing to

estimate the satisfaction probability of a specified property

under some degree of confidence. The SMC approach has been

applied to problems that are far beyond the scope of classical

MCs and has been widely accepted in various areas such as

biology [7], software engineering [8], or system analysis [6].

III. BASIC CONCEPTS

A. Solutions to the IOV Problem

Mechanisms for softening impacts implying from the IOV

problem can be classified according to the sub-problem they

solve, i.e., the timing disturbance or predictability problem.

While impacts of the timing disturbance problem can be

minimized using special instruments such as common (joint)

ISR/task priority space [9] or resource access protocols [10],

effects of the predictability problem cannot be minimized in

such an easy way due to their aperiodical nature. Thus, the

rest of this paper is devoted just to the solutions of the latter

(predictability) problem.

Solutions to the predictability problem such as [11], [12],

[13], [14], [15] are typically designed to bound tINT (or,

fINT). In [12] so-called interrupt limiters (ILs) are designed

to prevent RT systems from the problem – they are divided

into the two types: software (SW) limiters (SILs) and hardware
(HW) limiters (HILs). While our previous research activities

[16], [17], [18], [19] have been focused on theoretical analysis,

architectural and realization details of our adaptive HW/SW

solution to HIL, this paper is dedicated just to statistical model

checking of existing SIL solutions. Typical parameters w.r.t.

SILs are summarized in the Tab. I. SILs can be classified [12]

to the polling, strict and bursty sub-types (for their overheads,

see Fig. 1), the principle of which follows.

Polling SIL (Fig. 1a) checks periodically (each tarrival units,

at the tpoll cost) whether an event flag is set or not (for the

purpose, either a special on-chip timer able to trigger an INT

(ttmr, texp) is typically utilized, but it can be replaced by a

well-tuned polling loop); if the flag is set then a code (such

as an ISR or a task) is executed to service the event (tw)

and INTs become disabled for further tarrival units of time.

Drawback of the (polling) principle implies directly from its

active waiting construction (the CPU is consumed by checking

a flag although no event occurs);

The drawback can be removed e.g. by the strict SIL principle

(Fig. 1b) utilizing the ISR prologue – being executed at the

end of the context switch w.r.t. an INT (tictx) – to disable any

further INT (except those from timers) at the tflip cost. After

the INT is serviced (tw), it configures a one-shot timer (tadj)

to expire after ttmr units (the expiration cost is texp). After

the expiration, INTs are re-enabled (tflip) to let a further INT

to be processed within the consecutive tarrival period. Main

disadvantages of the approach can be seen in the following

facts: i) INTs are practically doubled as each IRQ triggers the

(further) INT utilized to signalize the expiration and ii) INTs

are disabled each time an INT is triggered – this degrades

reactivity of an RT system.

The disadvantages w.r.t. strict SIL can be minimized using

the bursty SIL mechanism (Fig. 1c) being configured by the

maximum arrival rate of INTs (farrival = 1/tarrival) and

the maximum burst size (N) parameters; the idea of the

mechanism is to disable INTs after a burst of N IRQs (where

N ≥ 2) rather than after each IRQ (the strict SIL behavior).

A special counter is needed to count (tcnt) the number of

triggered INTs (to be serviced within the tarrival interval) until

it reaches N ; then, INTs are disabled (tflip) to be re-enabled

again in the new tarrival period; for that purpose, a timer must

be configured again (tadj) to expire (ttmr) at the cost texp and

then, are INTs re-enabled (tflip). This approach represents the

actual state of industrial practice applied e.g. in AUTOSAR

[15]. Although the (CPU-)load to the (INT-)throughput can be

well-tuned comparing to the strict SIL, an extra CPU is still

needed especially to compare tcnt to N after an INT occurs

as well as to service the start/end of the tarrival period and

overload of tcnt.

B. Statistical Model Checking in UPPAAL SMC

UPPAAL [20] is a toolbox primarily designed for formal

verification of real-time (RT) systems modeled by (a net-

work of) Timed Automata (TA) extended with instruments

such as typed variables and channel synchronization. SMC

extension of UPPAAL (denoted as UPPAAL SMC) has been

proposed [21] to avoid the state-space explosion w.r.t. checking

ta)

t arrival

tpoll tw texpt tmr flipt tadj tb)

t

t ictx tw t tmr texp flipt

t cri

arrival

t tc) t t ictx

arrival

cnt t flip tadj tw t tmr texp flipt

t

 Nx()

t cri

Fig. 1. Overheads w.r.t. the (a) polling, (b) strict and (c) bursty SIL principles.
The light-blue (ttmr) boxes represent an action running in parallel with the
CPU, red boxes bound the tcri intervals and white boxes represent executions
performed by the CPU [19]

46

properties of an RT system model. The modeling formal-

ism of UPPAAL SMC is based on a stochastic extension

of the original TA formalism. On basis of the extension –

called Stochastic Timed Automata (STA) –, one can validate

properties of a given deterministic or stochastic system. In

the next paragraph(s), concepts of (S)TA-based modeling are

informally outlined.

First of all, it should be noted that a single TA [22] is formed

of at least the start state, being represented by two concentric

circles (for illustration, see state a in Fig. 2); a TA state is

called a location too. A transition between two locations (let

us say from a to b and denote it by a → b) is represented

by an oriented edge from a to b. Transition in Fig. 2a can

be made anytime (but the concrete time is unknown), while

transition in Fig. 2b – being conditioned by so-called guard
(where x is a variable of the clock type) – can be made if x
is 5 or later, but again: no upper bound is specified for x.

a b a b
x ≥ 5

a

x ≤ 7

b a

x ≤ 7

b
x ≥ 5

a) b) c) d)

Fig. 2. Illustration to basic TA terms: place, transition, guard, invariant

In Fig. 2c, time of staying in a is limited by so-called

invariant, i.e., a condition defined for a location; the transition

must be made before the invariant becomes false. In Fig. 2d,

a guard/invariant combination is utilized to model a transition

that can be made if x ≥ 5, but must be made if x ≤ 7,

i.e., the transition is possible if 5 ≤ x ≤ 7. Further TA-

related instruments related e.g. to communication via channels,

location types etc. are omitted herein because of the limited

scope of this paper and no meaning for planned illustrative

examples.

The above-mentioned principles as well as related non-

deterministic behavior of TAs (such as non-deterministic

choice among parallel transitions between the same locations)

are refined in STAs by stochastic ones, being briefly illustrated

in the next. E.g., weight annotations on locations are extended

to model the staying in a location using a probability distribu-

tion; e.g., in Fig. 3a, the staying in a (i.e., entering b) is given

by the exponential distribution with the rate (λ) set to 1
2 . In

Fig. 3b, the probabilistic uniform-distribution choice between

a → b (with probability 1
5) and a → c (with probability 4

5) is

modeled. In Fig. 3c, the (so-called stopwatch) concept, able to

determine the exact time that has elapsed, is illustrated. First,

the clock x is reset along with a user-defined (function f)

adjustment of the clock delay (during a → b). Then, staying in

b cannot take longer than delay units of time, being measured

by x while delay is stopped (delay′ == 0) in b. Finally, b → c
is possible just if x matches delay.

a

1 : 2

b

a

b

c

1

4
a b

x ≤ delay &&
delay′ == 0

c
x = 0,

delay = f()
x == delay

a) b) c)

Fig. 3. Illustration to basic STA terms: place, transition, guard, invariant

Fig. 4. Illustration to probability of entering b (left) and cumulative probability
with confidence intervals (right) of that for the STA model from Fig. 3a

Properties of an STA-based model can be verified (checked)

using special queries a user can post in the UPPAAL

SMC tool w.r.t. model; e.g., for Fig. 4a one can post the

Pr[<=500000](<> STA.b) query to get the probability of

eventual entering the state b within 500000 units of the

simulation time. A possible (probabilistic) result of the query

is visualized in Fig. 4. For further examples, please see [21].

IV. PROPOSED SOLUTION

Our solution to modeling and analysis of the IOV problem

and its consequences is composed of i) a collection of STAs,

each utilized to express the behavior of a key part of a system

– as a CPU, INT subsystem etc. – and ii) a set of queries

utilized to check properties of the system and its parts.

A. Behavioral Models

Since all the behavioral models were created in the UP-

PAAL SMC tool, they are going to be expressed by means of

STAs supported by the tool.

First, let a CPU model be presented (see Fig. 5). In the

model, the local clock (cpu clk) is utilized to model progress

of the local CPU time. Its STA starts in the S halt state; herein,

the CPU stays until it is reset – that takes T RESET units

of time; afterwards, it transits to S running. If there is no

pending and enabled INT at the moment, i.e. if (irq pend
& irq mask) == 0, then the CPU randomly select an

instruction to be executed – since a particular program is not

important for our purpose – and then transits to S exe instr.

The execution makes the CPU busy for instr delay units of

time; then, the STA transits to S running.

If a pending and enabled INT is detected ((irq pend &
irq mask) != 0) while the STA is in S halt then the arbitra-

tion of pending INT requests (IRQs) is modeled in S irq arb,
followed by the INT-related context store (S ctx st), ser-

vice routine (ISR) execution (S irq exe) and context restore

(S ctx rst) phases. Then, the STA transits to S halt.

Fig. 5. STA model of a CPU behavior

47

Fig. 6. STA model of a periodic IRQ generator

For inner synchronization of an INT selected to be serviced

(irq), a broadcast channel (named irq sig; if ! resp. ? follows

the name, a message is sent resp. expected via the channel of

the name) is utilized to model the start of (irq sig(irq)!) resp.

return from (irq sig(irq)?) the corresponding ISR; counters

such as stat.instr cnt or stat.irq cnt are utilized to count

the numbers of processed instructions or IRQs.

Next STA (see Fig. 6) is utilized to model the behavior of

a periodic IRQ generator; multiple instances of this STA can

be created to model INTs that can stimulate a system (for a

source of aperiodic INTs, an STA can be created too). The

STA starts in S wait that is the only state in the STA. In the

model, the local clock (irq clk) is utilized to model progress

of the generator’s local time. On basis of the STA, an IRQ can

be produced after a predefined delay (period) – either in the

one-shot or periodic mode; counters such as stat.gen cnt or

stat.miss cnt are utilized to count the number of generated

or missed (i.e., unserviced) IRQs.

The STA from Fig. 7 is utilized to model the execution of

an ISR. Multiple instances of this STA can be created, each

able to model the behavior of the ISR belonging an IRQ. In

the model, the local clock (clk) is utilized to model progress

of the ISR’s local time. The STA starts in S wait where it

waits (irq sig[irq]?) until an IRQ (identified by irq) occurs.

Then, the ISR is executed for delay units of time and transits

back to Swait either clearing the IRQ flag automatically or not

(that depends on particular INT-source setup). In the model,

the counter stat.time sum is utilized to measure the CPU

time spent by ISR executions.

In the next, STA models for particular SILs are presented –

see Fig. 8a for the polling SIL, Fig. 8b for the strict SIL and

Fig. 8c for the bursty SIL models. Because of their evident

correspondence with Fig. 1 – on basis of which they were

created on –, application of the above-mentioned concepts,

similarity to the above-mentioned STAs and limited space in

this paper, information to the Fig. 8 is present with no special

comments.

Just for an interest, the following counters can be found in

the models: In Fig. 8a, stat.poll cnt resp. stat.event cnt is

Fig. 7. STA model of an ISR execution

a)

b)

c)

Fig. 8. STA models of a) polling SIL, b) strict SIL and c) bursty SIL

utilized to count how many times an IRQ-flag has been tested

resp. how many times the event signaled by the flag has been

serviced, In Fig. 8b/c, stat.irq cnt is utilized to count how

many times an IRQ has occurred. In Fig. 8c, irqs per burst
resp. stat.irq dis cnt is utilized to count the number of IRQs

within the burst-window resp. how many times INTs have been

disabled.

V. EVALUATION

To test and demonstrate applicability of our approach, we

have decided to perform a set of simulations as well as model

checking runs in UPPAAL SMC. For the purpose, we have

utilized the following setup for our models:

• each interrupt was expected to arrive at one of the

following rates [Hz]: fH = 1
75 , fM = 1

250 , fL = 1
700

(whereas multiple interrupts could occur at the above-

mentioned rates),

• our SIL models were configured by the following default

parameters: tflip = 5, tadj = 5, texp = 5, tcnt = 6, tw =

5, ttmr = 331.

We have divided the evaluation into several phases, each

being focused on particular properties of SILs. A list of the

phases, followed by related details and results, can be found

in the following text (V-A to V-F). Each of the figures Fig.

48

a)
No-SIL
Polling

Strict

Bursty, N=2
Bursty, N=4
Bursty, N=6

Bursty, N=8
Bursty, N=16

b) Total Overhead Real work

Fig. 9. Legends for the Fig. 10 – 13 (a) resp. for Fig. 14 (b)

10 – 13 (a) resp. for Fig. 14 is visualized for a particular

IRQ scenario being expressed in the form x IRQ y where x
represents the number of IRQ sources and y identifies their

arrival rates, i.e. fH , fM or fL.

A. Phase 1 (Pure IRQ Overhead)

In this phase, the computational overhead (measured as a

fraction of the total CPU time) related to IRQs managed by a

particular SIL technique has been analyzed (Fig. 10).

C
P

U
ut

il.
ra

tio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

1 IRQ fL

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

1 IRQ fM

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

1 IRQ fH

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

4 IRQs fL

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

4 IRQs fM

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
4 IRQs fH

time −→

Fig. 10. CPU utilization of IRQ management (excluding SIL overhead).

The overhead includes IRQ arbitration, ISR execu-

tion and context manipulation phases; it has been ana-

lyzed in first 3000 units of the simulation time, using a

query of the simulate 1 [<= 3000] (t_total - t_instr -

t_sil) / (t_total + 1) form, where t_total represents

the total CPU time being consumed, out of which t_instr

resp. t_sil is the time for processing instructions from main
resp. for SIL-related computations. It is evident that without a

SIL, CPU can become overloaded because of excessive IRQs.

B. Phase 2 (Ratio of Missed IRQs)

Aim of this phase was to analyze an impact of partic-

ular SIL technique to the ratio of missed IRQs (Fig. 11)

using the simulate 1 [<= 3000] irq_missed / (irq_total

+ 1.0) query, where irq_total represents the total number

of IRQs while irq_missed the number of missed IRQs. By

a missed IRQ we mean one that occurs when the previous

IR
Q

m
is

s
ra

tio

-1

-0.5

 0

 0.5

 1
1 IRQ fL

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
1 IRQ fM

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

1 IRQ fH

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

4 IRQs fL

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

4 IRQs fM

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

4 IRQs fH

time −→

Fig. 11. Ratio of missed IRQs to all IRQs

one (from the same IRQ source) is still pending, i.e., it has

not been serviced yet. It can be seen that more complex SILs

(such as bursty with N=16) are able to achieve smaller ratio

than simpler SILs (such as polling).

C. Phase 3 (Pure SIL Overhead)

In the next, the portion of the CPU time used to perform

computations related to particular SILs has been analyzed

(Fig. 12) using the query simulate 1 [<= 3000] t_sil /

(t_total + 1).

SI
L

ov
er

.
ra

tio

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

1 IRQ fL

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

2 IRQs fM

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

4 IRQs fH

time −→

Fig. 12. CPU utilization of particular SIL approaches

While overhead related to polling SIL oscillates about 0.05,

overhead of remaining SILs depends on their farrival.

D. Phase 4 (Ratio of Forwarded IRQs)

This phase was dedicated to analyzing the ratio of IRQs

outgoing from a SIL (irq_sil) to IRQs entering the SIL

(irq_total), Fig. 13. The query was simulate 1 [<= 3000]

irq_sil / (irq_total + 1.0).

IR
Q

fo
rw

.
ra

tio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

1 IRQ fL

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

2 IRQs fM

 0

 0.05

 0.1

 0.15

 0.2
4 IRQs fH

time −→

Fig. 13. Ratio of IRQs exiting a SIL to IRQs entering the SIL

E. Phase 5 (CPU utilizations)

Aim of this phase was to analyze a fraction of the CPU

time being spent by useful resp. IRQ-related work across

various SIL approaches; the query was simulate 1 [<=

3000] t_total, (t_instr / t_total + 1), (t_total -

t_instr) / (t_total + 1)). In the Fig. 14 (for the legend,

see Fig. 9b), it can be seen that while the overhead represents

50 % and more of the useful (real) work for the polling and

strict SILs, it decreases with growing N for the bursty SIL.

F. Phase 6 (SMC Queries)

• Probability that the CPU spends at least 75 % of its time

by executing instructions unrelated to interrupts could

be checked by the Pr ([][2940,3000] ((t_instr /

(t_total + 1)) >= 0.75)) query, result of which is

close to 100 % except of the no-SIL approach with 4fM
and 1/2/4fH .

• Probability that the CPU can spend more time by ex-

ecuting interrupts than by executing the main loop can

be checked by the Pr ([][2940,3000] ((t_instr /

(t_total + 1)) <= 0.5)) query, result of which is close

to 0 except of the no-SIL approach with 2/4fH .

49

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

C
P

U
t
i
m

e
r
a
t
i
o

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

time −→a) b) c) d)

Fig. 14. Comparison of the total CPU time being consumed and its fractions,
i.e., IRQ overhead and useful work for the following SILs: a) polling, b) strict,
c) bursty, N=4 d) bursty, N=16. Results for the 4 IRQ fH scenario.

• Probability that the CPU can spend more than 75 %

of its time by executing interrupts can be checked by

the Pr ([][2940,3000] ((t_instr / (t_total + 1))

<= 0.15)) query, result of which is close to 0 except of

the no-SIL approach with 4fH .

VI. CONCLUSION

In the paper, a novel method of modeling and analysis of

SIL-based INT managers for event-driven embedded systems

has been presented. The method can be seen as an alternative

to classical, ad-hoc analytic approaches utilized in existing

works. Our method is built over STAs and SMC instruments

and allows one to study the system behavior under particular

configuration/scenarios w.r.t. INT subsystem. In near future,

we plan to extend our method by modeling HILs and ILs in

further layers of the system such as firmware, device drivers

or operating system.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,

Youth and Sports of the Czech Republic from the National

Programme of Sustainability (NPU II); project IT4Innovations

excellence in science - LQ1602. This work was supported by

Brno University of Technology under number FIT-S-14-2297

too.

REFERENCES

[1] A. M. K. Cheng, Real-Time Systems, Scheduling, Analysis, and Verifica-
tion, John Wiley & Sons, Hoboken NJ, United States, 552 p., 2002, isbn:
978-0-471-18406-5.

[2] H. Kopetz, On the Fault Hypothesis for a Safety-Critical Real-Time
System, Automotive Software – Connected Services in Mobile Networks,
Lecture Notes in Computer Science vol. 4147, 2006, no. 1, pp. 31–42,
doi: 10.1007/11823063 3.

[3] C. Baier and J.-P. Katoen, Principles of Model Checking, Representation
and Mind Series. MIT Press, 975 p., 2008, isbn: 9780262026499

[4] G. J. Holzmann, The Model Checker SPIN, IEEE Transactions on
Software Engineering, vol. 23, 1997, pp. 279–295.

[5] K. L. McMillan, Symbolic Model Checking: An Approach to the
State Explosion Problem, Ph.D. Dissertation, Pittsburgh, PA, USA,
1992, uMI Order No. GAX92-24209. [Online]. Available from
http://www.kenmcmil.com/pubs/thesis.pdf

[6] M. Kwiatkowska, G. Norman, and D. Parker, PRISM: Probabilistic Model
Checking for Performance and Reliability Analysis, ACM SIGMETRICS
Performance Evaluation Review, vol. 36, no. 4, Mar. 2009, pp. 40–45,
doi: 10.1145/1530873.1530882

[7] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen,
and S. Sedwards, Statistical Model Checking for Biological Systems,
International Journal on Software Tools for Technology Transfer, vol. 17,
no. 3, Jun. 2015, pp. 351–367, doi: 10.1007/s10009-014-0323-4

[8] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezze, Y. Rafiq, and G. Tambur-
relli, Formal Verification with Confidence Intervals to Establish Quality of
Service Properties of Software Systems, IEEE Transactions on Reliability,
vol. PP, no. 99, 2015, pp. 1–19.

[9] Lynx. Lynx Software Technologies Patented Technology Speeds
Handling of Hardware Events, 2016, [online]. Available:
http://www.lynx.com/whitepaper/lynx-software-technologies-patented-
technology-speeds-handling-of-hardware-events/

[10] F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri, Scheduling in Real-
Time Systems, John Wiley & Sons, Hoboken NJ, United States, 2002,
isbn: 978-0-470-84766-4.

[11] L. E. L. del Foyo, P. Mejia-Alvarez, Custom Interrupt Management
for Real-time and Embedded System Kernels, in: Proceedings of the
Embedded Real-Time Systems Implementation Workshop at the 25th
IEEE International Real-Time Systems Symposium, IEEE Computer
Society, Washington DC, United States, p. 8, 2004, doi: 10.1.1.100.7025.

[12] J. Regehr, U. Duongsaa, Preventing Interrupt Overload, in: Proceedings
of the ACM SIGPLAN/SIGBED Conference On Languages, Compilers,
And Tools For Embedded Systems, ACM, New York, United States, pp.
50–58, 2005, doi: 10.1145/1070891.1065918.

[13] J. Regehr, Safe and Structured use of Interrupts in Real-Time and
Embedded Software, in: Handbook of Real-Time and Embedded Systems,
I. Lee, J. Y.-T. Leung, and S. H. Son Eds., 1st Edition, Chapman &
Hall/CRC, Boca Raton, FL 33487, United States, pp. 16–1 – 16–12,
2007, doi: 10.1.1.79.4651.

[14] R. Pellizzoni, Predictable And Monitored Execution For Cots-Based
Real-Time Embedded Systems, Ph.D. thesis, University of Illinois at
Urbana-Champaign, Bonn, Germany, 2010.

[15] Automotive Open System Architecture GbR (AUTOSAR).
Specification of Operating System. Technical report, 2016 [online].
Available: http://www.autosar.org/fileadmin/files/releases/4-2/software-
architecture/system-services/standard/AUTOSAR SWS OS.pdf

[16] J. Strnadel, Monitoring-Driven HW/SW Interrupt Overload Prevention
for Embedded Real-Time Systems, in: Proceedings of the 15th Inter-
national IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS), IEEE CS, US, pp. 121 – 126, 2012,
doi: 10.1109/DDECS.2012.6219037.

[17] J. Strnadel, Load-Adaptive Monitor-Driven Hardware for Preventing
Embedded Real-Time Systems from Overloads Caused by Excessive
Interrupt Rates, in: Architecture of Computing Systems - ARCS 2013,
Lecture Notes in Computer Science, Springer, pp. 98 – 109, 2013, doi:
10.1007/978-3-642-36424-2 9.

[18] J. Strnadel, On Design of Priority-Driven Load-Adaptive Monitoring-
Based Hardware for Managing Interrupts in Embedded Event-
Triggered Real-Time Systems, in: Proceedings of the 16th Interna-
tional IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS), IEEE CS, pp. 24 – 29, 2013, doi:
10.1109/DDECS.2013.6549783.

[19] J. Strnadel, Comparison of Generally Applicable Mechanisms for Pre-
venting Embedded Event-Driven Real-Time Systems from Interrupt Over-
loads, in: Proceedings of the 4th Eastern European Regional Conference
on the Engineering of Computer Based Systems (ECBS-EERC), IEEE
CS, pp. 39 – 44, 2015, doi: 10.1109/ECBS-EERC.2015.15.

[20] G. Behrmann, A. David, and K. Larsen, A Tutorial on UPPAAL, In
Formal Methods for the Design of Real-Time Systems, Lecture Notes
in Computer Science, Springer Berlin Heidelberg, vol. 3185, 2004, pp.
200–236, doi: 10.1007/978-3-540-30080-9 7

[21] A. David, K. Larsen, A. Legay, M. Mikuionis, and D. Poulsen, UPPAAL
SMC Tutorial, International Journal on Software Tools for Technology
Transfer, vol. 17, no. 4, 2015, pp. 397–415, doi: 10.1007/s10009-014-
0361-y

[22] R. Alur and D. L. Dill, A theory of timed automata, Theoretical Com-
puter Sci., vol. 126, no. 2, Apr. 1994, pp. 183–235, doi: 10.1016/0304-
3975(94)90010-8

50

