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Abstract. Spen is a solver for a fragment of separation logic (SL)
with inductively-defined predicates covering both (nested) list struc-
tures as well as various kinds of trees, possibly extended with data.
The main functionalities of Spen are deciding the satisfiability of a for-
mula and the validity of an entailment between two formulas, which
are essential for verification of heap manipulating programs. The solver
also provides models for satisfiable formulas and diagnosis for invalid
entailments. Spen combines several concepts in a modular way, such as
boolean abstractions of SL formulas, SAT and SMT solving, and tree
automata membership testing. The solver has been successfully applied
to a rather large benchmark of various problems issued from program
verification tools.

1 Introduction

For analyzing programs with dynamic memory, separation logic (SL) is an estab-
lished and fairly popular logic introduced by Reynolds et al. [11]. The high
expressivity of SL, its ability to generate compact proofs, and its support for
local reasoning motivated development of many tools for automatic reasoning
about programs with complex dynamic linked data structures. These tools aim
at establishing memory safety properties and/or inferring shape properties of
the heap. The tools often build on (semi-)decision procedures for checking sat-
isfiability and entailment problems in SL.

Our tool Spen1 provides (semi-)decision procedures for the most commonly
considered symbolic heaps fragment of SL, extended with user-defined inductive
predicates to specify data structures of an unbounded size. Because unrestricted
definitions of inductive predicates make the entailment problem for the fragment
undecidable [3], only semi-decision procedures have been proposed, e.g., in [2,4].
Iosif et al. [10] identified a rather large class of inductive definitions for which the
entailment problem is decidable, although with a high complexity. Spen focuses
on a smaller class of inductive definitions that is, however, expressive enough to
specify complex dynamic data structures, such as skip lists, lists of circular lists,
AVL trees, or binary search trees.
1 https://github.com/mihasighi/spen.
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The chosen class of inductive definitions enables the design of efficient (semi-)
decision procedures for satisfiability and entailment [6,8]. The key idea used for
satisfiability checking in Spen is to exploit the semantics of restricted induc-
tive definitions and of separating conjunction to build an equisatisfiable boolean
abstraction of the formula. For entailment checking, the idea is to reduce the
problem of checking ϕ ⇒ ψ to the problem of checking a set of simple entail-
ments where the right-hand side is an inductive predicate atom. The com-
positionality of this reduction leads to high efficiency (the simple entailments
can be checked independently) and to a capability to provide fine diagnosis for
invalid entailments.

The current version of Spen improves on the ones reported in [6,8] in several
directions. First, we introduced caching of constructions and results obtained
from checking simple entailments in order to increase its efficiency. Second, the
wrappers calling the SAT and SMT solvers have been refined to generate smaller
formulas and to exploit the incrementality feature of underlying solvers. Third,
we improved the diagnosis produced by Spen. For satisfiability checking, Spen
now provides either a model of a satisfiable formula or an unsatisfiable core; for
entailment checking, Spen provides a proof witness for valid entailments and a
diagnostic information otherwise.

Spen has been successfully tested on a quite large benchmark. The first
version of Spen participated in the SL-COMP’14 contest [15] where it won one
of its divisions and was second in another one. The later extensions now allow
Spen to handle a richer fragment than those considered in the competition.
Moreover, the improvements above lead to better execution times (e.g., by 10%
within the SL-COMP’14 division won by the first version of Spen and by 30%
on the division where Spen was the second).

Spen is not the only solver for SL. The existing solvers differ in the fragment
considered (Cyclist [2], Slide [9]) and/or the techniques used (Asterix [12],
Dryad [14], GRASShopper [13], Sleek [4]). A detailed comparison with these
solvers is beyond the scope of this paper—we refer the reader to the survey
in [6,8,15].

2 Logic Fragment

Spen deals with decision problems in a fragment of SL, denoted as SLID, that
combines the symbolic heaps fragment of SL [1] with user-defined inductive pred-
icates describing various kinds of lists (possibly nested, cyclic, or equipped with
skip links) or trees, possibly extended with data constraints.

Syntax: We write X,Y,Z to denote location variables, d to denote data variables,
and x, y, z for both kinds of variables. We use the vector notation �x to abbreviate
tuples. We denote by ρ the tuples built from pairs of field labels and variables
that specify structured values. We assume a finite set P = {P1, . . . , Pn} of pred-
icate symbols, each with an associated arity, and a special location variable nil.
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A symbolic heap formula ψ is a formula of the form ∃�x · Π ∧ Σ where Π is a
pure formula and Σ is a spatial formula with the following syntax:

Π : := X = Y | X �= Y | Δ | Π∧ Π Σ : := emp | X �→ ρ | P (X,�x) | Σ∗Σ

Here, Δ is a constraint over data variables. We let it unspecified, though Spen
presently supports the first-order theory over multisets of integers with integer
linear constraints. The spatial atoms (i.e., the empty heap, the heap cell allocated
at X, resp. the heap region shaped by some predicate P ∈ P) are composed by
the separating conjunction “∗”. An SLID formula ϕ is a set of symbolic heaps
interpreted as a disjunction ∨iψi.

Predicates P ∈ P are defined by a set of inductive rules of the form ψ ⇒
P (X,�x) where (X,�x) is a tuple of distinct variables including all free variables
in the symbolic heap ψ (the rule body). X is called the root node of the heap
segment defined by P . A rule is called a base rule if its spatial part is emp, i.e.,
an empty heap; otherwise, it is an inductive rule.

Fragments: Spen considers a restricted class of inductive rules such that the
defined predicates specify (possibly empty) heap segments connecting (by loca-
tion fields) the root location X with all locations in the heap or nil. The restric-
tions have been defined formally in [6,8]. They mainly require, for each inductive
predicate P , the presence of a unique base rule and inductive rules where the
root X points to a memory cell that contains at least one field from which
another heap specified by P starts. The fragment defined in [6], called SLIDL , can
describe various kinds of lists that can be singly- or doubly-linked, cyclic, nested,
and can have skip links. It does not permit data constraints and inductive tree
structures. On the other hand, the fragment SLIDD defined in [8] permits data
constraints and can describe tree structures of bounded width, such as sorted
list segments, AVL trees, binary search trees, but not nested cyclic lists.

Decision Problems: For both fragments above, Spen considers the problems
of checking satisfiability of a formula, i.e., checking whether |= ϕ holds, and
the validity of an entailment ϕ ⇒ ϕ′ where the symbolic heaps of ϕ′ can be
quantified only over data variables. A simple example of an entailment problem
in SLIDL considered by Spen is:

∃Y,W. X �= Z ∧ X �→ {(next, Y )}∗sll(Y,W )∗W �→ {(next, Z)} ?⇒ sll(X, Z),

which, intuitively, checks whether a composition of two memory cells specified
by the points-to atoms X �→ {(next, Y )} and W �→ {(next, Z)} and the predicate
atom sll(Y,W ) describes a set of heaps that are all also models of the predicate
sll(X, Z) defining an acyclic singly-linked list segment between X and Z.
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3 Satisfiability Checking
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Fig. 1. Spen workflow for satisfiability checking

Given a set of inductive defini-
tions P and a symbolic heap ψ,
the procedures for checking satis-
fiability in Spen follow the work-
flow given in Fig. 1. The satisfi-
ability checking of an SLID for-
mula ϕ makes a classic use of this
basic procedure. The crux of the
procedures for both fragments is
the definition of a boolean for-
mula B[ψ], called boolean abstrac-
tion, such that the data-free part
of ψ is satisfiable iff B[ψ] is satis-
fiable [6,7].

Once the boolean abstraction
B[ψ] is computed, Spen queries a
SAT solver (currently, minisat2)
for the satisfiability of B[ψ]. If
B[ψ] is unsatisfiable, Spen can
return an unsatisfiable core of ψ, deduced from an unsatisfiable core of B[ψ].
If B[ψ] is satisfiable and ψ ∈ SLIDL , Spen has the option of returning a model of
ψ obtained from a model of B[ψ] by unfolding predicate atoms corresponding
to non-empty heap segments. The unfolding of predicate atoms is done twice
to emphasize the non-emptiness of the segment. For ψ ∈ SLIDD , the satisfiability
checking continues by constructing a formula Δψ that conjuncts the data part of
ψ with the data parts obtained by unfolding the non-empty heap segments given
by the model of B[ψ]. To check the satisfiability of Δψ, Spen queries an SMT
solver for the theory of multisets with integer data (currently, Spen implements
a wrapper for the UFLIA theory of z3 [5]).

If the boolean abstraction B[ψ] is satisfiable, it is then used to normalize the
spatial part of ψ, which is a step used by entailment checking too. This process
saturates the pure part of ψ with (dis-)equalities between locations variables and
removes predicate atoms that correspond to empty heap segments, producing
a normalized formula ψ′.

4 Entailment Checking

To check the validity of an entailment ϕ1 ⇒ ϕ2, Spen uses a sound procedure to
deal with disjunctive formulas: it checks that for every disjunct ψ1 in ϕ1, there is
a disjunct ψ2 of ϕ2 such that ψ1 ⇒ ψ2. The procedure for deciding the validity
of entailments between symbolic heaps follows the workflows given in Figs. 2 and
3 (the theoretical foundations were established in [6,8]). The two formulas are
first checked for satisfiability and normalized using the procedures from Sect. 3.
2 Available at http://minisat.se.

http://minisat.se
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Fig. 2. Spen workflow for entailment in SLID
L

If one of the two formulas is
unsatisfiable, then the validity
of the entailment can be already
determined, e.g., if ψ1 is unsat-
isfiable then the entailment is
valid. When both formulas are
satisfiable, Spen offers two dif-
ferent procedures tuned for each
fragment of SLID.

For the fragment SLIDL , Spen
reduces the entailment problem
ψ1 ⇒ ψ2 to a set of entailment
queries of the form ψ1[a] ⇒ a,
called simple entailments, where
ψ1[a] is a sub-formula of ψ1

and a is a (points-to or induc-
tive) spatial atom of ψ2 (there
will be one such entailment for
each spatial atom a in ψ2). Intu-
itively, the sub-formula ψ1[a]
describes the region of a heap modelled by ψ1 that should satisfy a. The pro-
cedures for computing ψ1[a] and testing simple entailments use an intermediary
graph representation of symbolic heap formulas, called an SL-graph and denoted
G[ψ]. Basically, nodes of G[ψ] represent sets of aliased variables according to the
pure part of ψ, and edges represent dis-equalities and spatial atoms of ψ, e.g., a
spatial atom P (X,Y, �x) is represented by a directed edge from X to Y labeled
by P (�x). Thus, when a is a predicate atom P (X,Y, �x), ψ1[a] is obtained from the
SL-graph of ψ1 by selecting the edges reachable from X and co-reachable from
Y . The graph selected for ψ1[a] is transformed into a tree t1, which is tested for
membership in the language of a tree automaton built from the rules defining P
for the atom a = P (X,Y, �x).
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Fig. 3. Spen workflow for entailment in SLID
D

For the fragment SLIDD , Spen
implements a proof search strategy
for the entailment problem ψ1 ⇒
∃�d. ψ2. The strategy computes a
sequence of formulas ∃�d1. ψ1

1 , . . . ,

∃�dn. ψn
1 such that (1) ∃�di. ψi

1 ⇒
∃�di+1. ψi+1

1 and (2) ∃�dn. ψn
1 is

syntactically equivalent to ∃�d. ψ2.
The entailments in point (1) are
obtained by applying the induc-
tive rules and lemmas obtained
automatically thanks to restriction
required on inductive definitions.
The procedure requires to check
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Table 1. Experimental results on an Intel(R) Core(TM) i7-2600 CPU at 1.60 GHz

Fragments Benchmark Size Time [s] SL-COMP’14 results

SLID
L SLID

D SpenL SpenD Time [s] StarExec/solver

� � sll0 sat 110 11.20 11.28 (I) 1.06/Asterix, (II) 3.27/Spen

� � sll0 entl 292 34.45 34.94 (I) 2.98/Asterix, (II) 7.58/Spen

� � FDB entl 43 1.08 1.00 (I) 0.61/Spen, (II) 43.65/Sleek

� FDB entl+ 55 0.65 — —

entailments between data constraints, which is done using the previously men-
tioned wrapper to the SMT solver.

For both procedures, when the input entailment ψ1 ⇒ ∃�d. ψ2 holds, Spen
has the option of providing a proof witness that either indicates the fact that
ψ1 is unsatisfiable or it consists of the normalized forms of ψ1 and ψ2 and the
mapping of sub-formulas in ψ1 to atoms of ψ2. When the input entailment is
not valid and the procedure terminates, Spen provides a diagnosis that explains
why the entailment fails.

5 Experimental Results

Spen has been applied to a benchmark of 578 problems (available in the repos-
itory), 90% obtained from verification conditions of iterative programs on com-
plex dynamic data structures. The remaining problems are crafted to test the
capabilities of the solver. Tables 1 and 2 provide an overview of results obtained
by Spen on this benchmark.

The benchmark of SLIDL problems includes three divisions of SL-COMP’14:
satisfiability and entailment problems for acyclic singly linked lists (sll0 sat
resp. sll0 entl), and entailment checking for formulas describing more
complicated types of linked lists, e.g., doubly-linked lists, skip lists, and nested
lists (FDB entl). Spen spends less than 0.05 s on 90% of the problems with the
maximum time of 0.5 s; these times include calls to a SAT solver. The benchmark
FDB entl+ includes the problems not in the SL-COMP’14 benchmark (e.g., for-
mulas describing lists of cyclic lists). The reported times in the last column have
been obtained in 2014 on the StarExec3 platform.

Table 2. Results for SLID
D

Benchmark Size Time [s]
sll0 sorted 16 0.45
BST 45 1.67
AVL 22 1.21
RBT 21 3.61

The benchmark of SLIDD problems (see
Table 2) includes verification conditions for prov-
ing the correctness of iterative procedures
(delete, insert, search) over recursive data struc-
tures storing integer data: sorted lists, binary
search trees, AVL trees, and red-black trees.
Spen spends less than 0.4 s on each problem,
3 www.starexec.org, an Intel(R) Xeon(R) CPU E5-2609 at 2.40 GHz of and 10 MB

cache.

http://www.starexec.org/
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including calls to SAT and SMT solvers. The first three lines of Table 1 demon-
strate that the two approaches implemented in Spen (based on tree automata—
column “SpenL”—and on proof search—column “SpenD”) are not only com-
plementary but also comparable on the common fragment. The improvements
discussed in this paper reduce the execution times by 10% within the division
sll0 entl and by 30% within FDB entl w.r.t. the old version [6].
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