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HADES1 is a fully automated verification tool for pipeline-based microprocessors that aims at flaws
caused by improperly handled data hazards. It focuses on single-pipeline microprocessors designed
at the register transfer level (RTL) and deals with read-after-write, write-after-write, and write-after-
read hazards. HADES combines several techniques, including data-flow analysis, error pattern match-
ing, SMT solving, and abstract regular model checking. It has been successfully tested on several
microprocessors for embedded applications.

1 Introduction

Implementation of pipeline-based execution of instructions in purpose-specific microprocessors, often
used, e.g., in embedded applications, is an error-prone task, which implies a need of proper verification
of the resulting designs. Formal verification of such microprocessors—despite they are much simpler
than common processors for mainstream computing—is a very challenging task. One way how to deal
with it is to develop a set of verification techniques specialised in checking absence of a certain kind of
errors in such microprocessors. Here, the main idea is that, this way, a high degree of automation and
scalability can be achieved since only parts of a design related to a specific error are to be investigated.
The above idea has been followed, e.g., in the works [6, 7] that proposed fully automated approaches for
(1) checking correctness of individual execution of processor instructions and (2) for verifying absence
of read-after-write (RAW) hazards when the instructions are pipelined. In [8], the approach was extended
by covering write-after-write (WAW) and write-after-read (WAR) hazards.

To be more precise, an RAW hazard arises when an instruction writes to a storage that some later
instruction reads, but it is possible for the later instruction to read an old value being rewritten by the
earlier instruction. A WAW hazard refers to a situation when an instruction writes to a storage and rewrites
a result stored by some later instruction which already finished its execution. A WAR hazard arises when
a later instruction write to a destination before it is read by the previous instruction. There are also
non-data hazards. Structural hazards deal with sharing resources by instructions in a pipeline. Control
hazards arise when an instruction is executed improperly due to an unfinished update of a program
counter. This paper, however, concentrates on data hazards only.

In particular, the paper presents the HADES tool, developed by VeriFIT research group at FIT BUT,
that implements a slightly improved version of the approaches proposed in [7, 8]. Namely, after briefly
discussing related works, we specify how the input of HADES looks like, we describe its architecture
and implementation, and provide experimental results on a larger set of microprocessors than in [7, 8].
Moreover, we include a more detailed discussion of the needed verification time and its decomposition
to the computing times needed by the different analysis phases implemented in HADES. We close the
paper by a discussion of possible future improvements of the HADES tool.

1www.fit.vutbr.cz/research/groups/verifit/tools/hades/
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Figure 1: A processor structure graph of a part of a CPU with an accumulator architecture.

Related Work. Verifying that there are no hazards in a pipelined microprocessor is quite crucial.
Hence, it has become a native part of checking conformance between an RTL design and a formally
encoded description of an instruction set architecture (ISA), and many approaches with formal roots
have been proposed for this purpose. Among them, one can find, e.g., the following approaches [5, 13,
1, 14, 15, 20, 12]. However, these methods typically require a significant manual user intervention—
either in a form of specifying the consistent state of the microprocessor or defining predicates describing
pipeline behaviour. Compared with such approaches, HADES does not aim at full conformance check-
ing of RTL and ISA implementations. Instead, it addresses one specific property—namely, absence of
problems caused by pipeline hazards. On the other hand, HADES is almost fully automated—the user
is required to identify the architectural resources (such as registers and memory ports) and the program
counter only.

2 Input Models

HADES focuses on microprocessors with a single pipeline and in-order execution. The tool expects
storages (registers and memories) to have a unit write and zero read delay. Multicycle delay storages
can be easily simulated by a chain of unit storages. The tool also assumes that pipeline internal registers
which carry data interchanged between programmer visible storages are controlled by stall and clear
signals.

The tool expects the processor under verification to be described by a so-called processor structure
graph (PSG in short) which represents the internal structure of the processor. A PSG is an oriented
graph that consists of vertices (storages or boolean circuits) and edges (control and data connections).
An example of a simple PSG is depicted in Figure 1. It shows a part of a simple microprocessor with
an accumulator architecture with two architectural registers: X (a memory index register) and A (an
accumulator). For the sake of brevity, the PSG does not exhibit control connections of pipeline regis-
ters. In the CPU, an instruction fetched from the memory is stored into the storage id ir representing
the instruction register. The decoder determines the type of the operation of arithmetic logic unit and



L. Charvát, A. Smrčka, and T. Vojnar 89

identifies its destination by activating the appropriate enable connection (en) of the X or A register. An
early auto-increment of register X can be performed in stage 3. Such a feature allows the CPU to execute
sequences of instructions working with juxtaposed data in the memory without a penalty (brought, e.g.,
by unnecessary stalls of the pipeline) which would be present if the update of X was done in a later stage.

A design of a processor on the register transfer level (RTL) written in a common hardware design
language like VHDL or Verilog can be easily converted into a PSG.

3 The Verification Approach of HADES

The verification approach of HADES was proposed in [7, 8]. It leverages the current advances in
SMT solvers for bit-vector logic and in formal verification of systems with a parameterized number
of processes—for short, referred to as parameterized systems (PSs) below. The main idea is to reduce
the problem of finding hazards that may arise when executing an in advance unknown number of in ad-
vance unknown instructions2 to a parametric verification problem where the successive instructions are
modelled by processes, which gradually pass through the processor. In particular, it turns out that one can
use the common notion of PSs operating on a linear topology where the processes (i.e., instructions being
executed) may perform local transitions or universally/existentially guarded global transitions [9, 18, 2].

More precisely, the approach consists of the following steps: (1) a data-flow analysis intended to
distinguish particular stages of the pipeline, (2) a consistency check of a correct implementation of the
particular pipeline stages, (3) a static analysis identifying constraints over data-paths of instructions
that can potentially cause data hazards, (4) generation of a PS modelling mutual interaction between
potentially conflicting instructions, and (5) an analysis of the constructed parameterized system.

Identification of Pipeline Stages. A simple data flow analysis is used to derive the number of pipeline
stages implemented in a given processor and to assign storages and logic functions into the pipeline
stages. A pipeline stage is defined as a sub-graph of the PSG responsible for executing a single-cycle
step of an instruction. The pipeline stage of a PSG vertex (representing some storage or function) is
given by the minimum number of cycles needed to propagate data from the input of the program counter
(assumed to be in a fictive stage 0) to the output of the given vertex.

Consistency Checking. The second step of the method is consistency checking that checks whether the
flow logic assures a correct in-order execution of all instructions through all the identified pipeline stages.
This step checks whether the flow logic obeys a set of rules that express how the control connections
(i.e., enable, stall, and clear signals) of storages in adjacent pipeline stages should be set. In short, the
rules require that an instruction carried by a pipeline stage cannot be fragmented, duplicated, or lost. In
particular, a strengthened variant of the rules proposed in [16] is used.

Static Detection of Potential Hazards. Next, a static hazard analysis over the PSG with annotated
pipeline stages is performed to identify a finite set of so-called hazard cases. Each hazard case describes
one possible source of a hazard. A hazard case consists of a programmer visible source storage (i.e.,
a register or a writing port of the memory), target storage, reading and writing stages, and an influence
path describing how data propagate between the stages. Since the definition of a hazard case speaks about

2Note that one cannot simply restrict the checking to a number of instructions given by the number of pipeline stages since
the processor can get to different internal states after having processed some number of instructions of some kind.
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Figure 2: HADES architecture.

storages, their access stages, and the path along which the problematic data is transferred, it is not related
to a single instruction only but to an entire class of instructions.

Generation of PSs Modelling the Possible Hazards. In this stage, a PS for each identified hazard case
is generated. The main component of the PS is a finite automaton whose instances represent instructions
passing the pipeline. A state of the automaton identifies the class of instructions that the particular
instance represents3, the execution stage into which the instruction got, and the conditions that must hold
for the instruction to proceed such that a flow of data along the path associated with the given hazard
case is caused. The transitions of the automata can be guarded by referring to the states of the automata
representing instructions that surround the given instruction in the pipeline. Their generation is pruned
by checking whether the conditions behind the states of the involved automata do not exclude each other.
Further, regular sets of initial and bad configurations are generated. Initial configurations represent
simply an arbitrary sequence of instructions waiting for entry into the pipeline. Bad configurations are
specified separately for the different types of hazards considered—e.g., for RAW hazards, they say that
a later instruction finished reading before an earlier instruction committed writing.

Analysis of the Generated PS. As the last step, it is verified that the bad configurations are not reach-
able from the initial configurations in the generated PS. For that, abstract regular model checking can be
used [4].

4 HADES Implementation

The HADES tool implements the above sketched approach and consists of several components depicted
in Figure 2. HADES reads in an RTL description of the processor to be verified and converts it into its
internal PSG representation. Currently, HADES supports the RTL format of CodAl which is an architec-
tural description language for processor design [10]. For other RTL languages like VHDL and Verilog
where architectural storages are not explicitly identified, a list of architectural storages with an explicit
identification of the program counter must be provided.

3Three classes are distinguished—write instructions, read instructions, and other instructions.
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Table 1: Experimental results.

Processor / Simpl. Data Flow Consistency Parameterized System Total Hazard
variant Time [s] Analysis [s] Checking [s] Generation and Verification [s] Time [s] Cases [#]

rtl smt core rtl smt armc core

TinyCPU S 0.05 0.01 <0.01 0.25 0.49 0.01 0.38 5.44 6.71 13.34 5
SA 0.06 0.02 <0.01 0.33 0.60 0.02 1.00 11.58 20.84 34.45 8
B 0.05 0.01 <0.01 0.25 0.44 0.01 0.38 5.08 5.95 12.17 5
BA 0.07 0.02 <0.01 0.33 0.63 0.03 1.03 11.02 18.28 31.41 8
SF 0.06 0.02 <0.01 0.30 0.51 0.02 0.77 10.82 13.89 26.39 11
SFA 0.07 0.02 <0.01 0.34 0.68 0.04 1.88 20.42 43.09 66.54 18

SPP8 S 0.27 0.04 0.01 0.43 0.85 0.05 2.02 20.81 36.24 60.72 27
B 0.25 0.03 0.01 0.40 0.82 0.07 2.16 20.35 43.19 67.28 27

SPP16 S 0.27 0.05 0.01 0.44 0.90 0.04 1.90 19.99 36.33 59.93 27
B 0.30 0.05 0.01 0.43 0.88 0.07 2.16 19.75 42.29 65.94 27

Codea2 SF 0.81 0.13 0.01 0.59 1.04 0.94 32.91 224.73 527.34 788.49 239
CompAcc SFA 0.27 0.04 0.01 0.54 1.06 0.11 5.60 65.83 98.05 171.87 38

BFA 0.28 0.05 0.01 0.55 1.04 0.28 7.74 66.03 158.56 234.94 53
DLX5 S 0.47 0.08 0.01 1.09 2.23 0.22 8.96 140.40 205.69 359.15 25

SA 0.54 0.10 0.01 1.12 2.44 0.37 17.54 250.78 460.75 733.65 59
B 0.62 0.12 0.01 1.07 2.40 0.33 9.47 138.55 316.08 468.65 25
BA 0.65 0.12 0.01 1.15 2.69 0.48 19.28 247.98 745.16 1017.52 59

S Stalling Logic B Bypassing Logic F Flag Register(s) A Auto-increment Logic

The input PSG is normalized and simplified (conditional branching is replaced by multiplexors, value
propagation is applied, redundant nodes and edges are removed, etc.). For that, the RTL query engine of
HADES, which allows one to search for data-paths and substitute parts of the RTL design described by
a PSG, is used. The engine uses a LISP-like syntax both for queries and their output, and it can handle
basic RTL constructs like signals, registers, logic gates, as well as memory and its ports.

Subsequently, pipeline stages are identified by a simple data-flow analysis. Intuitively, the analysis
propagates so far computed stages forward through the PSG, always taking the minimum of values
incoming to a vertex and adding one whenever a storage other than a read port (which has a zero delay)
is passed.

Next, instances of the consistency rules for the particular design are derived using RTL query engine.
The rules are checked using an SMT solver for bit-vector logic. HADES is compatible with all SMT
solvers accepting SMT2 formula description. In particular, for the below experiments, Z3 [17] was used.

Further, given a PSG with annotated stages, the HADES core repeatedly utilizes the RTL query engine
(written in C++) and the SMT solver to extract potential hazard cases and to generate the appropriate
PSs for them. The generated PSs are then checked using the abstract regular model checker of [3]
(implemented in OCaml over the Timbuk tree automata library [11], however, tree automata degenerated
to word automata are used only).

Note that the different hazard cases are are independent, and hence, in the future, the generation of
the PSs and their verification can be run in parallel.

5 Experimental Evaluation
We have tested HADES on five processors: TinyCPU is a small 8-bit processor, mainly used for testing
new verification methods. SPP8 is an 8-bit ipcore with 3 pipeline stages, 16 general-purpose registers,
and a RISC instruction set with 9 instructions. SPP16 is a 16-bit variant of SPP8 with a more complex
memory model. Codea2 is a 16-bit processor for signal processing applications. It is equipped with
16 general-purpose registers, 15 special registers, a flag register, and an instruction set including 41
instructions where each may use up to 4 available addressing modes. CompAcc is an 8-bit processor
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based on an accumulator architecture. Finally, DLX5 is a 5-staged 32-bit processor able to execute
a subset of the instruction set of the DLX architecture [19] (with no floating point support).

Compared with [6, 7, 8], we enriched the number of variants for the above introduced processors,
which gave us 17 unique test cases in total. The variants of the particular processors differ in the follow-
ing aspects: (i) the way how data hazards are avoided (pipeline stalling and clearing, data bypassing),
(ii) the presence of flag / status registers, and (iii) utilization of so-called auto-increment (AI) logic. The
AI logic is a feature allowing for an early incrementation4 of the value of a register for memory address-
ing just before (pre-increment) or right after (post-increment) it is read. The AI feature usually brings
a more efficient execution of sequences of instructions accessing the processor’s memory (e.g., compu-
tation upon long arrays in cyber-security CPUs), but it also introduces potential WAW and WAR hazards
that must be handled properly.

Besides the modifications in our test cases, we improved the HADES tool as well. This includes
an addition of dynamic programming techniques (e.g., paths found in PSG are hashed and reused) and
a faster pipe-based communication (instead of previously used file-based) between the HADES core and
the RTL query engine.

We conducted a series of experiments on a PC with Intel Core i7-3770K @ 3.50GHz and 16 GB
RAM with results shown in Table 1. The first columns give the verified processor, its variant, the time
needed for the PSG simplification and its data flow analysis. The next columns give the duration of the
consistency checking and the time spent by verification of the PSs that are created for each hazard case.
The times are split to the times consumed by the different parts of the HADES architecture.

The following column gives the overall verification time, which remains in the order of minutes even
for complex designs. Moreover, HADES also scales well with the growing size of the processor data-
path as can be seen by comparing the times obtained for SPP8 and SPP16. It should be noted that the
amount of time consumed by the tool’s core can be reduced by using a direct API of the SMT solver used
instead of the current implementation that relies on exporting (potentially large) formulas in the smt2 file
format. (On the other hand, the current implementation does not depend on any particular SMT solver.)
Finally, the last column represents the number of hazard cases that had to be generated and checked. This
number differs from the one computed in [7, 8] due to HADES newly does not include hazard cases on
the program counter among data hazards. These cases will be treated in separate control hazard detection
phase, which is currently under implementation. Note that each hazard case represents a separate task so
the part of generation and verification of PSs can be parallelized in the future.

During the experiments, we identified a flaw in a RAW hazard resolution when accessing the data
memory in a development version of the SPP8 processor.

6 Conclusions and Future Work

We have presented the main ideas, architecture, and evaluation of HADES—a tool for fully-automated
discovery of data hazards in pipelined microprocessors. In the future, we plan to extend HADES with
methods for verification of other processor features, such as control hazards. We also plan to parallize
some parts of HADES and extend it with a compiler from VHDL and Verilog IP cores to the HADES

input format.

Acknowledgement. The work was supported by the Czech Science Foundation project 14-11384S, the
IT4IXS: IT4Innovations Excellence in Science project (LQ1602), and the internal BUT project FIT-S-
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4The incrementation typically takes place in an execution stage of the processor’s pipeline.
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