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We study closure operators on graphs which are induced by sets of walks of identical 
lengths in these graphs. It is shown that the induction gives rise to a Galois correspondence 
between the category of closure spaces and that of graphs with walk sets. We study the 
two isomorphic subcategories resulting from the correspondence, in particular, the one 
that is a full subcategory of the category of graphs with walk sets. As examples, we discuss 
closure operators that are induced by path sets on some natural graphs on the digital 
plane Z2. These closure operators are shown to include the well known Marcus–Wyse 
and Khalimsky topologies, thus indicating the possibility of using them as convenient 
background structures on the digital plane for the study of geometric and topological 
properties of digital images.
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1. Introduction

As a basic field of discrete mathematics, graph theory finds a wide spectrum of applications. In particular, a special 
branch of discrete geometry devised for the study of geometric and topological properties of digital images, digital topology, 
is based on the use of topological aspects of graph theory such as graph connectedness. There are two approaches to digital 
topology, traditional [12,14] and topological [8,10,19]. While the former employs purely graph-theoretic tools, the latter is 
based on topological methods. Since both approaches have their specific advantages, it is most desirable to find bridges 
between them by studying the relationships between graph theory and topology. Such relationships were dealt with by 
several authors who investigated correspondences between directed graphs (i.e., sets with a binary relation) and topologies 
or closure operators, see e.g. [2,5,13,16]. The correspondences usually considered associate an Alexandroff topology (or 
completely additive closure operator) with graphs in a very natural way, thus obtaining the so-called left topology (left 
closure operator), in which the closure of a set A equals A ∪{x; there is an edge (a, x) with a ∈ A}, and, dually, the so-called 
right topology (right closure operator). However, up to now, only little effort has been exerted to investigate correspondences 
between simple graphs and spaces more general than the Alexandroff ones. The aim of this note is to proceed with such 
an investigation. We will focus on studying relationships between (simple) graphs and closure operators that generalize 
topologies (given by Kuratowski closure operators). It was shown in [17] that such closure operators provide richer scale of 
instruments for the needs of digital topology than the two topologies usually used, the Khalimsky [8] and Marcus–Wyse 
[13] ones.

The present paper is a continuation of the author’s study of the topic started in [18] and [20]. We will deal with graphs 
each having a set specified of walks with identical lengths. Such graphs, with special walk sets called path partitions, were 
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introduced and studied in [18] where their geometric properties were discussed based on a special concept of connected-
ness. The closure operators induced, in a certain way, on graphs by walk sets were discussed in [20] with some interesting 
relationships between the graphs and the induced closure operators shown. Building on [18], we will discover some more 
relationships between graphs with walk sets and the induced closure operators and, moreover, such relationships will be 
regarded in terms of category theory. More precisely, we will show that the induction gives rise to a Galois correspondence 
between the category of closure spaces and that of graphs with walk sets. The Galois correspondence will be studied and 
the results achieved will be demonstrated by examples of closure operators induced on (graphs on) the digital plane by 
certain walk sets.

2. Preliminaries

For the graph-theoretic terminology, we refer to [7]. By a graph G = (V , E) we understand an undirected simple graph 
without loops with V �= ∅ the vertex set and E ⊆ {{x, y}; x, y ∈ V , x �= y} the set of edges. We will say that G is a graph 
on V . As usual, two vertices x, y ∈ V are said to be adjacent (to each other) if {x, y} ∈ E . A key role will be played by the 
concept of a walk. Unlike the usual walks, in the present paper, the walks are allowed to be transfinite. More precisely, 
given an ordinal α > 1, by an α-walk (briefly, a walk) in G we understand a sequence (of type α) (xi | i < α) of vertices of 
V such that xi is adjacent to xi+1 whenever i + 1 < α. If α > 1 is a finite ordinal, then α − 1 is called the length of the walk 
(xi | i < α). An α-walk is called an α-path (briefly, a path) if its members are pairwise different.

By a closure operator u on a set X , we mean a topology in Čech’s sense [3], i.e., a map u: exp X → exp X (where exp X
denotes the power set of X) that is

(i) grounded (i.e., u∅ = ∅),
(ii) extensive (i.e., A ⊆ X ⇒ A ⊆ u A), and

(iii) monotone (i.e., A ⊆ B ⊆ X ⇒ u A ⊆ uB).
The pair (X, u) is then called a closure space. Thus, the usual topologies (i.e., Kuratowski closure operators — cf. [6]) are the 
closure operators u on X that are
(iv) additive (i.e., u(A ∪ B) = u A ∪ uB whenever A, B ⊆ X) and
(v) idempotent (i.e., uu A = u A whenever A ⊆ X).

Given closure spaces (X, u) and (Y , v), a map f : X → Y is said to be continuous if f (u A) ⊆ v f (A) for every subset 
A ⊆ X .

As usual, we identify cardinals with initial ordinals (accepting so the Axiom of Choice). Given an ordinal α, we denote 
by 〈α〉 the least cardinal n with α ≤ n.

Let m > 1 be a cardinal. A closure operator u on a set X and the closure space (X, u) are called an Sm-closure operator
and an Sm-closure space (briefly, an Sm-space), respectively, if the following condition is satisfied:

A ⊆ X ⇒ u A = ⋃{uB; B ⊆ A, card B < m}.
In [4], S2-closure operators and S2-spaces are called quasi-discrete. S2-topologies (S2-topological spaces) are called 

Alexandroff topologies (Alexandroff spaces) — cf. [8]. Clearly, every S2-closure operator is additive and, if m ≤ ℵ0, then every 
additive Sm-closure operator is an S2-closure operator. Since every Sm-closure operator is an Sn-closure operator whenever 
m ≤ n, it is useful to know, for a given closure operator u on X , the minimal cardinal m for which u is an Sm-closure 
operator. Such a minimal cardinal is an important invariant of the closure space (X, u) as mentioned in [3].

We will use some basic topological concepts (see e.g. [6]) naturally extended from topological to closure spaces. In 
particular, given a closure space (X, u), a subset A ⊆ X is said to be closed if u A = A (and it is said to be open if its 
complement in X is closed). If u, v are closure operators on a set X , then we put u ≤ v if u A ⊆ v A for every subset A ⊆ X . 
Clearly, ≤ is a partial order on the set of all closure operators on X . If u ≤ v , then u is said to be finer than v and v is said 
to be coarser than u. Note that, for topologies given by open sets, just the converse partial order is usually used.

For the categorical terminology used see [1]. All categories are considered to be constructs, i.e., concrete categories over 
Set (the category of sets and maps), and all functors are assumed to be concrete, i.e., to preserve the underlying sets and 
to be identities for morphisms (so that the functors are given by determining them as maps on objects). Recall that, given 
a pair of objects A = (X, ρ) and B = (X, σ) of a category, we write ρ ≤ σ if idX : (X, ρ) → (X, σ) is a morphism. We will 
also write A ≤ B in this case. Given categories X , Y and functors F , G : X → Y , we write F ≤ G if F (A) ≤ G(A) for every 
object A ∈X . A Galois correspondence between categories X and Y is a pair of functors (L, R), L : Y →X and R : X → Y , 
such that L ◦ R ≤ idX and R ◦ L ≥ idY .

3. A categorical Galois correspondence that arises from inducing closure operators on graphs by walk sets

Given a graph G and an ordinal α > 1, we denote by Wα(G) the set of all α-walks in G . Every subset B ⊆ Wα(G) will 
be called an α-walk set or, briefly, a walk set in G . If every element of B is even a path, then B will be called an α-path set
or, briefly, a path set in G .

Let X be a set, α > 1 an ordinal, and B ⊆ Xα (where Xα denotes the set of all sequences of type α with all members 
from X) a subset such that (xi | i < α) ∈ B implies xi �= xi+1 whenever 0 < i + 1 < α. Put EB = {{xi, xi+1}; 0 < i + 1 < α}. 
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Then, the graph (X, EB) is said to be generated by B. Clearly, (X, EB) is the graph on X with the minimal (with respect to 
set inclusion) set of edges such that B is an α-walk set in (X, EB).

Given a graph G = (V , E) and an α-walk set B in G , we put
fα(B)A = A ∪ {x ∈ V ; there exist (xi | i < α) ∈ B and an ordinal i0, 0 < i0 < α, such that {xi; i < i0} ⊆ A and xi0 = x} for 

every A ⊆ V .
It may easily be seen that fα(B) is an S〈α〉-closure operator on G . It will be said to be induced by B.
Conversely, given a closure operator u on a set X , we put gα(u) = {(xi | i < α) ∈ Xα; xi �= xi+1 whenever 0 < i + 1 < α

and x j ∈ u{xi; i < j} for every j with 0 < j < α}.
We denote by Clo the category of closure spaces and injective continuous maps and by Graα a category whose objects 

are pairs (G, B) where G = (V , E) is a graph and B is an α-walk set in G (α > 1 an ordinal) and whose morphisms 
f : ((V , E), B) → ((V ′, E ′), B′) are the injective maps f : V → V ′ such that (xi | i < α) ∈ B implies ( f (xi)| i < α) ∈ B′ . Note 
that Graα is a concrete category over Set because every object ((V , E), B) ∈ Graα may be regarded as a pair (V , (E, B)).

Let α > 1 be an ordinal. For every object ((V , E), B) ∈ Graα , we put Fα((V , E), B) = (V , fα(B)) and, for every object 
(X, u) ∈ Clo, we put Gα(X, u) = ((X, E gα(u)), gα(u)).

Theorem 1. (Fα, Gα) is a Galois correspondence between Clo and Graα for every ordinal α > 1.

Proof. Let ϕ : ((V , E), B) → ((V ,′ E ′), B′) be a morphism in Graα , let A ⊆ V be a subset and y ∈ ϕ( fα(B)A) a point. Then, 
there is a point x ∈ fα(B)A with y = ϕ(x). Consequently, there are a walk (xi | i < α) ∈ B and an ordinal i0, 0 < i0 < α, 
such that xi0 = x and xi ∈ A for every i < i0. Thus, we have (ϕ(xi)| i < α) ∈ B′ , ϕ(xi0) = ϕ(x) = y and ϕ(xi) ∈ ϕ(A) for every 
i < i0. Hence, y ∈ fα(B′)(ϕ(A)) so that ϕ( fα(B)A) ⊆ fα(B′)(ϕ(A)). Therefore, ϕ : (V , fα(B)) → (V ′, fα(B′)) is a continuous 
map, i.e., a morphism in Clo. We have shown that Fα : Graα → Clo is a functor.

Conversely, let ϕ : (X, u) → (Y , v) be a morphism in Clo and let (xi | i < α) ∈ gα(u). Then, xi ∈ X for every i < α, xi �= xi+1
whenever 0 < i + 1 < α and x j ∈ u{xi; i < j} for every j with 0 < j < α. Consequently, ϕ(xi) ∈ Y for every i < α, ϕ(xi) �=
ϕ(xi+1) whenever 0 < i + 1 < α and ϕ(x j) ∈ ϕ(u{xi; i < j}) ⊆ v{ϕ(xi); i < j} for every j with 0 < j < α. This yields 
(ϕ(xi)| i < α) ∈ gα(v) so that ϕ : ((X, E gα(u)), gα(u)) → ((X, E gα(v)), gα(v)) is a morphism in Graα . We have shown that 
Gα : Clo → Graα is a functor.

Let G = (V , E) be a graph, B an α-walk set in G and (yi | i < α) ∈ B a walk. Put u = fα(B). Then, for every ordinal j
with 0 < j < α, we have y j ∈ u{yi; i < j}. Consequently, (yi | i < α) ∈ gα(u). Therefore, B ⊆ gn(u) = gn( fn(B)). This yields 
Gα ◦ Fα ≥ idGraα .

Conversely, let (X, u) be a closure space and let A ⊆ X be a subset. Put B = gα(u) and let x ∈ fα(gα(u))A be a point. 
If x ∈ A, then x ∈ u A. Let x /∈ A. Then, there are (xi| i < α) ∈ B = gα(u) and i0, 0 < i0 < α, such that xi0 = xi and xi ∈ A for 
every i < i0. Thus, x j ∈ u{xi; i < j} for every j, 0 < j < α. In particular, x = xi0 ∈ u{xi; i < i0} ⊆ u A. Therefore, fα(gα(u)) ≤ u. 
This yields Fα ◦ Gα ≤ idClo . �

In consequence of Theorem 1, Fα(Graα) is a full coreflective subcategory of Clo, Gα(Clo) is a full reflective subcategory 
of Graα , and the restrictions of Fα and Gα to Gα(Clo) and Fα(Graα), respectively, are isomorphisms inverse to each other. 
Thus, for every (G, B) ∈ Gα(Clo), we have gα( fα(B)) = B and, for every (X, u) ∈ Fα(Graα), we have fα(gα(u)) = u. In what 
follows, we will investigate, for a given ordinal α > 1, the isomorphic categories Fα(Graα) and Gα(Clo).

Theorem 2. Let G = (V , E) be a graph and B an α-walk set in G (α > 1 an ordinal). Then, (G, B) ∈ Gα(Clo) if and only if the 
following two conditions are satisfied:

(∗) If (xi | i < α) ∈ Wα(G) has the property that, for every ordinal i0 with 0 < i0 < α, xi0 = x0 or there exist (y j| j < α) ∈ B and 
j0 , 0 < j0 < α, such that xi0 = y j0 and {y j; j < j0} ⊆ {xi; i < i0}, then (xi| i < α) ∈ B.

(∗∗) E = EB .

Proof. Let (G, B) ∈ Gα(Clo), let (xi | i < α) ∈ Wα(G), and let for any i0, 0 < i0 < α, xi0 = x0 or there are (y j | j < α) ∈ B
and j0, 0 < j0 < α, such that xi0 = y j0 and {y j; j < j0} ⊆ {xi; i < i0}. Then, xi0 ∈ {xi; i < i0} or xi0 ∈ fα(B){y j; j < j0}. 
Since {xi; i < i0} ⊆ fα(B){xi; i < i0} and also fα(B){y j; j < j0} ⊆ fn(B){xi; i < i0}, we have xi0 ∈ fα(B){xi; i < i0} for 
every i0, 0 < i0 < α. Therefore, (xi | i < α) ∈ gα( fα(B)) = B. Thus, the condition (∗) is satisfied. The condition (∗∗) follows 
immediately from the definition of Gα .

Conversely, let the conditions (∗) and (∗∗) be satisfied and let (xi |i < α) ∈ gα( fα(B)). Then, xi0 ∈ fα(B){xi; i < i0} for 
each i0, 0 < i0 < α. Hence, for every i0, 0 < i0 < α, there exist (y j | j < α) ∈ B and j0, 0 < j0 < α, such that xi0 = y j0 and 
{y j; j < j0} ⊆ {xi; i < i0}. Therefore, (xi | i < α) ∈ B and we have shown that gα( fα(B)) ⊆ B. But Gα ◦ Fα ≥ idGraα implies 
gα( fα(B) ⊇ B so that B = gα( fα(B)). Consequently, (G, B) ∈ Gα(Clo) and the proof is complete. �
Example 1. Note that every subset B ⊆ W2(G) satisfies the condition (∗) in Theorem 2. It may easily be seen that a subset 
B ⊆W3(G) satisfies (∗) if and only if each of the following four conditions implies (x, y, z) ∈ B:
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(1) (x, y, t) ∈B, (x, z, u) ∈ B,
(2) (x, y, t) ∈B, (y, z, u) ∈ B,
(3) (x, y, t) ∈B, (y, x, z) ∈ B,
(4) (x, y, t) ∈B, x = z.

Note that (x, y, z) ∈W3(G) implies x �= y �= z (because G has no loops).

The following statement is evident:

Theorem 3. Let (X, u) be a closure space and α > 1 an ordinal. Then, (X, u) ∈ Fα(Graα) if and only if the following condition is 
satisfied:

if A ⊆ X and x ∈ u A − A, then there exist a sequence (xi|i < α) ∈ Xα and an ordinal i0 , 0 < i0 < α, such that {xi; i < i0} ⊆ A, 
x j ∈ u{xi; i < j} for each j, 0 < j < α, and x = xi0 .

Clearly, uB is neither additive nor idempotent in general. On the other hand, for every α-walk set in a graph (V , E), the 
union of a system of closed subsets of (V , uB) is a closed subset of (V , uB). For finite ordinal numbers α, this assertion is 
proved in [20] and, for an arbitrary α > 1, the proof is analogous.

We denote by CloU the full subcategory of Clo whose objects are the closure spaces (X, u) with u idempotent and, by 
T opS , the full subcategory of Clo (and also of CloU ) whose objects are the Alexandroff topological spaces.

Proposition 1. For every ordinal α > 1, Fα(Graα) ∩ CloU = Fα(Graα) ∩ T opS .

Proof. Let ((X, E), B) ∈ Fα(Graα) ∩ CloU be an object an put u = fα(B). Let A ⊆ X be a subset and x ∈ u A a point. If x ∈ A, 
then x ∈ ⋃

x∈A u{x} because of the extensiveness of u. Let x /∈ A. Then, by Theorem 3, there exist a sequence (xi |i < α) ∈ Xα

and an ordinal i0, 0 < i0 < α, such that {xi; i < i0} ⊆ A, x j ∈ u{xi; i < j} for each j, 0 < j < α, and x = xi0 . Thus, we have 
x1 ∈ u{x0} where x0 ∈ A. If α = 2, then x = x1 so that x ∈ ⋃

y∈A u{y}. Suppose that α > 2. Let i be an ordinal with 1 < i < α
such that x j ∈ u{x0} for every j with 0 < j < i. Then, {x j; j < i} ⊆ u{x0} and xi ∈ u{x j; j < i}. Thus, xi ∈ uu{x0} = u{x0}. 
Consequently, xi ∈ u{x0} for every i < α. In particular, x = xi0 ∈ u{x0} so that x ∈ ⋃

y∈A u{y}. We have shown that u A ⊆⋃
y∈A u{x}. As the converse inclusion follows from the monotonicity of u, the proof is complete. �
The previous statement says that, for every α-walk set B in a graph (V , E), fα(B) is idempotent if and only if (V , fα(B))

is an Alexandroff topological space.
Let α, β , 1 < α ≤ β , be ordinals. For every object ((X, E), B) ∈ Gα(Clo), put Hα,β((X, E), B) = ((X, E), B̂) where B′ ⊆ Xβ

is given by (y j | j < β) ∈ B̂ if and only if (y j | j < β) ∈ Wβ(X, E) and, for each j0, 0 < j0 < β , y j0 = y0 or there exist 
(xi |i < α) ∈ B and i0, 0 < i0 < α, such that y j0 = xi0 and {xi; i < i0} ⊆ {y j; j < j0}.

Let α, β be ordinals, α > 1 finite and β ≥ α. For every sequence (xi | i < α) ∈ Xα (where X is a set) we put hα,β(xi | i <
α) = (y j | j < β) where y j = x j for every j with j < α and

y j =
{

xα−2 if j = δ + n where δ = α or δ is a limit ordinal and n is an even finite ordinal,
xα−1 if j = δ + n where δ = α or δ is a limit ordinal and n is an odd finite ordinal

for every j with α ≤ j < β . In the sequel, we will use the obvious fact that, given an α-walk set B in a graph, (xi | i < α) ∈ B
implies hα,β(xi | i < α) ∈ B̂. (Indeed, if (y j| j < β) = hα,β(xi | i < α), putting i0 = j0 for every j0 such that 0 < j0 < α and 
i0 = α − 2 (i0 = α − 1) for every j0 such that y j0 �= y0 and j0 = δ + n where δ = α or δ is a limit ordinal and n is an even 
(odd) finite ordinal, we get y j0 = xi0 and {xi; i < i0} = {y j; j < j0}.)

Theorem 4. Let α, β be ordinals, α > 1 finite and β ≥ α. Then, Hα,β is a full concrete embedding of Gα(Clo) into Gβ(Clo) having the 
property Fβ ◦ Hα,β = Fα .

Proof. Let ((X, E), B) ∈ Gα(Clo) be an object and let (y j| j < β) ∈ Wβ(X, E) be a walk having the property that, for 
every j0, 0 < j0 < β , we have y j0 = y0 or there exist (xi | i < β) ∈ B̂ and i0, 0 < i0 < β , such that y j0 = xi0 and 
{xi; i < i0} ⊆ {y j; j < j0}. Let j0, 0 < j0 < β , be an ordinal with y j0 �= y0. Then, (xi | i < β) ∈ B̂ implies that xi0 = x0
or there exist (zk| k < α) ∈ B and k0, 0 < k0 < α, such that xi0 = zk0 and {zk; k < k0} ⊆ {xi; i < i0}. If xi0 �= x0, then we 
have y j0 = zk0 and {zk; k < k0} ⊆ {y j; j < j0}. Suppose that xi0 = x0. Since x0 ∈ {yi; i < i0} and x0 = xi0 = y j0 �= y0, 
there exists the least index (ordinal) j1, 0 < j1 < j0, such that x0 = y j1 �= y0. Therefore, there exist (tl| l < α) ∈ B̂ and l0, 
0 < l0 < α, such that y j0 = xi0 = x0 = y j1 = tl0 and {tl; l < l0} ⊆ {y j; j < j1} ⊆ {y j; j < j0}. Since t0 ∈ {y j; j < j1}, we 
have t �= tl0 (because tl0 = x0 and j1 is the smallest index with y j1 = x0). Consequently, there exist (um| m < α) ∈ B
and m0, 0 < m0 < α, such that tl = um0 and {um; m < m0} ⊆ {tl; l < l0}. We have y j0 = xi0 = x0 = tl = um0 and 
0 0
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{um; m < m0} ⊆ {y j; j < j0}. Therefore, (y j| j < β) ∈ B̂. We have shown that B̂ satisfies the condition (∗) in Theo-
rem 2.

Let {x, y} ∈ E = EB . Then, there exist (xi | i < α) ∈ B and i0, 0 < i0 + 1 < α, such that {x, y} = {xi0 , xi0+1}. Put 
(y j| j < β) = hα,β(xi | i < α). Then, (y j| j < β) ∈ B̂ and, since {xi0 , xi0+1} = {yi0 , yi0+1}, we have {x, y} = {yi0 , yi0+1}. 
Thus, {x, y} ∈ EB̂ . Hence, EB ⊆ EB̂ and, since B̂ ∈Wβ(X, E), we have E = EB = EB̂ . We have shown that also the condition 
(∗∗) in Theorem 2 is satisfied. Consequently, ((X, E), B̂) = Hα,β((X, E), B) ∈ Gβ(Clo).

Let ϕ : ((X1, E1), B1) → ((X2, E2), B2) be a morphism in Gα(Clo) and let (y j | j < β) ∈ B̂1. Then, for every j0, 0 < j0 < β , 
we have y j0 = y0 or there exist (xi | i < α) ∈ B1 and i0, 0 < i0 < α, such that y j0 = xi0 and {xi; i < i0} ⊆ {y j; j < j0}. 
We then have (ϕ(xi)| i < α) ∈ B2, ϕ(y j0 ) = ϕ(xi0 ) and {ϕ(xi); i < i0} ⊆ {ϕ(y j); j < j0}. Therefore, (ϕ(y j)| j < β) ∈ B̂2 so 
that ϕ : ((X1, E1), B̂1) → ((X2, E2), B̂2) is a morphism in Gβ(Clo). We have shown that Hα,β is a functor from Gα(Clo) into 
Gβ(Clo).

Conversely, let ((X1, E1), B1), ((X2, E2), B2) ∈ Gα(Clo) be objects and let ϕ : ((X1, E1), B̂1) → ((X2, E2), B̂2) be a 
morphism in Gβ(Clo). Let (xi | i < α) ∈ B1 and let (y j | j < β) = hα,β(xi | i < α). Then, (y j| j < β) ∈ B̂1 so that 
(ϕ(y j)| j < β) ∈ B̂2. Therefore, for every j0, 0 < j0 < α, we have ϕ(y j0) = ϕ(y0) or there are (zi| i < α) ∈ B2 and i0, 
0 < i0 < α, such that ϕ(y j0) = zi0 and {zi; i < i0} ⊆ {ϕ(y j); j < j0}. Since B2 satisfies the condition (∗) in Theorem 2, we 
have (ϕ(y j)| j < α) ∈ B2. But (ϕ(y j)| j < α) = (ϕ(xi)| i < α) so that ϕ : ((X1, E1), B1) → ((X2, E2), B2) is a morphism in 
Gα(Clo). We have shown that the functor Hα,β : Gα(Clo) → Gβ(Clo) is full.

Let ((X1, E1), B1), ((X2, E2), B2) ∈ Gα(Clo) be objects and suppose that B̂1 = B̂2. Let (xi | i < α) ∈ B1 and let 
(y j| j < β) = hα,β(xi | i < α). Then, (y j| j < β) ∈ B̂1 so that, for every j0, 0 < j0 < α, we have y j0 = y0 or there are 
(zi | i < α) ∈ B2 and i0, 0 < i0 < α, such that y j0 = zi0 and {zi; i < i0} ⊆ {y j; j < j0}. Since B2 satisfies the condition (∗) in 
Theorem 2, we have (y j| j < α) ∈ B2. But (y j| j < α) = (xi | i < α) so that B1 ⊆ B2. We may show in an analogous way that 
B2 ⊆ B1. Therefore, the functor Hα,β : Gα(Clo) → Gβ(Clo) is injective on objects. Consequently, Hα,β : Gα(Clo) → Gβ(Clo)

is a full concrete embedding.
Let ((X, E), B) ∈ Gα(Clo) and put (X, u) = Fβ(Hα,β((X, E), B)) = (X, fβ(B̂)), (X, v) = Fα((X, E), B) = (X, fα(B)). Let 

A ⊆ X and y ∈ u A. Then, y ∈ A or there exist (y j| j < β) ∈ B̂ and j0, 0 < j0 < β , such that y = y j0 and y j ∈ A for all j < j0. 
If y ∈ A, then y ∈ v A. Suppose that y /∈ A. Then, for each j0, 0 < j0 < β , there exist (xi |i < α) ∈ B and i0, 0 < i0 < α, such 
that y j0 = xi0 and {xi; i < i0} ⊆ {y j; j < j0}. Thus, y = xi0 and xi ∈ A for all i < i0, which yields y ∈ fα(B)A = v A. We have 
shown that u ≤ v .

On the contrary, suppose that y ∈ v A. If y ∈ A, then y ∈ u A. Suppose that y /∈ A. Then, there exist (xi |i < α) ∈ B and 
i0, 0 < i0 < α, such that y = xi0 and xi ∈ A for all i < i0. Let (y j | j < β) = hα,β(xi | i < α). Then, (y j | j < β) ∈ B̂, y = y0 and 
y j ∈ A for all j < i0. Therefore, y ∈ fβ(B̂)A = u A and we have shown that v ≤ u. Thus, u = v , which yields Fβ ◦ Hα,β = Fα . 
The proof is complete. �

Theorem 4 immediately results in

Corollary 1. Fα(Graα) is a full subcategory of Fβ(Graβ) whenever α > 1 is finite and β ≥ α.

Remark 1. In digital image processing, it is important to have the digital plane equipped with a structure providing a 
convenient concept of connectedness. The connectedness in the closure spaces (V , fn(B)), where (V , E) is a graph, n > 1 a 
finite ordinal and B an n-walk set in (V , E), was studied in [20] where it was shown that a space (V , fn(B)) is connected 
(i.e., for every pair A, B of disjoint closed subsets of V , V = A ∪ B implies that A = ∅ or B = ∅) if and only if the following 
condition is satisfied:

For every pair of two different vertices x, y ∈ V , there exist a sequence (xi | i < m) ∈ V m , m > 1 a finite ordinal, with 
x0 = x and xm−1 = y, and an increasing sequence ( jk| k < p) of natural numbers with j0 = 0 and jp−1 = m − 1 such that 
jk+1 − jk < n for all k < p − 1 and there is an n-walk (yi | i < n) ∈ Bn with xi = yi− jk for every i = jk, jk + 1, ..., jk+1 or 
xi = y jk+1 − i for every i = jk, jk + 1, ..., jk+1.

This result provides a useful tool for investigating connectedness in (V , fn(B)).

4. Graphs with diagonal walk sets

Definition 1. Let α > 1 be an ordinal. An α-walk set B in a graph (X, E) is said to be diagonal if, whenever xij ∈ X for all 
ordinals i, j < α, from (xij | j < α) ∈ B for each i < α and (xij |i < α) ∈ B for each j < α, it follows that (xii |i < α) ∈ B.

Thus, an α-walk set B in a graph (X, E) is diagonal if, whenever a matrix of type α × α over X has the property that 
all its rows and columns belong to B, its diagonal belongs to B, too.

Let Gα(Clo)∗ (α > 1 an ordinal) be the full subcategory of Gα(Clo) given by the objects (G, B) ∈ Gα(Clo) with B diagonal. 
Obviously, a 2-walk in a graph (X, E) is diagonal if and only if it is a transitive binary relation on X . Therefore, G2(Clo)∗ is 
the category of graphs (X, E) with 2-walk sets that are irreflexive and transitive binary relations on X .
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For every ordinal α > 1, we denote by F ∗
α the restriction of Fα onto Gα(Clo)∗ . Lemma 1 below immediately follows from 

the well-known fact that the subcategory of the category of topological spaces and continuous maps whose objects are the 
Alexandroff spaces is isomorphic to the category of preordered sets and preorder preserving maps where the isomorphism 
is given by the specialization preorder — cf. [2] (recall that the specialization preorder of a topology u on a set X is the 
binary relation ρ on X defined by xρ y ⇔ x ∈ u{y} whenever x, y ∈ X).

Lemma 1. F ∗
2 is an isomorphism of G2(Clo)∗ onto CloS .

Lemma 2. Let α > 1 be an ordinal and let B be a diagonal 2-walk set in a graph (X, E). Then, for every (xi| i < α) ∈ Xα , we have 
(xi | i < α) ∈ B̂ ⊆ Xα if and only if, for every i0 with 0 < i0 < α, xi0 = x0 or (x0, xi0 ) ∈ B.

Proof. Let (xi | i < α) ∈ B̂ ⊆ Xα . Then, for every i0, 0 < i0 < α, xi0 = x0 or there exists j0 < i0 such that (x j0 , xi0 ) ∈ B. Thus, 
we have (x0 x1) ∈ B. Let i0, 1 < i0 < α, be an arbitrary ordinal with xi0 �= x0 and suppose that x j = x0 or (x0, x j) ∈ B for 
each j < i0. Then, (x0, xi0 ) ∈ B where xi0 = x0 or (x0, xi0 ) ∈ B. Hence, we have always have (x0, xi0 ) ∈ B by the diagonality 
(transitivity) of B. Thus, according to the principle of transfinite induction, xi0 = x0 or (x0, xi0 ) ∈ B. Therefore, (xi | i < α) ∈ B̂
implies xi0 = x0 or (x0, xi0 ) ∈ B for every i0 with 0 < i0 < α. Since the converse implication is evident, the proof is com-
plete. �

Given an ordinal α > 1, we denote by H∗
2,α the restriction of H2,α onto G2(Clo)∗ .

Proposition 2. For every ordinal α > 1, H∗
2,α : G2(Clo)∗ → Gα(Clo)∗ is a full concrete embedding.

Proof. Let α > 1 be an ordinal, let ((X, E), B) ∈ G2(Clo)∗ be an object and let (xij | i, j < α) be a matrix of type α × α

over X such that (xij | i < α), (xij | j < α) ∈ B̂ ⊆ Xα . Let i0, 0 < i0 < α, be an ordinal and suppose that xi0 i0 �= x00. If 
x0i0 = x00, then we have (x00, xi0 i0 ) ∈ B. Next, if x0i0 �= x00, then (x00, x0i0 ) ∈ B and we have either xi0 i0 = x0i0 , in which case 
(x00, xi0 i0 ) ∈ B, or xi0 i0 �= x0i0 , in which case (x0i0 , xi0 i0) ∈ B and, by the diagonality (transitivity) of B, (x00, xi0 i0 ) ∈ B. Thus, 
we have xi0 i0 = x00 or (x00, xi0 i0 ) ∈ B whenever 0 < i0 < α. Therefore, by Lemma 2, (xii | i < α) ∈ B̂ so that ((X, E), B̂) =
H2,α((X, E), B) ∈ Gα(Clo)∗ . Hence, the statement follows from Theorem 4. �

Note that, in consequence of Theorem 4 and Proposition 2, we have F ∗
2 = Fα ◦ H∗

2,α . Thus, by Proposition 1 and Lemma 1, 
we get:

Theorem 5. Let α > 1 be an ordinal and (G, B) ∈ Gα(Clo) an object. If fα(B) is idempotent, then B is diagonal.

5. Walk-set induced closure operators on the digital plane

In digital topology, one of the basic problems is to find a structure on the digital plane Z2 convenient for process-
ing digital images. The classical approach to digital topology is based on using the 4-adjacency and 8-adjacency graphs 
— cf. [11]. A disadvantage of this approach is that neither of these two graphs allows for a digital analogue of the Jor-
dan curve theorem so that a combination of them must be used — cf. [15]. In [8], the authors proposed a new, purely 
topological approach to the problem that uses a topology, called the Khalimsky topology, for structuring the digital plane 
for the needs of digital image processing. Another topology that may be used for structuring the digital plane is the 
Marcus–Wyse one [14], which provides connectedness identical to the graph connectedness in the 4-adjacency graph (it 
is well known that no topology on the digital plane provides connectedness identical to the graph connectedness in 
the 8-adjacency graph). It was shown in [17] that closure operators, which are more general than topologies, may be 
used as convenient structures on the digital plane. In the following examples, we will also propose using closure opera-
tors for structuring the digital plane, namely closure operators induced by path sets in certain graphs on Z2. Employing 
such closure operators is a combination of the classical approach to digital topology and the topological one, and has 
the advantages of both of them. We will show that both the Marcus–Wyse and Khalimsky topologies on Z2 may be ob-
tained as closure operators on graphs with the vertex set Z2 induced by certain walk sets belonging to Gα(Clo)∗ , α > 1
an ordinal.

Example 2. Let G4 = (Z2, E) where E = {{(x, y), (z, t)}; (x, y), (z, t) ∈ Z
2, |x − z| + |y − t| = 1}. Then, G4 is called the 

4-adjacency graph on Z2. Put B = {((xi, yi)| i < 2); (xi, yi) ∈ Z
2 for every i < 2, |x0 −x1| +|y0 − y1| = 1 and x0 + y0 is even}. 

Then, B satisfies the conditions (∗) and (∗∗) in Theorem 2 so that (G4, B) ∈ G2(Clo) and it is evident that we even have 
(G4, B) ∈ G2(Clo)∗ . A portion of B is shown in the following figure where the 2-paths from B are represented by arrows 
directed from first to last vertices.



J. Šlapal / Journal of Computer and System Sciences 95 (2018) 143–150 149
� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

0 1 2 3 4

1

2

3

4

Clearly, F2(G4, B) = (Z2, f2(B)) is a connected Alexandroff topological space in which the points (x, y) ∈ Z
2 with x + y even 

are open while those with x + y odd are closed. The closure operator f2(B) coincides with the Marcus–Wyse topology.

Example 3. Let n > 1 be a finite ordinal and let G8 = (Z2, E) be a graph with E = {{(x, y), (z, t)}; (x, y), (z, t) ∈ Z
2, |x − z| +

|y − t| > 0, |x − z| ≤ 1, |y − t| ≤ 1}. The graph G8 is called the 8-adjacency graph on Z2. Let D be the set of all sequences 
((xi, yi)| i < n) ∈ (Z2)n such that one of the following eight conditions is satisfied:

(1) x0 = x1 = ... = xn−1 and there is k ∈ Z such that yi = 2k(n − 1) + i for all i < n,
(2) x0 = x1 = ... = xn−1 and there is k ∈ Z such that yi = 2k(n − 1) − i for all i < n,
(3) y0 = y1 = ... = yn−1 and there is k ∈ Z such that xi = 2k(n − 1) + i for all i < n,
(4) y0 = y1 = ... = yn−1 and there is k ∈ Z such that xi = 2k(n − 1) − i for all i < n,
(5) there is k ∈ Z such that xi = 2k(n − 1) + i for all i < n and there is l ∈ Z such that yi = 2l(n − 1) + i for all i < n,
(6) there is k ∈ Z such that xi = 2k(n − 1) + i for all i < n and there is l ∈ Z such that yi = 2l(n − 1) − i for all i < n,
(7) there is k ∈ Z such that xi = 2k(n − 1) − i for all i < n and there is l ∈ Z such that yi = 2l(n − 1) + i for all i < n,
(8) there is k ∈ Z such that xi = 2k(n − 1) − i for all i < n and there is l ∈ Z such that yi = 2l(n − 1) − i for all i < n.

It may easily be seen that (G8, D) ∈ Gn(Clo)∗ . A portion of D can be seen in the following figure. The paths belonging to 
D are represented by arrows directed from first to last terms. Between any pair of neighboring parallel horizontal or vertical 
arrows (having the same direction), there are n − 2 more parallel arrows with the same direction that are not displayed.
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Clearly, Fn(G8, D) = (Z2, fn(D)) is a connected Sn-space. In particular, the closure operator f2(D) is an Alexandroff 
topology that coincides with the Khalimsky topology on Z2.

By the previous examples, the closure operators fn(B) with n > 1 a finite ordinal and B an n-walk set in a graph on the 
digital plane, may be regarded as generalizations of both the Marcus–Wyse topology and the Khalimsky topology on Z

2. 
Both the topologies are known to provide convenient background structures on the digital plane for the study of digital 
images because they allow for digital analogues of the Jordan curve theorem (for a digital Jordan curve theorem in the 
Marcus–Wyse topology see [9] and for one in the Khalimsky topology see [8]). To show that the closure operators fn(B)

may also be used in digital topology for structuring the digital plane, it would be beneficial to prove a digital Jordan curve 
theorem for them starting with proving such a theorem for fn(D), n > 1 a finite ordinal (see Example 3). This will be the 
aim of our forthcoming research.
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