
FORESTER: From Heap Shapes to Automata
Predicates

(Competition Contribution)

Lukáš Hoĺık, Martin Hruška(B), Ondřej Lengál, Adam Rogalewicz,
Jǐŕı Šimáček, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence,
Brno, Czech Republic
ihruska@fit.vutbr.cz

Abstract. This paper describes the participation of Forester in
the SV-COMP 2017 competition on software verification. We briefly
present the verification procedure used by Forester, the architecture
of Forester, and changes in Forester done since the previous year
of SV-COMP, in particular the fully-automatically refinable abstraction
for hierarchical forest automata.

1 Verification Approach

Forester implements an automated shape analysis that uses forest automata
(FAs) to represent sets of reachable shapes of the heap of the analysed program.
In particular, heap configurations are viewed as (directed) graphs, decomposed
into tuples of trees, and sets of such decompositions are encoded by FAs that
themselves have the form of tuples of tree automata (TAs). The tree decomposi-
tion is based on detecting the so-called cut-points of the heap graphs, which are
nodes either pointed by a variable or having more than one incoming edge. The
tree decomposition is then obtained by cutting a heap graph at the cut-points
and redirecting each incoming edge of a cut-point to a new leaf node labelled by
a reference to the tree with the cut-point as the root.

In order to allow for representing data structures with an unbounded number
of cut-points, a notion of hierarchical FAs (HFAs) is introduced. An example of a
structure for whose representation plain FAs are insufficient and HFAs are needed
is the doubly-linked list (DLL). Indeed, each internal DLL node is a cut-point
since it is pointed to by its predecessor and successor nodes. An HFA can use
other HFAs, called nested HFAs or boxes, as symbols of its alphabet. Boxes can
represent (repeating) sub-graphs of heap graphs, possibly encapsulating (hiding)
an unbounded number of cut-points. A special folding operation is then used to
pack a part of an HFA into a box and add the box to the alphabet of the resulting
HFA. On the contrary, when an analysed program accesses a part of a heap folded
into a box, the box is unfolded by plugging its content back to the wrapping HFA.
A more detailed description of these operations can be found in [1,2].

M. Hruška —Jury member.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 365–369, 2017.
DOI: 10.1007/978-3-662-54580-5 24



366 L. Hoĺık et al.

The verification procedure implemented in Forester symbolically exe-
cutes the program in the abstract domain of HFAs. At loop points, HFAs are
abstracted, implementing the idea of abstract regular model checking [3]. The
abstraction is applied component-wise, i.e., to individual TAs, collapsing some
of their states, which over-approximates the set of reachable heap configura-
tions. The abstraction speeds up the reachability analysis and enables termina-
tion on infinite state spaces, but can also yield spurious counterexamples. To
recognize them, Forester was, in the previous SV-COMP [8], modified to run
backwards (not using any abstraction) along a suspected error trace. Together
with using predicate language abstraction of TAs—which collapses TA states
intersecting with the same predicate languages, and which can be refined by
adding more predicate languages—a counterexample-guided abstraction refine-
ment (CEGAR) [6] loop is obtained.

The backward run is performed over a trace consisting of micro-instructions
used by Forester. The trace leads from the beginning of the analysed pro-
gram to a line where the given specification was found broken. Forester then
precisely reverts all micro-instructions along the trace starting from its end. For
example, when a new state of an FA was created in the forward run, Forester
removes it in the backward run. The abstraction is reverted by intersecting FAs
from the forward and backward run. If the intersection is empty, Forester
reports a spurious counterexample, derives new predicates to refine the abstrac-
tion, and restarts the analysis. The new predicate languages are encoded by TAs
selected from the FA obtained in the backward run at the point where the empty
intersection with the forward run was detected. Otherwise, if the backward run
reaches the beginning of the trace, the counterexample is reported as real.

For SV-COMP 2017, we extended the backward run and predicate language
abstraction from plain FAs (done in [8]) to HFAs, which requires one to take into
account boxes. In particular, if the original algorithms were used, it may happen
that some subgraphs would be folded into a box in the forward run, while they
would not be folded into this box in the backward run, meaning that the general
structure of the FAs would be different. The intersection operation (which does
not consider the semantics of boxes) would then determine that languages of
the corresponding HFAs do not intersect. This would significantly decrease the
precision of the operation. One option how to address this issue and increase the
precision would be to modify the intersection operation to take into account the
semantics of boxes and make it try to unfold them on the fly. We take a different
approach, which enables us to successfully a larger class of programs.

Our way of dealing with the issue is to keep the HFAs obtained during the
backward run compatible with the HFAs in the forward run. The compatibil-
ity intuitively means that the two HFAs partition the same heaps in the same
way, in other words, if a heap is accepted by both HFAs, it is decomposed into
the same components and the same boxes in both HFAs. When compatibility
is enforced, we can (i) avoid inner inspection of boxes during the intersection
operation, (ii) enable precise reversion of micro-instructions, and, as a side-effect,
(iii) use a simple standard TA intersection operation performed component-wise



Forester: From Heap Shapes to Automata Predicates 367

on the HFAs. To maintain the HFAs in the backward compatible, we needed to
significantly alter instructions used therein (previously, no structural constraints
were imposed on the FAs; in order to deal with their different interconnection
structure, a more complex intersection operation was needed).

The operations that are the most challenging to revert in the backward run
are the following: folding (which is, in fact, performed together with abstraction
in a loop of the form fold, abstract, fold, abstract, and so on until a fixpoint is
reached), unfolding, and normalization. The normalization removes cut-points
that are no longer needed, glues together TAs that stop being separated by cut-
points, and orders component TAs in an FA in order to transforms the given
HFA into a so-called canonicity-respecting form needed for testing inclusion. The
reversion of folding then needs to guarantee that the sub-graphs in the folded box
will appear in the correct components after the operation (taking into account
that folding can be done multiple times during a single abstraction). On the other
hand, the reversion of unfolding needs to guarantee that the unfolded box will
be folded back into a box within the correct component. Lastly, the reversion of
normalization needs to cut and re-order components into correct places. A more
precise description of the described methods can be found in [7].

2 Tool Architecture

Forester is implemented in C++11 as a GCC plugin using the Code Listener
framework [4]. The representation of a program obtained through Code Listener
is translated into Forester’s own internal microcode, which is symbolically exe-
cuted. Forester uses the Vata library [5] for representation and manipulation
with nondeterministic TAs (NTAs). Vata contains an optimized implementa-
tion of efficient algorithms for dealing with TAs, including operations such as
state reduction of NTAs and testing their language inclusion, which is a cru-
cial operation in Forester for determining whether an execution branch has
reached a fixpoint.

3 Strengths and Weaknesses

One of the most important features of Forester is that it is sound (wrt the
intermediate code obtained from GCC, which may have already removed some
possible behaviours of the original code; e.g., GCC already fixes the order of
evaluation of a function’s parameters), i.e., if it answers TRUE, there is indeed
no bug in the program. Moreover, due to the recent improvements in Forester
regarding counterexample-based abstraction refinement [7], the number of false
positives (i.e., wrong answers FALSE ) on the benchmark of SV-COMP 2017
is significantly reduced. Concretely, the new version gets no false positives,
which gives us approximately 40% more points than we would have obtained
with the version of Forester from SV-COMP 2016, in particular on examples
that contain DLLs and need to perform abstraction refinement. Forester can
also output UNKNOWN if it establishes that it cannot give a correct answer.



368 L. Hoĺık et al.

This happens when the tool exceeds the time given by the SV-COMP rules—e.g.,
when searching for a shape invariant not expressible using HFAs—or upon detec-
tion of an unsupported feature of C. Forester specialises almost exclusively
in pointer manipulations and inference of complex shape properties of pointer
structures. It does not implement advanced syntactic features such as function
pointers, heavily used in the LDV benchmark, but also more basic features such
as arrays, unions, recursion, arithmetic, or bit operations.

The formalism of HFAs allows Forester to represent in a quite precise way
the invariant of rather complex data structures, such as skip lists of 2 or 3 levels,
various flavours of nested lists, or trees with parent and root pointers. The used
representation is, moreover, quite compact, and kept small via simulation-based
reduction of NTAs.

4 Tool Setup, Configuration, and Witnesses

The distribution of Forester for SV-COMP 2017 is available from the
web page of Forester1 from the link highlighted as the SV-COMP 2017
binary version. The tool is provided in the form of a shared object
library libfa.so together with a Python wrapper sv comp run.py. The file
README-FORESTER-SVCOMP-2017 describes the dependencies of Forester and
parameters of the Python script.

The sv comp run.py script is run as follows:

sv comp run.py [--help] <source>
--properties <prp> --trace <trace>

where <trace> is the output file for a (violation/correctness) witness, <prp>
is the path to the property file, and <source> is the verified program. When
Forester is run within the BenchExec framework, most of the parameters are
set automatically by its BenchExec wrapper script. The only exception is the
parameter --trace, which must be defined manually in an option node of the
XML input file of BenchExec.

The format of a violation witness is an automaton, represented using
GraphML (an XML schema), that represents a buggy trace through the pro-
gram, while the format of a correctness witness is (again) a GraphML automa-
ton whose states correspond to loop points in the program, and are further
annotated (using an XML node with the key automaton) by a representation
of the set of FAs over-approximating the set of reachable program configura-
tions at the given state. Forester participates only in the MemSafety-Heap
and ReachSafety-Heap categories and opts out from the rest.

5 Software Project and Contributors

Forester has been under development at Brno University of Technology
since 2010. Forester and the Vata library are both licensed under GPLv3.
1 http://www.fit.vutbr.cz/research/groups/verifit/tools/forester.

http://www.fit.vutbr.cz/research/groups/verifit/tools/forester


Forester: From Heap Shapes to Automata Predicates 369

The source code of Forester is available at https://github.com/martinhruska/

forester/. The authors of this paper are currently the only people involved in its
development.

Acknowledgement. Supported by the Czech Science Foundation (project 17-
12465S), the BUT FIT project FIT-S-17-4014, and the IT4IXS: IT4Innovations Excel-
lence in Science project (LQ1602). Martin Hruška is a holder of the Brno Ph.D. Talent
Scholarship, funded by the Brno City Municipality.

References

1. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. Formal Methods Syst. Des. 41(1), 83–106
(2012)

2. Hoĺık, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully automated
shape analysis based on forest automata. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 740–755. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 52

3. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. STTT 14(2), 167–191 (2012)

4. Dudka, K., Peringer, P., Vojnar, T.: An easy to use infrastructure for building static
analysis tools. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EURO-
CAST 2011. LNCS, vol. 6927, pp. 527–534. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27549-4 68

5. Lengál, O., Šimáček, J., Vojnar, T.: VATA: a library for efficient manipulation
of non-deterministic tree automata. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 79–94. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 7

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

7. Hoĺık, L., Hruška, M., Lengál, O., Rogalewicz, A., Vojnar, T.: Counterexample val-
idation and interpolation-based refinement for forest automata. In: Bouajjani, A.,
Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 288–309. Springer, Cham
(2017). doi:10.1007/978-3-319-52234-0 16

8. Hoĺık, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.:
Run Forester, Run Backwards!. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 923–926. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 61

https://github.com/martinhruska/forester/
https://github.com/martinhruska/forester/
http://dx.doi.org/10.1007/978-3-642-39799-8_52
http://dx.doi.org/10.1007/978-3-642-39799-8_52
http://dx.doi.org/10.1007/978-3-642-27549-4_68
http://dx.doi.org/10.1007/978-3-642-27549-4_68
http://dx.doi.org/10.1007/978-3-642-28756-5_7
http://dx.doi.org/10.1007/978-3-642-28756-5_7
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-319-52234-0_16
http://dx.doi.org/10.1007/978-3-662-49674-9_61
http://dx.doi.org/10.1007/978-3-662-49674-9_61

	FORESTER: From Heap Shapes to Automata Predicates
	1 Verification Approach
	2 Tool Architecture
	3 Strengths and Weaknesses
	4 Tool Setup, Configuration, and Witnesses
	5 Software Project and Contributors
	References


