
On Efficiency of Distributed Password Recovery JDFSL V11N2

ON EFFICIENCY OF DISTRIBUTED
PASSWORD RECOVERY

Radek Hranický Martin Holkovič Petr Matoušek
Ondřej Ryšavý

Brno University of Technology,
Božetěchova 2, Brno, Czech Republic

{ihranicky, iholkovic, matousp, rysavy}@fit.vutbr.cz

ABSTRACT

One of the major challenges in digital forensics today is data encryption. Due to the leaked
information about unlawful sniffing, many users decided to protect their data by encryption.
In case of criminal activities, forensic experts are challenged how to decipher suspects’ data
that are subject to investigation. A common method how to overcome password-based pro-
tection is a brute force password recovery using GPU-accelerated hardware. This approach
seems to be expensive. This paper presents an alternative approach using task distribution
based on BOINC platform. The cost, time, and energy efficiency of this approach is discussed
and compared to the GPU-based solution.

Keywords: password recovery, distributed computing, digital forensics, BOINC, cost effi-
ciency

1. INTRODUCTION

In the area of digital forensics, the use of
password protection presents a great chal-
lenge for investigators while conducting ex-
aminations where documents and files of a
suspect are encrypted. Common user ap-
plications like MS Office, PDF creator, or
archive programs offer the password-based
protection of the content using encryption
by AES or RC4 algorithms.

To overcome this kind of protection, pass-
word recovery tools like John the Ripper1,
Elcomsoft tools2, oclHashcat3, or Wrathion4

1See http://www.openwall.com/john/
2See https://www.elcomsoft.com/products.html
3See http://hashcat.net/oclhashcat/
4See http://wrathion.fit.vutbr.cz

can be employed. These tools are designed
to run on a single CPU hardware, or in GPU-
accelerated mode.

Several studies showed that for shorter al-
phabets (up to 26 characters) and passwords
shorter than 8 characters, the password can
be broken within tens of minutes on com-
mon CPU-based hardware (Hranický, Ma-
toušek, Ryšavý, & Veselý, 2016). When
GPU-accelerated hardware is used, recov-
ery time drops even to minutes. For pass-
words longer than 8 characters, the recov-
ery process on one CPU is unfeasible. GPU
approach seems to be a nice solution for
forensic experts, however, there are several
limitations. First, GPU cards are vendor
dependent, i.e., password recovery software
must be optimized and compiled for a spe-

c© 2016 ADFSL Page 79

JDFSL V11N2 On Efficiency of Distributed Password Recovery

cific GPU hardware. Second, multi-GPU ap-
proach requires a specially tailored computer
with optimized power and additional cooling
which increases the total cost of the solution.
Third, some password recovery tools do not
support GPU acceleration.

There is also another approach to pass-
word recovery based on distributed comput-
ing on multiple nodes that participate in ex-
haustive search of possible passwords, aka
brute force attack. Recovery of passwords
protected by one-way hash function can
be effectively parallelized and distributed.
Comparing to a single CPU or GPU ver-
sion, several issues must be addressed: When
is the distributed approach more efficient
than GPU-based approach? How to effec-
tively distributed the computing in hetero-
geneous network of nodes with different per-
formance?

In this paper, we present a dynamic ar-
chitecture for distributed password recovery
based on an open source platform BOINC4.
The first results show that distributed solu-
tion can be a cost efficient and modular alter-
native for solving password recovery on com-
mon hardware. The main advantage of this
approach is to use a just-available hardware
for computing without any additional costs
for high-performance GPU hardware. In ad-
dition, this approach provides easily scalable
and hardware independent solution.

1.1 Contribution

The paper discusses how password recovery
can be solved in distributed environment.
There are many practical issues to be consid-
ered: the efficient task distribution, commu-
nication overhead, or dynamic behavior of
the cluster where nodes join and leave dur-
ing the computing.

The paper proposes an efficient and
scalable architecture that is independent

4See https://boinc.berkeley.edu/

on hardware, number of nodes, encryp-
tion algorithms, or type of password gen-
erators. The architecture is built upon
BOINC communication platform and em-
ploys an extended open-source recovery tool
Wrathion (Hranický et al., 2016). The
proposed solution is freely available at
http://wrathion.fit.vutbr.cz.

Efficiency of this approach is evaluated
with respect to the number of connected
nodes and the password length. In compari-
son to GPU cracking, the proposed architec-
ture offers a scalable and low cost solution
for password recovery.

To preserve privacy of recovered docu-
ments, first meta data needed for pass-
word recovery are extracted of the docu-
ment. Only meta data are transmitted to the
working nodes what increases privacy and
decreases communication overhead.

A key aspect of this solution is an efficient
task distribution based on the adaptive time
estimation that reflects elapsed time of the
entire job, the number of active nodes, and
the performance of a node. The algorithm is
presented here.

1.2 Structure of the Paper

The paper is structured as follows. Section
2 presents related works in the area of dis-
tributed password recovery. In Section 3, the
distributed approach for password recovery
is discussed. Section 4 introduces our solu-
tion. Experimental results and comparison
to GPU-based approach is shown in Section
5. The last section concludes the work and
discusses its practical deployment.

2. RELATED WORK
The issue of password strength and pass-
word recovery using analytical methods,
dictionaries, brute force attack, or heuris-
tic approaches has been extensively stud-
ied. Useful observations concerning pass-

Page 80 c© 2016 ADFSL

On Efficiency of Distributed Password Recovery JDFSL V11N2

word strength and password cracking can be
found in (Kelley et al., 2012; Ur et al., 2012;
Reimann, 2013) or (Dell’Amico, Michiardi,
& Roudier, 2009). There are also many pa-
pers focused on analytical and heuristic ap-
proaches like rainbow tables (Thing & Ying,
2009), Markov chains (Marechal, 2007), etc.

In our approach, we limit ourselves to
brute force password recovery and its effi-
ciency in distributed environment in terms
of costs and scalability. Brute force attack
(exhaustive search) is effective if passwords
are randomly generated which limits the us-
age of dictionaries or Markov chains. The
usage of rainbow tables is also unfeasible for
longer passwords. The rainbow table usu-
ally contains a pre-computed pair of the in-
put and output value for a given hash algo-
rithm. The size of the table grows exponen-
tially with the size of the character set used.
For example, the rainbow table for SHA-1 al-
gorithm, ASCII charset and passwords up to
the length of 8 characters has the size about
460 GB5. In addition, many encryption algo-
rithms require multiple iterations of hashing
or adding the salt which makes the usage of
rainbow tables too expensive.

Our focus is on effective distribution. One
of the first works on distributed password
cracking was introduced by (Pellicer, Pan, &
Guo, 2004) where BOINC architecture was
used to distribute MD4-algorithm cracking
of five character passwords to four nodes.
The authors used BOINC scheduling sys-
tem for task distribution. They observed
that the system did not consider relation be-
tween the scheduling and the overall size of
the password space. The improper schedul-
ing together with the large amount of trans-
mitted data caused a serious bottleneck of
the system. In our approach, we eliminate
this drawback using an adaptive scheduling
mechanism. We also reduce the amount of

5See http://project-rainbowcrack.com/table.htm

transmitted data by sending meta data only.
(Apostal, Foerster, Chatterjee, & Desell,

2012) evaluated password recovery at the
high performance computing (HPC) plat-
form using Message Passing Interface (MPI).
They divided password database file among
MPI nodes which distributed the task to
GPUs. While reaching high acceleration,
they also encountered some limitations that
affected the design and implementation of
password recovery application, e.g., each
GPU required its own controlling thread
and memory context was lost whenever the
threat exited. Also, transmission of large
password files over network caused signifi-
cant overhead.

Similar approach was also implemented by
(Marks & Niewiadomska-Szynkiewicz, 2014)
in their high performance distribution plat-
form called HGCC for CPU and GPU-based
password recovery. Unfortunately, they do
not discuss the task distribution of the ar-
chitecture what is crucial for efficient usage.
Our approach is based on an open source
BOINC platform where scheduling and task
distribution are improved by qualified time
estimation of the node performance.

3. DISTRIBUTED

COMPUTING
The main goal of this works is to evaluated
the efficiency of distributed password re-
covery in heterogeneous environment. This
part discusses requirements and limits of dis-
tributed computing.

3.1 Requirements

First of all, the distributed password recov-
ery requires a tool that provides password
recovery on a single machine. This tool
will be distributed together with required
data to a set of workstations which creates
a high-performance virtual machine. Com-
munication platform should be able to con-

c© 2016 ADFSL Page 81

JDFSL V11N2 On Efficiency of Distributed Password Recovery

trol a variable number of computing nodes
with different computational power where
the performance can change over time.

Another requirement is a platform inde-
pendence, i.e., working nodes can be work-
stations with MS Windows, Linux or Mac
OS installed and that can be fully or par-
tially involved in the distributed computing
without further modification of the operat-
ing system or adding extra hardware. Up-
load of the application and the task dis-
tribution should be provided automatically.
Since encrypted documents or archives can
be large, e.g., GB ZIP-files, distribution of
the entire file across the network is not effec-
tive. Assuming a central node and multiple
working nodes, the central server should ex-
tract the required meta data first and then it
should distribute them to each working node
over the network without the need to share
the whole document or file. Similarly, pass-
word space should be generated on work-
ing nodes during the recovery process rather
than distributed.

3.2 Effective Task
Distribution

Depending on the recovery method (brute
force, dictionary, heuristics-based attack),
and task definition (encrypted document
type, algorithm, alphabet, password length),
the central node determines the set of all
possible passwords. This set is split into
smaller subsets and assigned to each work-
ing node. There are two options how to dis-
tributed the task to working nodes: (i) full
distribution, or (ii) progressive distribution.

In full distribution, each subset is assigned
to a working node at the beginning of the
recovery process. The number of subsets is
equal to the number of nodes: the distribu-
tion is uniform. Communication overhead is
minimal since each node receives all data be-
fore the processing. The full distribution is

ideal for the fixed number of working nodes
with the equal performance.

In environment of variable number of
working nodes with different computational
power, progressive distribution is more rec-
ommended. Scheduler assigns a small por-
tions of the password space to each working
node. Once the subset is processed, the next
one is assigned on-the-fly. This approach in-
creases utilization of working nodes. It re-
quires a good planning strategy.

3.3 Working Nodes

A working node generates a subset of the
password state space, computes a hash for
each generated password and compares this
hash with the hash of the encrypted docu-
ment. If they match, the node reports the
successful recovery to the central node. If
not and the progressive task distribution is
applied, the node asks the central node for a
new subset of passwords to be tested.

The aim is the optimal usage of the com-
putational power of all working nodes. Sec-
tion 4 shows how this can be achieved.

3.4 Distributed Frameworks

For distributed password recovery, two pop-
ular frameworks were considered: Mes-
sage Passing Interface (MPI)6 and Berke-
ley Open Infrastructure Network Computing
(BOINC)7.

3.4.1 MPI Framework

MPI library provides an efficient way of
coarsely dividing work between multiple
computers, cores, or threads where each in-
dividual unit performs calculations on a sub-
set of the data. As discussed in (Kang,
Lee, & Lee, 2015), MPI shows great per-
formance for moderate amount of data and
computational-intensive problems as pass-

6See http://www.open-mpi.org
7See https://boinc.berkeley.edu/

Page 82 c© 2016 ADFSL

On Efficiency of Distributed Password Recovery JDFSL V11N2

word recovery is. OpenMPI8 is an im-
plementation of MPI that includes vari-
ous fault-tolerance techniques: local or dis-
tributed checkpoints, network failure detec-
tion, etc.

Original design of MPI does not consider
dynamically added nodes. This functionality
is supported from MPI version 2.0. Unfortu-
nately, new nodes are not detected automat-
ically, so extra process is needed to detect
new connections.

MPI does not natively support encryption
or authentication. Thus, security also needs
to be implemented by an application pro-
grammer.

There are several open source (OpenMPI)
and commercial solutions (Intel MPI).

3.4.2 BOINC Framework

Although MPI platform satisfies many of
our requirements, we assumed that Berke-
ley Open Infrastructure for Network Com-
puting (BOINC) is more suitable for our pur-
poses. BOINC is a platform for distributed
computing that natively provides dynamic
number of nodes connected over the Internet
(Anderson, 2004). It was developed by U.C.
Berkeley Space Sciences Laboratory and is
distributed as open source.

The platform is used for public-resource
projects like SETI@home where volunteers
participate on solving various problems. It
is also suitable for grid computing.

Every computing problem is called a
project. The problem is divided into a num-
ber of tasks. Once the project is created,
clients can connect and participate on the so-
lution by sharing their computational power.
The project server creates and schedules the
tasks, keeps track of clients, maintains data
storages, etc.

The task is a smallest piece of work within
the project. The client can solve one or more

8See http://openmp.org

Figure 1: Solving a single task using BOINC

tasks at time. Figure 1 illustrates the com-
munication between the project server and
the client to solve a single task. At first,
the client receives instructions describing the
task. Task assignment is client-specific, i.e.,
client architecture, operating system (OS),
and hardware are taken into account. Thus,
BOINC allows the scheduler to create a task
tailored to client’s configuration.

For solving the task, a client may need one
or more applications. BOINC supports au-
tomatic distribution of binaries with respect
to a client’s architecture. It also distributes
input data.

Once the client receives all necessary data,
it starts the computing which takes minutes,
hours, or days. When the client completes
its task, the output files and the task report
are sent back to the server. Then, the client
waits for a next task.

Unlike MPI, BOINC is natively designed
to distribute tasks over the Internet. It pro-
vides built-in security for untrusted environ-
ment: authentication, user account manage-
ment, digital signatures and public-key en-
cryption.

Clients can dynamically connect and dis-
connect to a running project. They can even
specify the percentage of CPU power to be
assigned to the task, upload or download
limits, disk and memory size utilization, etc.
It is also possible to define at which time the
computing can start.

c© 2016 ADFSL Page 83

JDFSL V11N2 On Efficiency of Distributed Password Recovery

4. THE PROPOSED

ARCHITECTURE
A functional architecture of the BOINC-
based solution is depicted in Figure 2.

4.1 Project Server

The project server is the main component of
the proposed architecture. The task is cre-
ated using the User interface (UI). Each task
includes an encrypted document, scheduling
options, client limits, specification of pass-
word generator, etc. The process of pass-
word recovery includes:

1. Upload of an encrypted document and cre-
ation of the project.

2. Extraction of meta data needed for the
password recovery, see Section 4.1.1.

3. Selection of a password generating method,
see Section 4.1.2.

4. Task creation and scheduling based on
nodes’ real performance and adaptive time
calculation as described in Section 4.1.3.

5. Distribution of new tasks to nodes that
have finished their computing, see Section
4.1.4.

6. Saving the password when found.

The operator can monitor the whole pro-
cess of password recovery, task distribution,
load of the working nodes and the results us-
ing UI.

4.1.1 Extracting Meta Data

The uploaded encrypted document is pro-
cessed by FitXtractor at first. FitXtractor
is a pre-processor that identifies the type of
the document based on a file signature, ex-
tension, or internal structure. If the format
is supported, FitXtractor begins parsing its
internal structure. The parsing is document-
specific. For each type of the document, a

new parser has to be implemented. Cur-
rently, FitXtractor supports MS Office Doc-
uments 97/2003, PDF, ZIP, RAR and MS
Office XML formats.

The aim of the parsing is to collect all
pieces of information needed for the pass-
word recovery. These meta data include doc-
ument version, type of the encryption, cryp-
tographic algorithms involved, key length,
validation string, etc. For archives, com-
pression type is added. Verification values
in form of cryptographic hashes that will
be compared with generated passwords form
the essential part of meta data.

FitXtractor generates an XML file. The
file is then distributed among working nodes
via BOINC platform. Extraction of meta
data significantly decreases the size of distri-
bution and enhances privacy of the process-
ing since no original documents are shared
among working nodes.

An example of XML data extracted from
the PDF document version 1.7 is shown in
Figure 3.

The recovery process is controlled by so
called security revision which also defines
needed values extracted from the XML file.
At first, security revision (R) is checked (it
is 5 in our case). For password recovery of
Rev 5 we need a specific string based on the
user password (U), and the user password
validation salt (U valid salt).

Having a generated password P , the pass-
word is concatenated with U valid salt and
processed by SHA-256 algorithm: P +

U valid salt
SHA−256−→ Phash. Phash is the re-

sulting hash which is compared with a val-
idation hash U (Adobe Systems, 2008). If
these strings are equal, P is the recovered
password of the given PDF file.

4.1.2 Generating Passwords

General idea of brute force password recov-
ery is to generate all possible strings repre-
senting the password, encrypt these strings

Page 84 c© 2016 ADFSL

On Efficiency of Distributed Password Recovery JDFSL V11N2

Figure 2: Distributed Password Recovery using BOINC

Figure 3: Example of XML meta data file

using a cryptografic algorithm (e.g., one-way
hash) and compare these this string with the
verification string extracted from the docu-
ment.

The set of possible passwords is a pass-

word space. Its size depends on the maximal
password length n and the alphabet Σ used.
For distributed computing, ordering of the
space is important. Formally, the ordered
password space can be described using gen-
erator g(i) : N 7→ Σ∗ which for given index
i returns an i-th string s of password space
Σ∗ with maximal length n. Generator g(i)
can be a dictionary, a random string genera-
tor, a generator of lexicographically ordered
strings, regular expressions, etc.

E.g., suppose alphabet Σ =
{a, b, c, . . . , z}, password length n = 5,
and lexicographically ordered string gener-
ator. Then g(1) = “a”, g(2) = “b”, g(3) =
“c”, g(4) = “d”, etc.

Based on index i, we can split the en-
tire password space into smaller parts that
are distributed to working nodes. For brute
force search, a lexicographical string gener-
ator is often used. In our implementation,
the client contains several types of genera-
tors that are downloaded at the initialization
stage, see Section 4.2.1.

Shifting the password generation to work-
ing nodes decreases the load of the server

c© 2016 ADFSL Page 85

JDFSL V11N2 On Efficiency of Distributed Password Recovery

and communication between the server and
working nodes. In this case, the server sends
the alphabet, password length, and start-
ing and ending index only. Working nodes
use these information to select and initialize
their password generator which generates an
assigned password space on-the-fly and ver-
ifies each generated password with the vali-
dation string.

4.1.3 Adaptive time calculation

A critical part of distributed computing is
the task assignment. As mentioned in Sec-
tion 3.4.2, BOINC project server creates and
distributes tasks to working nodes. In our
architecture, each task is defined by its start-
ing and ending index. Tasks are distributed
progressively. If the password is found, other
running tasks are canceled and the project
finished. If the password is not found, client
receives a next task represented by a new
subset of the password space.

In dynamic heterogeneous environment
working nodes usually have different perfor-
mance based on their hardware. They can
also dynamically join and leave the comput-
ing. In addition, the performance of a node
can change over time. Our goal is to propose
such distribution strategy that will maxi-
mize computational efficiency of the node.
It means that the higher-performance nodes
would receive a larger subset of password
space than the lower-performance nodes.

Our approach of adaptive time calculation
estimates how much time it would take to
verify the remaining passwords on all the ac-
tive nodes. Based on this time, each active
node is assigned an appropriate size of pass-
word space P . The size depends on the node
performance (speed). More formally, let tp
be a time (in sec) describing how much time
would remaining verification take, si be a
number of passwords (size) assigned to node
i, and vi be a current speed of node i in pass-
words per second.

Based on the speed, node i will be assigned
si = tp ·vi passwords. Speed vi is determined
based on the previously solved task, vi =
sprev
tprev

.

The problem is how to choose vi for a
newly connected client. One solution is to
run a benchmark on the client to calculate
its performance.

Estimation of remaining process time tp
cannot be determined by the nodes perfor-
mance only. Too low or too high values make
the computing less effective:

• Lower tp is more suitable for un-
stable environment where clients fre-
quently disconnect or their performance
changes. Thus, the impact of a lost task
is lower. On the other hand, lower tp in-
creases the overhead because more com-
munication will be needed.

• Higher tp decreases communication
overhead and nodes spend more time by
the computing. In case of lost connec-
tion, recovery would be longer. Higher
tp also means less effective task distribu-
tion, namely at the end of the project.
Suppose 20 clients where only 10 are
active. These active nodes would be
computing for another hour while oth-
ers stop working since there is no more
task to be assigned to them.

For efficient task distribution, we define
function proctime(tJ , sR, k) that adaptively
computes expected process time tp until the
entire password space is processed. Param-
eter tJ is an elapsed time of the computing,
sR is a number of remaining passwords to be
verified and k is a number of active nodes
that participate on the computing. Param-
eters tJ , sR and k change over time. The
function proctime is computed using algo-
rithm 1. Based on remaining time tp, each
node will be assigned appropriate password

Page 86 c© 2016 ADFSL

On Efficiency of Distributed Password Recovery JDFSL V11N2

space si = vi.tp. Thus, the remaining pass-
word space will be distributed among work-
ing nodes according to their performance. In
optimal case, all nodes complete their tasks
in tp as estimated.

Algorithm 1: Adaptive calculation of tp
Input: tJ , sR, k
Output: tp

1: vsum = 0
2: forall clienti ∈ {0, . . . , k} do
3: if clienti is active then
4: vi =

sprev
tprev

5: vsum = vsum + vi
6: end

7: end
8: tp = sR

vsum
· α

9: if tp < tpmin then
10: tp = tpmin ; // minimal task time

11: else if tJ > tpmax then
12: tp = min(tp, tpmax) ; // maximal time

13: else
14: tp = min(tp, tJ) ; // smaller tasks

15: end
16: return tp

Lines 2 to 7 of the algorithm compute the
entire speed of all active nodes. Line 8 is
tricky. Normally, we would calculated tp as
tp = sR

vsum
. Here, we add parameter α called

distribution coefficient that ranges from 0 to
1. In other words we say that not the entire
remaining password space will be assigned,
only its fraction. E.g., for α = 0.1, only
10% of the password space P is assigned
among currently active nodes. Why is not
the remaining password space assigned? The
answer lies in dynamic behavior of working
nodes. In case that new nodes connect to
the network, there would be no task for them
and distributed solution would become less
effective. Thus, a part of the password space
is put aside hoping that more nodes will par-
ticipate on the computing in the future. If
not, the rest of the password space will be

distributed among current nodes according
the above mentioned algorithm.

Value of tp is limited by tpmin and tpmax.
Parameter tpmin states, that the computing
shorter than this value is ineffective in dis-
tributed environment, so the minimal task
time is tpmin. Similarly, tpmax defines the
maximal task time so that also slower nodes
can participate in the computing. Based on
our experiments, we recommend tpmin = 1
and tpmax = 60 minutes.

4.1.4 Task Generator

The task generator runs in loop, monitors
the presence of clients and creates new tasks.
In our system, two types of task are consid-
ered: (i) benchmarks and (ii) regular tasks.
In case of benchmarks, the node receives a
job with the same XML file as in case of the
regular task. The aim of benchmark is to
verify node’s performance. Unlike the regu-
lar task, the node cracks as many passwords
as possible during the fixed amount of time
(default is 10 sec). If the benchmark fails, a
new benchmark is scheduled to test the node
performance.

Tasks are generated to validate passwords
sequentially based on indices. Since there is
no internal dependency, tasks are generated
using a straightforward scheduling algorithm
that assigns tasks based on the adaptive time
calculation and the last password index as-
signed.

In case of the regular task the validator
checks the result. If the password is found,
the result is verified by another node and
the entire project is finished, i.e., all run-
ning tasks of the project are canceled. If
the result is not found, speed vi of the cur-
rent node is updated based. Results of all
benchmarks and regular tasks are stored in
MySQL database by the project server.

c© 2016 ADFSL Page 87

JDFSL V11N2 On Efficiency of Distributed Password Recovery

4.1.5 Security

Distributed computing is composed of a set
of working nodes connected over the net-
work. These nodes can participate fully or
partially on the computing. They can also
dynamically join and leave the distributed
environment. Both working nodes and com-
munication lines are considered as untrusted,
hence, certain security techniques must be
apply to prevent intentional or unintentional
failures during the computing.

In order to provide fault-tolerance of the
distributed computing, the server defines
timeout Tlimit. If a client is not able to com-
plete the task within Tlimit for any reason,
the task is considered failed and given to an-
other client. The failure happens whenever
the client is disconnected, encounters an er-
ror, is overloaded, etc.

In untrusted environment, a client can be
compromised which results in the following
behavior:

a) A client reports that the password is
found, but this is not true (false nega-
tive).

b) A client finds the password, but this is
not reported to the server (false positive).

Case (a) can be solved by verifying the
password in a single-password mode when
another client or the server validate the re-
sult.

Case (b) is more difficult to handle since
the server has no way how to check if the task
(a portion of the password space) contained
the password or not. The only solution is a
task replication that is natively supported by
BOINC. Replication means that each task is
distributed to two or more clients and their
results are compared. Unfortunately, repli-
cation significantly reduces the performance
of the distributed solution.

4.2 Working Nodes

Working nodes are independent hosts con-
nected to the project server using BOINC
interface, see Figure 2. In the initialization
phase, they download Fitcrack application
for password recovery. Once the init phase
is over, the client periodically asks the server
for new tasks.

Each task includes (i) meta data of the en-
crypted document in XML format (see Fig-
ure 3), and (ii) a portion of the password
space that should be searched for the pass-
word, see INI file in Figure 4. Depending
on the password generator, a given subset of
password space is generated on the fly and
passwords are checked with the meta data.

mode:n // regular task

charset:latin2.txt // charset

passlength:1-8 // password from 1 to 8 chars

from:1231800416 // starting index

count:1308439710 // password space size

Figure 4: Example of INI file

The INI file at Figure 4 informs the work-
ing node to start a regular task of the re-
covery. The password generator at the node
should generate passwords of length 1 up to
8 using charset latin2. The password space
assigned to this task is bounded by a starting
index and the space size.

4.2.1 Fitcrack

Fitcrack is a password recovery applica-
tion developed by our team. It is based
on Wrathion tool4. Fitcrack can run in a
multiple-password mode for regular password
recovery or in a single-password mode that is
used for verification of a single password.

The process of password recovery is man-
aged by the controller that reads an in-
put XML file, selects a suitable password
cracker and starts one of the password gener-
ators. Currently, following password genera-

Page 88 c© 2016 ADFSL

On Efficiency of Distributed Password Recovery JDFSL V11N2

tors are supported: lexicographical (brute-
force) generator, user dictionary, single-
layer and multi-layer masking/non-masking
Markov network generator.

The generator is initialized by data pro-
vided in INI file. Each generator must imple-
ment g(i) function (see Section 4.1.2). The
generator runs either in the one-thread mode
or multiple-threads mode and uses the adap-
tive index reservation system similar to Al-
gorithm 1.

The cracker is a module responsible for
password verification. For each crypto-
graphic algorithm, a new cracker is imple-
mented. Each cracker implements Boolean
function correct(p) which returns true if the
searched password matches string p, see Al-
gorithm 2.

Algorithm 2: Password recovery pro-
cess

Input: imin, imax, ; // starting and ending

index

Output: plain-text password

1: forall i ∈ {imin, . . . , imax} do
2: if correct(g(i)) then
3: return g(i)
4: end

5: end
6: return password not found

Indices imin and imax describe a portion of
password space P that is searched for the
password. For exhaustive search through
the entire password space P , imin = 1 and
imax = |P |.

5. RESULTS
This section shows experimental results of
the distributed password recovery. The re-
sults give answers to the following research
questions:

• How efficient is the scheduling algo-
rithm?

• How high is communication overhead?

• What is the cost and energy efficiency
of the solution when compared to GPU-
based approach?

5.1 Testing environment

Tests were provided in heterogeneous envi-
ronment of 2, 4, 8, 16, 37 and 55 CPU-nodes
with the configuration described in Table 1.
The table also includes configuration of GPU
node with four GPU processor cards.

Nodes Processor Speed
1–16 Intel i5-4460, 3.2 GHz 8,000,000
17–37 Intel i3-4340, 3,6 GHz 5,000,000
38–55 Intel E8400, 3,0 GHz 2,700,000
GPU AMD Gigabyte R9 Fury X, 4 GB 120,000,000

Table 1: Configuration of working nodes

Each line of the table describes one group
of nodes involved in the computing. Line
17–37 means that nodes 1 to 16 had config-
uration given at line 1 and nodes 17 to 37 had
configuration described in line 2. Speed cor-
responds to the benchmark tests and spec-
ifies how many passwords can be generated
per second on the given processor. Thus,
15 nodes with i5-4460 CPU (line 1) have the
same processing speed as one GPU processor
(i.e., 15 * 8 M = 120 M).

Most of the password recovery experi-
ments employed the worst-case test, i.e., the
right password was the last password of the
generated password space. In case of random
passwords, it is hard to evaluate experiments
since in one case a password can be found
immediately because it is at the beginning
of the generated password space while in the
other test the search can require more time.

Our experiments provided password re-
covery of PDF 1.7 files, revision 5. Thus,
the cracker, the password generator and the
encryption algorithm were the same for all
the tests.

c© 2016 ADFSL Page 89

JDFSL V11N2 On Efficiency of Distributed Password Recovery

5.2 Experiments

The first experiment shows how the number
of working nodes accelerates the brute force
search depending on the password length,
see Figure 5.

Figure 5: Distributed password recovery

The figure shows that the recovery time
for passwords up to the length 7 is so fast
that adding new nodes does not add any sub-
stantial acceleration to the computing. The
distributed solution seems to be efficient for
passwords longer than 7 characters.

This statement can be proved by password
recovery of 9-character passwords, see Figure
6. In this case, the advantage of distributed
password recovery is obvious. Password re-
covery on two or four CPU nodes is unfea-
sible. Eight nodes are able to find the pass-
word in 82,962 secs (cca 23 hours) while 55
nodes in 19.779 secs (5,5 hours).

It is interesting to compare these results
with a GPU-based version. Thus, the same
experiment was running on a single GPU
node with one to four GPU cards active and
using the same password recovery tool, see
Figure 7.

Similarly to distributed solution, multi-
ple GPU cracking is suitable for passwords
longer than 7 characters. The absolute time
of the recovery of 8-character password on

Figure 6: CPU password recovery, length 8,
9

Figure 7: GPU-accelerated password recov-
ery

one GPU processor corresponds to work load
of 15 CPU-only nodes which proves our theo-
retical assumption based on benchmark tests
in Table 1.

For longer passwords like nine characters,
see Figure 8, the GPU-acceleration is almost
linear. 9-character passwords can be solved
in 49,196 secs (13,6 hours) on 1 GPU and
in 12,379 secs (3,4 hours) on 4 GPUs. The
graph shows comparison with 8-character
password.

The comparison of absolute time of dis-
tributed solution and GPU-based approach

Page 90 c© 2016 ADFSL

On Efficiency of Distributed Password Recovery JDFSL V11N2

Figure 8: GPU password recovery, length 8,
9

is in Table 2. The result shows where the dis-
tributed solution is comparable with a GPU
version. We can see that the cluster of 16
nodes is comparable with 1 GPU cracking
of 9-character password. Of course, it de-
pends on the computational power of work-
ing nodes. However, it can be stated that
distributed solution using common hardware
and BOINC distribution platform can be an
alternative to the GPU-based approach.

Efficiency of distributed computing and
GPU-based solution is depicted in Figure
9. It represents the percentage of the time
that processors actually spend processing
rather than communicating or idling (Page
& Naughton, 2005). It is computed using

the following formula: Eff =
∑N

x=1 tx
N∗Tfin

where

N is the number of nodes that participated
in the computing, tx is the real time of the
task processing, and Tfin is the final time
when the password was found.

The graph shows that the longer the pass-
word is, the more efficient the processing is.
Efficiency of password recovery on the small
password space is low because of communi-
cation overhead and benchmark tests.

For random passwords up to a given
length, the result depends on where the pass-

Figure 9: Efficiency of the distributed com-
puting

word is found in the ordered password space.
Fig. 10 shows the results of ten independent
tests with random passwords up to 6 char-
acters.

Figure 10: Random passwords up to 6 chars

We can see that the absolute time of pass-
word cracking is similar for 2 to 55 nodes.
Since the cracking is so fast, the total time
is influenced more by the overhead.

Real acceleration of distributed solution is
more visible for longer passwords. Figure 11
shows the test for the 8-character password.
The graph shows substantial acceleration for
clusters of 16 and more nodes.

c© 2016 ADFSL Page 91

JDFSL V11N2 On Efficiency of Distributed Password Recovery

Password Number of nodes
length 2 4 8 16 27 55 1 GPU 2 GPU 4 GPU

5 100 101 93 104 60 100 2,79 2,87 4,02
6 130 132 132 134 87 99 5,8 3,87 4,01
7 714 415 236 167 186 184 74 39,07 21,21
8 13 125 7 051 3 679 2 025 1 177 1045 1 885 961 475
9 – – 82 962 45 567 24 011 19 779 49 196 25 120 12 379

Table 2: Time (in secs) of distributed and GPU-based password recovery

Figure 11: Random passwords up to 8 chars

5.3 The Cost Model

An important question of forensic experts is
what is the cost of the password recovery?
In this section, we present the comparison
of cost models for distributed solution and
GPU-based approach. For our cost model,
workstations of Table 1, line 1, are consid-
ered.

Table 3 gives an overview of the cost of
working nodes based on 2015 prices. The
unit price is a price of processing 1,000,000
passwords per second on the given hardware.
The unit price is constant for distributed
computing on nodes with the same configu-
ration. In our case, it is $79. The unit price
of GPU solution is cheaper when inserting
additional GPU cards. The price includes
not only GPU processors, but also mother-
board, PCIe slots, additional CPU cooler,

etc.

Node(s) Speed Price Price / Unit
(pwd / sec) (USD) USD

1 8,000,000 639 79
2 16,000,000 1278 79
4 32,000,000 2556 79
8 64,000,000 5 112 79
16 128,000,000 10 224 79

1 GPU 120,353,069 2 337 19
2 GPU 240,706,138 3 151 13
4 GPU 481,412,276 4 440 9

Table 3: Relative cost of the solution

The table shows that GPU-based pass-
word recovery is cheaper solution than build-
ing a new CPU cluster. If the cluster is al-
ready available, then the distributed solution
can provide a feasible alternative to the high-
performance multi-GPU node with high ini-
tial costs.

Another important factor connected with
the cost model is the energy consumption,
see Table 4. The first two columns show
the power consumption (in Watts) of work-
ing nodes during the idle state (no password
recovery) and during the processing (load
state). Next two columns represent the real
costs of cracking the passwords of lengths 8
and 9 with unit price of $0.12 per kWh.

The table also shows that the power con-
sumption of the 16-nodes cluster is similar to
a 4-GPU node. However, the price of con-
sumed energy is lower for GPU because of
faster computing.

Page 92 c© 2016 ADFSL

On Efficiency of Distributed Password Recovery JDFSL V11N2

Node(s) Idle Load Price L8 Price L9
(W) (W) (USD) (USD)

1 31 58 - -
2 62 116 0.0493 -
4 124 232 0.0518 -
8 248 464 0.0531 1.2678
16 496 928 0.0561 1.3437

1 GPU 182 370 0.0232 0.6067
2 GPU 182 541 0.0173 0.4530
4 GPU 182 856 0.0135 0.3532

Table 4: Power consumption and the cost

The overall power consumption (in watt-
hours) is calculated as the electrical power
consumed during the effective computing
(P load) and the power consumed during
the idle time (communication, etc.): Ptotal =
(N ∗ Tfin ∗ (Eff ∗ PLoad + (1 − Eff) ∗
PIdle))/3600, where N is the number of
nodes, Tfin is the time when the password
was found, Eff is the efficiency, PLoad or PIdle

is the power consumption during the pass-
word recovery or the idle state, respectively.

The total power consumption spent on
cracking password of length 5 to 8 on CPU
and GPU nodes is shown in Figure 12.

Figure 12: Power consumption of the com-
puting

The password recovery is generally more

power efficient on GPU cards in comparison
to CPU units. When adding new nodes, the
total power consumption Ptotal softly rises on
CPU nodes while it goes down with adding
new GPU cards to the GPU node for the
computing.

6. CONCLUSION

Password recovery of encrypted documents
is an important issue for digital forensic ex-
perts. Today, many solutions focus on GPU-
based acceleration. In this paper, we pre-
sented a distributed alternative built upon a
just-available hardware with similar perfor-
mance for shorter passwords. If no worksta-
tions are available, the GPU-based solution
is more efficient.

We also discussed issues connected with
distributed environment. First, individual
tasks should be distributed based on the real
performance of working nodes. Uniform task
distribution to nodes with variable speed can
degrade the real performance of the clus-
ter. Second, distributed solution supports
is easily scalable and can employ worksta-
tions outside office hours. Platforms like
BOINC provide an easy deployment of the
distributed computation.

6.1 Future Work

For the future, we plan to explore distributed
password recovery in heterogeneous environ-
ment that combines CPU and GPU nodes.
Besides the issue of hardware dependence,
task distribution algorithm must be revised
because the performance benchmark of a
GPU node is incomparable to a CPU node
which could result in unbalanced task distri-
bution.

In this work we were focused on encrypted
documents and archives only. However, the
presented approach and environment can be
extended to encrypted file systems using

c© 2016 ADFSL Page 93

JDFSL V11N2 On Efficiency of Distributed Password Recovery

TrueCrypt, Bitlocker, PGP, File Vault, or
SafeGuard.

Supposing TrueCrypt, this tool creates a
virtual encrypted disk in the form of a sin-
gle file, it can encrypts a disk partition, or
the entire disk storage. For all these cases,
FitXtractor can be extended to extract the
partition encrypted headers and create XML
meta data file for Fitcrack. Like to other en-
crypted documents, the probability of suc-
cess depends on the strength of the pass-
word and the password generator. Unfor-
tunately, TrueCrypt supports eight different
encryption algorithms and three hash algo-
rithms which makes 8 ∗ 3 = 24 combina-
tions. Since there is no way how to iden-
tify the algorithms used, all combinations
should be tested which complicates the re-
covery (Zhang, Zhou, & Fan, 2014).

The password discovery of BitLocker is
also feasible (Dija, Balan, Anoop, & Ramani,
2011). Since BitLocked drive is loaded at the
boot time, it is possible to perform a memory
dump and search for a .BEK file containing
the encryption key. Another approach is the
usage of Bootkits to compromise the kernel
(Yi-ming & Sheng-li, 2010).

ACKNOWLEDGMENTS
This work was supported by The Ministry
of Education, Youth and Sports from the
National Program of Sustainability (NPU
II) project “IT4Innovations excellence in sci-
ence,” LQ1602 and by project “Research and
application of advanced methods in ICT,”
FIT-S-14-2299.

REFERENCES
Adobe Systems. (2008, June). Adobe Sup-

plement to the ISO 32000. BaseVersion:
1.7. ExtensionLevel:3 (Tech. Rep.).

Anderson, D. P. (2004, Nov). BOINC:
a system for public-resource comput-
ing and storage. In Proceedings of the

Fifth IEEE/ACM International Work-
shop Grid Computing (pp. 4–10).

Apostal, D., Foerster, K., Chatterjee, A., & De-
sell, T. (2012, Dec). Password recovery
using MPI and CUDA. In Proc. of HiPS,
2012 (p. 1-9).

Dell’Amico, M., Michiardi, P., & Roudier,
Y. (2009). Measuring Password
Strength: An Empirical Analysis. CoRR,
abs/0907.3402 .

Dija, S., Balan, C., Anoop, V., & Ramani, B.
(2011). Towards Successful Forensic Re-
covery of BitLocked Volumes. In 6th Con-
ference on System of Systems Engineering
(SoSE) (pp. 317–322).

Hranický, R., Matoušek, P., Ryšavý, O., &
Veselý, V. (2016). Experimental Evalua-
tion of Password Recovery in Encrypted
Documents. In Proceedings of ICISSP
2016 (pp. 299–306). Roma.

Kang, S. J., Lee, S. Y., & Lee, K. M.
(2015, Aug). Performance Comparison of
OpenMP, MPI, and MapReduce in Prac-
tical Problems. Advances in Multimedia,
9.

Kelley, P., Komanduri, S., Mazurek, M., Shay,
R., Vidas, T., Bauer, L., . . . Lopez,
J. (2012, May). Guess Again (and
Again and Again): Measuring Pass-
word Strength by Simulating Password-
Cracking Algorithms. In IEEE Sympo-
sium on Security and Privacy (p. 523-
537).

Marechal, S. (2007). Advances in password
cracking. Journal in Computer Virology ,
4 (1), 73–81.

Marks, M., & Niewiadomska-Szynkiewicz, E.
(2014). Hybrid CPU/GPU Platform For
High Performance Computing. In Proc.
of the 28th ECMS.

Page, A. J., & Naughton, T. J. (2005). Dynamic
task scheduling using genetic algorithms
for heterogeneous distributed computing.
In 19th int. parallel and distr. processing
(pp. 189a–189a).

Pellicer, S., Pan, Y., & Guo, M. (2004).
Proc. of Grid and Cooperative Comput-

Page 94 c© 2016 ADFSL

On Efficiency of Distributed Password Recovery JDFSL V11N2

ing. In H. Jin, Y. Pan, N. Xiao, & J. Sun
(Eds.), (pp. 679–686). Berlin, Heidelberg:
Springer.

Reimann, S. (2013). Analyzing the Structure of
Passwords to Improve Strength Measure-
ment and Password Cracking (MSc. The-
sis). Ruhr-Universität, Bochum, DE.

Thing, V. L., & Ying, H.-M. (2009). A novel
time-memory trade-off method for pass-
word recovery. Digital Investigation, 6,
Supplement(0), S114 - S120.

Ur, B., Kelley, P. G., Komanduri, S., Lee, J.,
Maass, M., Mazurek, M. L., . . . Cranor,
L. F. (2012). How Does Your Password
Measure Up? The Effect of Strength Me-
ters on Password Creation. In Usenix se-
curity (pp. 65–80).

Yi-ming, J., & Sheng-li, L. (2010). The Analysis
of Security Weakness in BitLocker Tech-
nology. In Proc. of the Int. Conference on
Networks Security, Wireless Communica-
tions and Trusted Computing (pp. 494–
497).

Zhang, L., Zhou, Y., & Fan, J. (2014). The
Forensic Analysis of Encrypted Truecrypt
Volumes. In Int. Conference on Progress
in Informatics and Computing (PIC) (pp.
405–409).

c© 2016 ADFSL Page 95

JDFSL V11N2 On Efficiency of Distributed Password Recovery

Page 96 c© 2016 ADFSL

