
Microprocessors and Microsystems 52 (2017) 145–159

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Functional verification based platform for evaluating fault tolerance

properties

Jakub Podivinsky

∗, Ondrej Cekan , Jakub Lojda , Marcela Zachariasova , Martin Krcma ,
Zdenek Kotasek

Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Bozetechova 2, 612 66 Brno, Czech Republic

a r t i c l e i n f o

Article history:

Received 9 January 2017

Revised 15 March 2017

Accepted 4 June 2017

Available online 12 June 2017

Keywords:

Functional verification

Robot controller

Electro-mechanical systems

Fault tolerance

Maze generation

a b s t r a c t

The fundamental topic of this article is the interconnection of simulation-based functional verification,

which is standardly used for removing design errors from simulated hardware systems, with fault-

tolerant mechanisms that serve for hardening electro-mechanical FPGA SRAM-based systems against

faults. For this purpose, an evaluation platform that connects these two approaches was designed and

tested for one particular casestudy: a robot that moves through a maze (its electronic part is the robot

controller and the mechanical part is the robot itself). However, in order to make the evaluation platform

generally applicable for various electro-mechanical systems, several subtopics and sub-problems need

to solved. For example, the electronic controller can have several representations (hard-coded, proces-

sor based, neural-network based) and for each option, extendability of verification environment must be

possible. Furthermore, in order to check complex behavior of verified systems, different verification sce-

narios must be prepared and this is the role of random generators or effective regression tests scenarios.

Also, despite the transfer of the controller to the SRAM-based FPGA which was solved together with an

injection of artificial faults, many more experiments must be done in order to create a sufficient fault-

tolerant methodology that indicates how a general electronic controller can be hardened against faults

by different fault-tolerant mechanisms in order to make it reliable enough in the real environment. All

these additional topics are presented in this article together with some side experiments that led to their

integration into the evaluation platform.

© 2017 Elsevier B.V. All rights reserved.

1

T

c

t

r

l

i

t

o

f

t

i

C

i

d

R

f

c

s

r

t

m

m

b

-

A

p

i

g

h

0

. Introduction

Digital systems play an important role in our everyday lives.

hey are widely used in industry, medicine and other safety criti-

al sectors. Not only the loss of a huge amount of money, but also

he loss of human lives may occur in case of their failure. The cur-

ent trend is that the complexity of digital systems is rising, which

eads to an increased susceptibility to faults. It is possible to spec-

fy two main sources of faults [1] : 1) Design faults (bugs) are always

he consequence of an incorrect design, an ambiguous specification

r misinterpretation of the specification and 2) Hardware/physical

aults (defects) which arise during manufacturing or system opera-

ion.

The approach dealing with design faults is called functional ver-

fication [2] which currently has an irreplaceable position in the
∗ Corresponding author.

E-mail addresses: ipodivinsky@fit.vutbr.cz (J. Podivinsky), icekan@fit.vutbr.cz (O.

ekan), ilojda@fit.vutbr.cz (J. Lojda), zachariasova@fit.vutbr.cz (M. Zachariasova),

krcma@fit.vutbr.cz (M. Krcma), kotasek@fit.vutbr.cz (Z. Kotasek).

h

f

e

i

ttp://dx.doi.org/10.1016/j.micpro.2017.06.004

141-9331/© 2017 Elsevier B.V. All rights reserved.
evelopment cycle of digital systems. It runs in a simulation (RTL -

egister-Transfer Level simulators are typically used, like QuestaSim

rom Mentor Graphics or VCS from Synopsys) and uses sophisti-

ated testbenches which are prepared according to UVM (Univer-

al Verification Methodology) [3,4] which ensures scalability and

e-usability. Functional verification checks whether a hardware sys-

em satisfies a given specification. The main purpose is to find as

any design faults as possible before the system is deployed. The

ain principle of functional verification is to apply a huge num-

er of input stimuli to the input ports of the verified circuit (DUT

 Device Under Test) and on the input ports of the reference model.

fterwards, the behavior of DUT and the reference model is com-

ared for these stimuli. The reference model is prepared by a ver-

fication engineer in SystemVerilog, C/C++ or other supported lan-

uage and implements the reference behavior.

Coverage is an important metric in verification. It measures

ow well input stimuli cover the behavior of DUT and provides

eedback that determines when the verification process can be

nded. Depending on the coverage criterion considered, the follow-

ng coverage metrics can serve as an example:

http://dx.doi.org/10.1016/j.micpro.2017.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.06.004&domain=pdf
mailto:ipodivinsky@fit.vutbr.cz
mailto:icekan@fit.vutbr.cz
mailto:ilojda@fit.vutbr.cz
mailto:zachariasova@fit.vutbr.cz
mailto:ikrcma@fit.vutbr.cz
mailto:kotasek@fit.vutbr.cz
http://dx.doi.org/10.1016/j.micpro.2017.06.004

146 J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159

t

t

e

m

g

b

t

g

s

S

f

a

t

o

S

i

p

2

f

fi

o

g

s

n

u

l

s

m

3

s

u

d

p

a

e

I

t

t
• Code coverage measures how well input stimuli cover the source

code of DUT. Typical code coverage metrics are toggle, state-

ment, branch, condition, expression or FSM coverage.

• Functional coverage measures how well input stimuli cover the

functional specification of DUT. The user defines the coverage

points for the functions to be covered in a verified circuit, e.g.:

Did the verification test cover all possible commands or did the

simulation trigger a buffer overflow?

Moreover, standard languages, methodologies and libraries were

defined for functional verification. The most commonly known

ones are the SystemVerilog IEEE language standard [5] , Universal

Verification Methodology and the open-source UVM library (with

all the basic components of verification environments).

Of course, UVM-based functional verification does not guaran-

tee 100% correctness of the system as formal verification does. The

reason is that formal verification is based on an exhaustive explo-

ration of the state space of DUT, hence it is potentially able to

formally prove its correctness. However, the main disadvantage of

this method is a state space explosion for real-world systems and

the need to provide formal specifications of the behavior of the

system which makes this method often hard to use. On the other

hand, UVM-based functional verification is much easier to use and

aims at covering properties determined by the specification, not

the whole state space. Nevertheless, if these properties are selected

accurately, all key aspects of the system are properly verified.

The approaches which deal with hardware/physical faults are

techniques called Fault avoidance or Fault tolerance [6] . Fault avoid-

ance is mainly obtained by the use of radiation hardened technolo-

gies, improved design of storage elements or asynchronous circuits.

Fault tolerance is the ability of a system to continue performing its

correct function even in the presence of unexpected faults. Many

fault-tolerant methodologies have been developed inclined, among

others, to Field Programmable Gate Arrays (FPGAs) and new ones are

under investigation [7] , because FPGAs are becoming more popu-

lar due to their flexibility and reconfigurability. The second reason

why so many techniques are inclined to FPGAs is their sensitivity

to faults and ability to be reconfigured in the case of fault occur-

rence. FPGAs are composed of configurable logic blocks [8] which

are connected by programmable interconnections. The configura-

tion is stored as a bitstream in SRAM memory. The problem is that

FPGAs are quite sensitive to faults caused by charged particles [9] .

This particle can induce an inversion of a bit in the bitstream and

this may lead to a change in its behaviour. This event is called Sin-

gle Event Upset (SEU).

It is important to test and evaluate these techniques. Various

approaches to the evaluation of fault tolerance exist and some of

them are performed on a theoretical level, for example, a simula-

tion method for SEU emulation is presented in [10] . Another ap-

proach is in the use of fault injection directly into the design im-

plemented in FPGA. Special evaluation boards are developed for

these purposes, one of them is presented in [11] or [12] .

The systems implemented as fault-tolerant very often consist

of two parts - an electronic one and a mechanical one. The me-

chanical part is controlled by its electronic controller. It can be

stated that such areas exist in which electro-mechanical appli-

cations are implemented as fault-tolerant - aerospace and space

applications can serve as an example. Until now, our work was

dedicated to verification of fault-tolerant qualities that allow us

to check just the resilience of electronic components. However,

for electro-mechanical systems, the approach must be different. It

must be possible to check what are the reactions of the mechani-

cal component if the functionality of its electronic controller is cor-

rupted by external attacks.

This paper is organized as follows. The goals of our research

are described in Section 2 . Section 3 introduces three phases of
he evaluation process based on our platform. We focus on in-

roducing every phase theoretically and at the same time, we

laborate on making the platform general for various electro-

echanical systems. The first phase is mentioned in Section 4 to-

ether with verification environment architecture. Different possi-

ilities for implementing the electronic controller (DUT) are men-

ioned in Section 5 . This can be considered as the first step to

eneralization. The second step is preparing various verification

cenarios for different DUTs and this process is summarized in

ection 6 . FPGA-based verification environment which is needed

or the second phase is presented in Section 7 . Principles which

re used for checking reactions of the mechanical part in the

hird phase are introduced in Section 8 . For the demonstration

f our evaluation platform we created a case-study presented in

ection 9 which is supplemented by experiments and their results

n Section 10 . Section 11 summarizes the results and proposes our

lans for future research.

. Goals of the research

Based on our previous analysis of actual research in the area of

ault tolerance methodologies and their evaluation, we have identi-

ed the main goals that we would like to focus on in our research

f fault-tolerant FPGA-based systems.

• The first point is to develop an evaluation platform based on

FPGA technology for testing fault tolerance techniques . The ba-

sic concepts and the first version of the evaluation platform

were presented in our previous work [13] . Based on experi-

ments with our platform we realized the necessity to automate

the process of a fault impact evaluation. We found functional

verification as an appropriate technique for this purpose.

• The important task is to propose the process describing the use

of the developed evaluation platform for fault tolerance properties

improvement in general electro-mechanical systems. It means

that our evaluation platform will be supplemented with a de-

scription on how to configure the environment for the selected

experimental system, especially how to evaluate fault tolerance

properties and search for the possibilities of its improvement.

• As was mentioned above, we need to take into account the me-

chanical part which is usually driven by an electronic controller

in real systems. Therefore, the verification environment should

take into account also the operation of the mechanical part

when evaluating the correctness of operations.

The following sections describe our progress in achieving these

oals. Firstly, the basic concept of the evaluation process is de-

cribed and is divided into three phases. Each of these phases

eeds a specific verification environment with a specific config-

ration, so the evaluation platform is described on a theoretical

evel for every phase separately. The evaluation platform is demon-

trated on one case-study: a robot searching a path through a

aze and its electronic controller.

. Basic concept of the evaluation process

The proposed process of the fault impact evaluation, which is

hown in Fig. 1 , is divided into three phases. In the first phase, we

se the simulation-based functional verification where the VHDL

escription of the electronic controller is used as the DUT. In this

hase, the correctness of the electronic controller design is evalu-

ted. The main output of the first phase is a test on whether the

lectronic controller works correctly according to the specification.

t is important because we have to ensure that the electronic con-

roller does not contain any functional errors in the implementa-

ion. It is also important to point out that in this phase we acquire

J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159 147

YES

Functional Verification of
the Original Design

Verification
Environment

Reference
Model

List of
Perspective
Scenarios

Functional
Error?

Repair

Functional Verification of Electronic .
Part with Fault Injection

 List of Faults with an Impact
on the Electronic Part

 Monitoring Impact of the Critical Faults
on the Mechanical Part

Mo

NO

c c

1. phase
2. phase

3. phase

Fig. 1. The flow of phases in the FT evaluation systems verification.

a

q

c

i

i

i

a

f

p

n

o

j

r

i

e

t

B

s

i

c

e

t

4

a

b

m

t

e

d

t

e

b

Fig. 2. General verification environment for a single verification scenario.

m

T

p

m

t

d

s

t

a

b

d

c

F

 set of verification scenarios that will also be used in the subse-

uent phase.

The second phase consists of the verification of the electronic

ontroller implemented into FPGA with the scenarios obtained dur-

ng the previous phase, but in addition, artificial faults are injected

nto FPGAs using implemented fault injector.

The analysis of the faults which corrupted the mechanical part

s the goal of the third phase. The outputs of the second phase

re previously verified verification scenarios supplemented by in-

ormation about injected faults and its impact on the electronic

art. The injected faults are divided into two categories, faults with

o impact on electronic part and faults which cause mismatches

n the output of the electronic part. Various strategies of fault in-

ection may be used in this phase (e.g. one fault for one verification

un, multiple faults in the same functional unit or multiple faults

n different functional units).

The development of the verification environment and a ref-

rence model for the electronic control unit (the electronic con-

roller) are the first steps towards this whole three-phase process.

oth of these activities are described in detail in this paper. The

econd step is to implement the DUT into the FPGA and achieve

nterconnection with the simulation environment of the mechani-

al part. The architecture of the verification environment with the

lectronic controller implemented in the FPGA is also presented in

his paper.

. The first phase - verification environment architecture

The verification environment architecture, its basic components

nd used techniques are described in this section. First, the UVM

ased verification environment for one verification scenario (one

odel of real environment, one task for electro-mechanical sys-

em) is presented, which forms the core of an extended verification

nvironment for multiple verification scenarios evaluation.

The verification environment for the electronic controller is

esigned according to UVM, so that it corresponds with current

rends and requirements. The basic architecture of the verification

nvironment with main components is shown in Fig. 2 . It should

e noted that the verification environment is connected with the
echanical part, especially the simulation of the mechanical part.

he mechanical part in real environment is controlled by the out-

uts of the electronic controller (DUT) while the outputs of the

echanical part (information from sensors) are inputs for the elec-

ronic controller. The information whether the DUT satisfies (or

oes not satisfy) specification and coverage report for the verified

cenario are the outputs of the verification environment. These are

he components of the system together with their description:

• The electronic controller under a verification which can be im-

plemented into FPGA in the next phase. Several approaches

how to implement DUT exist, they will be described in

Section 5 .

• The golden (reference) model implemented in C/C++ according to

the same specification as the electronic controller performs the

same operations as DUT.

• The sequence is the component which receives data from sen-

sors placed in the mechanical part. Received data are trans-

formed to the inputs of the verification environment.

• The driver sends input values (data from sensors) to reference

model and the DUT (electronic controller).

• The monitor reads the outputs from the DUT (instructions for

mechanical part) and forwards them to the scoreboard and to

the mechanical part which operates according to these values.

• The scoreboard compares the outputs of the monitor and ref-

erence model for equality and checks mismatches on the out-

puts. The detected mismatch shows that there are differences

between the DUT and the reference model outputs.

The presented verification environment is not able to evalu-

te multiple verification scenarios automatically so it must have

een extended by components such as verification scenarios ran-

om generator or a simulator of the mechanical part. All the final

omponents, their inputs, outputs and connections are shown in

ig. 3 and their description is as follows:

• The verification scenarios generator allows us to generate a suf-

ficient number of verification scenarios with respect to speci-

fied parameters in order to achieve the required coverage. In

our work, we use a verification scenario generator based on our

universal generating principle described in Section 6 .

• The mechanical part simulation replaces the real mechanical part

in case we do not have a real one.

• The UVM verification environment is the core of the extended

evaluation.

• Store the verification scenario allows us to use it in the second

phase which utilizes a fault injector (Fig. 1). A certain part of

the stored verification scenario is also a report about the cover-

age which was obtained by this scenario.

148 J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159

Fig. 3. Extension of the verification environment for multiple scenarios evaluation.

c

w

5

s

t

fi

a

t

m

a

f

p

U

c

c

e

d

r

p

n

a

s

u

I

d

t

c

t

f

t

u

t

5

p

t

r

T

i

e

p

w

i

t

f

t

e

m

f

s

p

s

e

[

n

• Merge the coverage achieved by the single verification scenario

is important in order to obtain a final coverage report gained

by stored sets of verification scenarios.

Fig. 3 also shows the outputs of the first phase of the fault im-

pact evaluation process presented in Section 3 which are Set of Ver-

ification Scenarios and obtained Total Coverage Report .

5. Electronic controller - implementation alternatives

As mentioned above, an electronic controller can be imple-

mented in several ways, each having different advantages and dis-

advantages. Several key features exist which must be taken into ac-

count. From one point of view it can be flexibility, scalability and

extensibility. Another point of view may be fault tolerance, dura-

bility and maintainability. From the economic point of view it is

the cost, power consumption and time to market (the difficulty of

development).

In this paper we mention three possibilities of controller imple-

mentation - a processor, a hard-coded controller and a controller

based on neural networks.

5.1. The use of processor as electronic controller of mechanical part

The usage of a processor as the controller is the most univer-

sal and flexible way of controlling the system. A lot of different

classes and types of processors are in the market and it is possible

to find a suitable device for the application. The main advantages

are the flexibility of the solution due to the possibility of changing

the software, short time to market and the low cost (if the proces-

sor is selected properly).

The usage of a processor also offers different ways to build a

fault-tolerant controller. The processor can be secured using hard-

ware redundancy - more processors can be used to build a robust

system, or the processor can be secured on the level of its inner
omponents. Another way is to secure the application at the soft-

are level using time and space redundancies [14] .

.2. Hard coded electronic controller

In this case, the controller is composed of components de-

cribed using a hardware description language (HDL). This solu-

ion is less flexible than the previous one, but it can be more ef-

cient. The hard coded controller can be designed directly to the

pplication in order to utilize resources effectively which can lead

o high performance and/or low power consumption. High perfor-

ance can be reached due to the possibility of utilizing high par-

llelism and application-designed specific computing units. The ef-

ective computing algorithms can then be implemented. The low

ower consumption is related to the effective usage of resources.

nneeded components can also be omitted (unlike in case of pro-

essor).

Several ways on how to ensure fault tolerance exist in this

ase. Replicating the whole system is the well known way, how-

ver in the case of hardcoding, it is easier to construct the redun-

ancy on the level of inner components - the computing units,

egisters, multiplexers and other components the system is com-

osed of. This makes it possible to secure only selected compo-

ents, therefore, making the fault-tolerant design more effective by

voiding the redundancy where it is not needed. The component

pecific techniques can be deployed as well. It is also possible to

se more specific techniques like securing using partial TMR [15] .

t is also possible to use different coding schemes for securing the

ata - for example, parity codes, BCH codes and others error de-

ection/correction codes. If the FPGA is used, the reconfiguration

an offer suitable tools for fault-tolerant techniques implementa-

ion [16] .

This solution can generally be very effective in relation to per-

ormance, power consumption and fault tolerance. However, the

ime to market is longer and costs can be higher than in case of

sing the processors. Nevertheless, this solution can be suitable for

asks with specific recommendations.

.3. The use of neural networks as fault-tolerant electronic controller

Artificial neural networks are one of the traditional disci-

lines in the field of artificial intelligence and softcomputing. Even

hough the neural networks were almost forgotten for some pe-

iod of time, at present their popularity is continually growing.

he main advantage of neural networks is their capability of learn-

ng and memorizing the data which make them suitable for differ-

nt tasks such as classification, function approximation, timeseries

rediction, etc. They are widely used, especially in the deep form

hich disposes of very interesting properties for the tasks such as

mage recognition. The neural networks are also used in control

asks [17] , the control of mobile robots included [18,19] . There-

ore, we are going to experiment with a neural-network-based con-

roller as well.

The neural networks dispose of interesting fault-tolerant prop-

rties which are used with different techniques. It is possible to

odify a learning algorithm to train the network, not only to per-

orm the task, but to be fault-tolerant as well [20] . It is also pos-

ible to retrain the network after a fault occurs [21] . Other ap-

roaches use adding an extra redundancy into the network [22] .

In our research we are dealing with the specific FPGA resource

aving implementation of neural networks called FPNN [23] . We

specially deal with its neural network approximation capabilities

24] and also with designing fault-tolerant techniques. In this man-

er, we designed the fault-tolerant type of FPNNs [25] .

J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159 149

6

a

d

a

c

a

s

f

C

{

r

c

g

t

a

p

r

f

p

-

t

s

a

t

e

s

s

t

t

6

s

w

d

n

[

[

W

w

fi

l

a

fi

s

a

t

Fig. 4. The detailed architecture for a probabilistic context-free grammar based

stimuli generation.

t

e

t

m

o

a

a

t

w

w

t

g

p

c

w

p

f

p

t

p

d

f

s

u

p

c

p

a

a

a

c

d
. Verification scenarios generation

A very important part in the verification process is preparing

nd applying input stimuli. Just by using a significant number of

iverse inputs, it is possible to cover most of the behavior of DUT

nd thus to be sure that DUT behaves as specified. When we

onsider the standard approach, stimuli are represented by trans-

ctions in the UVM-based verification environments. Transaction

tands for a setting of input ports of DUT in one clock cycle. So,

or example, when DUT has three input ports A (8 bits), B (16 bits),

 (1 bit), the transaction can be represented by a triplet of values

8’h87,16’h11FF,1’b0} which is applied on these input ports on the

ising edge of synchronization clock signal (or other specified syn-

hronization event).

Two approaches for preparing input stimuli exist:

• Directed stimuli - a verification engineer prepares transactions

manually. This approach is recommended at the beginning of

the verification process for checking basic scenarios.

• Pseudo-randomly generated stimuli - transactions are gener-

ated by a random generator according to the given constraints

(restrictions for values of inputs). That is the reason why this

approach is often called constraint-based generation. An exam-

ple of constraining an input is the following. Let us have an in-

put port A (8 bits), then a constraint can restrict the generated

values for this port in the range of 0–100 (from the possible

range 0–255).

In the following text, we will introduce the pseudo-random

eneration of stimuli using our proprietary generator. This genera-

or is unique in the way that it can be used for different scenarios

nd works with two formal models that significantly improves its

erformance. Afterwards, we will show how an evolutionary algo-

ithm can be used for preparing optimal regression suites for dif-

erent systems. The motivation for using regression suites is sim-

le. If there is a need for running verification of DUT repeatedly

 just to check that everything still works or after minor changes

o DUT (like small optimizations), it is worth using an optimized

mall suite of tests (input stimuli) with a high level of DUT cover-

ge rather than start verification from scratch every time (it is very

ime consuming).

The same applies to the evaluation platform. Depending on the

lectronic controller that is verified, we can either utilize direct

timuli, pseudo-randomly generated stimuli or an effective regres-

ion test suite (especially when we want to evaluate fault injec-

ion in the second and third phases of our evaluation process in-

roduced in Section 3).

.1. Pseudo-random generation of verification scenarios

Pseudo-random generation is also an integral part of our re-

earch. We are creating the solution for the stimuli generation

hich has to be versatile for our evaluation platform. We need a

ifferent stimuli for a different system that we verify. The origi-

al way of the generation that we presented in our previous paper

26] is generalized by using probabilistic context-free grammars

27] that we found as a suitable means for the stimuli generation.

e gained universal description of verification scenarios (stimuli)

hile maintaining our originally designed architecture. We bene-

t from grammar systems which allow us to generate a defined

anguage. This language will form stimuli for a given system. We

re also able to control the generation process through the de-

ned probabilities in the grammar. In our architecture, we use con-

traints which allow us to modify stimuli during their generation

nd verification.

In our previous research [26] , we proposed our solution of

he generator which was based on our own proprietary descrip-
ion of the stimuli. Although the designed architecture was gen-

ral, the description of the stimuli was not versatile for any sys-

em. A specific dependencies in stimuli creation had to be imple-

ented when a new system should be supported. About 13 types

f the constraints had to be implemented for valid generating of

ssembly programs for a RISC processor. The set of the constraints

lso increased with the inclusion of support for other systems. For

hese reasons, we were looking for another suitable solution that

ill be built on any mathematical apparatus. As the best solution,

e have found the use of the grammatical system [28] from the

heoretical computer science.

In our actual research, we use the probabilistic context-free

rammars. The probabilistic context-free grammar is the quintu-

let:

G = (N,T,R,S,P); where:

N is a finite set of non-terminal symbols.

T is a finite set of terminal symbols, applies N ∩ T = 0.

R is a finite set of rewrite rules with form A → α, where A ∈ N

a α ∈ (N ∪ T) ∗.

S is starting non-terminal.

P is a finite set of probabilities for rewrite rules.

The probabilistic context-free grammar looks like a common

ontext-free grammar, but it has the special set of probabilities

hich represent how likely a rewrite rule of the grammar is ap-

lied. It allow us to define the format of the stimuli through the

ormal description provided by grammars. We benefit from the

robability definition for the rules, because it allows us to con-

rol the application of the rules in the grammar and gives us the

ossibility to influence the stimuli creation. The probabilities are

efined statically for the grammar definition which is not optimal

or stimuli creation. Therefore, we extended this description with a

pecial logic that is described through the constraints which allow

s to dynamically change defined probabilities.

The constraints represent restrictions and limitations for the ap-

lication of the rewrite rules of the grammar and their use will

hange defined probabilities for specific rules during generation

rocess such that the result is a valid stimulus. After application of

ny rule, the eligible constraints are performed and the new prob-

bilities are set anywhere in the grammar.

The architecture of the generation is shown in Fig. 4 . The prob-

bilistic context-free grammar is defined in the input structure

alled Format , while special rules for restricting the grammar are

efined in the Constraints structure. For an easier description of

150 J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159

Fig. 5. The dependency between the optimization runtime and the level of opti-

mization.

e

t

t

g

n

t

a

s

w

i

l

t

m

[

o

t

i

7

v

t

e

r

s

F

i

g

v

u

T

a

the input structure, we use certain elements of the library Jinja2

[29] which is a templating system for the Python programming

language [30] . The templating system allows us to define cycles,

branches and other special macros in the structure description.

The preprocessing (Preprocess) expands these special macros and

a complete description of stimuli (Ext. Format) is obtained. The ex-

tended format suffices to be generated only when the original for-

mat is changed, otherwise, the generator works directly with this

extended format and is not generated any more.

The Ext. Format and the Constraints are processed by the core

of the generator. It performs the application of the rules from the

starting non-terminal with leftmost derivations. After the deriva-

tion of any rule is performed, the constraints for the relevant rule

are triggered and thus the new probabilities are set for the given

rules. Probabilities are adjusted using a special block Stochastic

Modifier . Through this, the next derivation valid for the given stim-

ulus is directed and prescribed constraints will be respected for

generating a valid one.

6.2. Regression test suites optimization using evolutionary algorithms

Our optimization technique was firstly introduced in paper

[31] and later on extended in paper [32] . It works off-line and

takes a suite of input stimuli that were evaluated in the process

of UVM-based functional verification and optimizes them automat-

ically using the genetic algorithm (one of the evolutionary algo-

rithms). The aim of optimization and the main contributions of this

technique are:

1. Eliminating the redundancy in the original suite of stimuli so

the optimized suite is smaller and therefore, it will be running

faster in simulation.

2. Preserving the same level of coverage (the term coverage was ex-

plained in Section 1) as was achieved by the original (unopti-

mized) suite of stimuli. It guarantees that the behavior of DUT

will be checked properly.

3. Reusing already created verification environment for running re-

gressions after minor changes in DUT are made so it is not nec-

essary to utilize a separate approach for regression testing.

Redundancy in the original suite of stimuli is caused by their

randomness. In the first phase of verification when DUT is firstly

created, redundancy in stimuli is often a beneficial factor [33] , be-

cause key properties of the system have a chance to be checked

more times (for example, we want to check multiplication, but it

is good to check it repeatedly with different data) and it is almost

always wanted. But after this phase, for example during regression

testing, the redundancy is not needed anymore (it is enough to

check every key property of the system just once), so it is good to

have regression stimuli that are effectively reduced from the orig-

inal suite and thus are running faster (in order to spend less time

by running regressions). That is the reason why we decided to ap-

ply our optimization after the first phase of verification with the

aim to reduce redundancy.

The survey of the proposed optimization technique follows; the

process of optimization is divided into several steps:

1. Run the UVM-based functional verification for a selected DUV

and collect stimuli until the threshold in coverage is reached.

2. Optimize stimuli by the proposed technique.

3. Use the optimized suite everytime regression testing is needed.

It is even possible to use existing verification environment for

running regressions.

The optimization technique incorporates the genetic algorithm

as the main optimization tool. As described in [34] , the genetic

algorithm employs a population of candidate solutions that are
volved through several generations. The quality of candidate solu-

ions is determined by the fitness function . According to the fitness,

he best solutions are selected and serve as parents for the next

eneration. Offsprings are created by mutation and crossover ge-

etic operators. If the algorithm works well, the average fitness of

he population is rising because profitable parts of the search space

re explored. At the same time, genetic operators ensure diversity,

o the algorithm is resilient to the problem of local optimum.

The main result is that the presented optimization technique

as able to reduce the number of stimuli to the 0.522% of the orig-

nal size and the resulting coverage statistics remained at the same

evel as was achieved by the original suite. What is more impor-

ant, the simulation runtime of the optimized regression suite was

uch shorter and was reduced by 98.1% . See more details in paper

32] .

Fig. 5 demonstrates the dependency between the achieved level

f optimization of the regression suite (the y axis in the graph) and

he time of optimization (the x axis in the graph).

It can be seen that the longer the optimization runs, the shorter

s the simulation runtime for regression testing.

. The second phase - evaluation platform architecture

The second phase of the evaluation process is the functional

erification of the design implemented into the FPGA. Moreover,

he fault injection into the FPGA is performed in this phase. The

xperimental platform which is composed of a few components

unning on a computer or on an FPGA evaluation board was de-

igned for these purposes:

1. software part of verification environment for the electronic con-

troller running on a computer,

2. software simulation environment for mechanical part simula-

tion running on a computer,

3. electronic controller implemented into FPGA, and

4. external fault injector [35] running on a computer which allows

us to simulate real faults in the FPGA.

The overall experimental platform interconnection is shown in

ig. 6 . The connection between a computer and an FPGA is real-

zed by JTAG and Ethernet. JTAG interface is used for FPGA pro-

ramming and the software and hardware part of verification en-

ironment are connected through Ethernet. The fault injector also

ses JTAG for placing faults into the FPGA configuration memory.

he description of the architecture of the verification environment

nd of the fault injection process follows below.

J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159 151

Fig. 6. The structure of the experimental platform.

Fig. 7. The general architecture of the FPGA-based verification environment.

7

w

i

i

r

t

b

i

a

a

f

m

t

I

F

w

t

i

c

v

t

t

w

p

b

r

Fig. 8. FPGA-based verification environment for multiple evaluation with fault in-

jection.

a

r

i

o

p

s

t

i

a

a

a

t

e

i

l

s

t

f

a

i

g

v

i

t

fi

a

.1. Architecture of FPGA-based verification environment

For these purposes, the FPGA-based verification environment,

hich is displayed in Fig. 7 , is derived from the version created

n the first phase. The architecture of the verification environment

s divided into two parts. The first part is the simulation envi-

onment of a mechanical part which is controlled by the elec-

ronic controller implemented into the FPGA. The communication

etween the software and the hardware parts is accomplished us-

ng a proprietary interface (more details about the communication

re provided in the subsequent subsections). This part operates

utonomously, and the electronic controller receives information

rom the sensors which is produced by the simulation environ-

ent and sends them to the FPGA through Output Wrapper. On

he other hand, speed and direction of movement are sent through

nput Wrapper from the electronic controller implemented in the

PGA to the mechanical part in a simulation.

The second part is the UVM-based verification environment

hich operates as an observer without direct intervention to data

ransfers between the electronic controller and a mechanical part

n a simulation environment. The verification environment just

hecks the correctness of transferred data which are resent to the

erification environment as can be seen in Fig. 7 . Information from

he sensors is received in the Sequence component where they are

ransformed to transactions and transferred to the Golden Model

hich produces reference output data. Instructions for mechanical

art are received in the Monitor component and sent to the Score-

oard component. The Scoreboard compares received data with

eference data obtained from the Golden Model.
Both parts are synchronized by signals sent from the Sequence

nd Monitor components to the mechanical part simulation envi-

onment. These signals indicate that the verification environment

s ready to observe operations of mechanical part.

The presented FPGA-based verification environment evaluates

nly one verification scenario, but automated evaluation of multi-

le verification scenarios with a fault injection is needed which is

hown in Fig. 8 . The second phase eliminates the need for verifica-

ion scenarios generation because scenarios pregenerated and ver-

fied in the first phase are used. Conversely, there are new steps as

 consequence of implementing electronic controller into the FPGA

nd the creation of an autonomous connection between the FPGA

nd the mechanical part. The first necessary step is programming

he FPGA through the JTAG interface which must be done before

ach verification run. This step ensures that the correct functional-

ty of the electronic controller is verified and is without faults.

The next step is launching the mechanical part into a simu-

ation and verification environment which enables signals to the

imulation environment when it is ready to start monitoring. Then,

he mechanical part starts its operation which is the proper time

or fault injection. It should be noted that fault injection proceeds

ccording to the selected strategy. Our fault injector allows us to

nject faults into specified functional units which can be advanta-

eously used. For example, we can inject single faults during one

erification run into the specified functional unit, multiple faults

nto the specified functional unit or inject multiple faults into mul-

iple functional units. After fault injection, the verification run is

nished or timeout has expired and then results of the verification

re recorded into the verification report.

152 J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159

Fig. 9. The architecture of communication between SW and HW part.

g

m

a

c

c

c

b

W

c

b

7

b

i

f

F

o

d

i

a

(

p

T

t

i

r

g

a

(

s

t

i

o

t

i

t

u

i

p

w

8

c

c

c

c

o

t

t

i

p

f

i

a

t

w

p

t
During fault injection, it is worth utilizing effective regression

test suites for experiments. There are two reasons for this.

The first reason is that regressions contain stimuli that achieve

a high level of total coverage (the coverage of DUT behavior is

very high) and, therefore, after fault injection, we can be sure that

such stimuli/tests discover all potential problems combined with

injected faults regarding functionality. To be precise, it is guaran-

teed for DUT that if no artificial faults are injected, it always be-

haves correctly for regression tests. After a fault is injected and an

error or errors occur, it only means that the fault caused a criti-

cal problem inside the system. The result of this phase is a list of

faults and their locations, which caused discrepancy on the out-

puts of DUT for a specific regression stimulus/test. Furthermore, it

is possible to run an advanced analysis and harden some critical

parts of DUT by fault-tolerant techniques, and to check the results

for the selected regression tests again, until we are satisfied with

the result.

The second reason is that regressions are usually running much

faster in RTL simulation as they represent significantly filtered

pseudo-randomly generated stimuli. And when we consider run-

ning verification after every single injected fault, the time-saving

is significant.

7.2. Communication between software and hardware parts

Communication between the software and hardware parts of

verification environment can be accomplished in various ways. One

way is the use of some proprietary interface, or another way is

to use one of the standardized interfaces which are used in veri-

fication based on emulation in FPGAs [36] . One of them is Stan-

dard Co-Emulation Modelling Interface (SCE-MI) [37] proposed by

the Accellera organization. Thanks to the standard SCE-MI inter-

face, users are able to reuse the existing hardware cores in FPGA

in order to develop their system prototype.

In our case we chose to use Ethernet interface supplemented

with our proprietary protocol based on UDP. The communication

between the electronic controller implemented in the FPGA (hard-

ware part) and the mechanical part in a simulation environment

(software part) is accomplished through Input and Output Wrap-

per. We chose the ML506 development board [38] equipped with

Xillinx Virtex 5 FPGA as the hardware platform. This board offers

various peripherals and some of them can provide communication

with a PC (e.g. PCIe, UART, USB or Ethernet). The chip implement-

ing the Ethernet physical layer is connected to the FPGA and to

the user design which implements higher layers of the Ethernet

protocol stack that can communicate with this chip. However, we

do not implement a full Ethernet protocol stack, instead we use an

existing implementation presented in [39] .

Fig. 9 shows the architecture of the communication layer. Al-

though we use an existing implementation of Ethernet communi-

cation, we must solve a problem with different clock signals on

receive (RX) and transmit (TX) interfaces. These clock signals are
enerated by a physical layer chip and the designer is not able to

odify the frequency and the phase offset. We use a FIFO memory

s an input and output buffer with different writing and reading

lock signals. This not only solves the problem with clock domain

rossing, but also the problem with data storing before their pro-

essing. Data received from the Ethernet are buffered in the input

uffer and data ready to be sent are buffered in the output buffer.

e use FIFO as the interface of the DUT which allow us to ex-

hange a communication layer with another one which uses FIFO

uffers.

.3. Evaluation of reliability by fault injection

The simulation of the effects of faults in the FPGA can be done

y a direct change of the configuration bitstream which is loaded

nto the configuration memory. For this purpose, we developed a

ault injector [35] which allows us to prepare the bitstream for our

PGA and also modify single or multiple bits of the bitstream in

rder to simulate single and multiple faults. As a consequence, the

esign placed in the FPGA (determined by the configuration data)

s similarly influenced by a real fault which strikes the hardware

rchitecture of the FPGA in a real environment.

The injector is based on the SEU generation outside of the FPGA

in PC), so it is not targeted to a specific FPGA board (testing was

erformed on the ML506 card with the Virtex 5 FPGA technology).

he original and the modified bitstreams are transported through

he JTAG interface. The process of the SEU generation is divided

nto four steps: 1) specifying the location of the fault injection, 2)

eading the related part of the configuration bitstream, 3) the SEU

eneration (i.e. the inversion of the specified bit of the bitstream),

nd 4) applying the bitstream using Partial Dynamic Reconfiguration

PDR) without stopping the FPGA.

The implemented fault injector is able to inject a fault into a

pecified bit of bitstream. If we are able to find a relation be-

ween bits of bitstream and functional units, we can inject faults

nto the specified functional unit. For this purpose, the analysis

f FPGA can be done by the RapidSmith [40] tool. This tool iden-

ifies the bits of bitstream which are related to a specified area

n the FPGA. Functional units placement in the FPGA is done by

he PlanAhead [41] tool, so we know where each of the functional

nits is placed. This process allows us to inject faults into spec-

fied functional units during our experiments. Unfortunately, the

rocess actually finds only the bits of the bitstream corresponding

ith Look-up tables (LUTs).

. The third phase - mechanical part reactions

The task for the third phase is to check reactions of the me-

hanical part and there are several methods on how to do it. We

an look either at the mechanical part or on its simulation and

heck whether it works. These methods require an observer, which

an be a person or a digital camera supplemented with some kind

f an algorithmic image processing.

Another way is to use a type of information which represents

he state of mechanical part. In modern electro-mechanical sys-

ems, there are lots of sensors placed on a mechanical part which

nforms us about its state. These sensors are usually used as an in-

ut for the electronic controller, and we can use the information

rom these sensors for monitoring the behaviour of the mechan-

cal part. For example, if we are monitoring the movement of an

utonomously driven car, we can observe its behaviour by moni-

oring the GPS location and a speed sensor.

Our evaluation platform is based on functional verification

hich only observes the electronic outputs of verified circuits im-

lemented into FPGA. These electronic outputs are compared with

he outputs of the reference model which operates as a part of the

J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159 153

Fig. 10. Checking of the mechanical part behaviour by functional verification.

v

v

f

a

i

e

m

i

s

o

m

o

9

e

v

w

e

t

t

n

f

t

b

m

w

a

t

s

u

o

x

s

t

v

d

t

s

w

t

t

y

t

m

f

t

u

i

c

r

(

c

t

e

b

c

9

i

m

m

a

r

i

f

d

c

v

e

i

t

s

s

9

a

c

d

c

u

t

n

a

t

n

f

o

F

s

W

m

v

t

s

t

o

t

c

t

erification environment according to the same specification as the

erified circuit. Input for the reference model is the information

rom sensors produced by the mechanical part which is the same

s for the verified circuit. Values from sensors received by the ver-

fication environment can be used not only as inputs for the ref-

rence model, but also as inputs for monitoring behaviour of the

echanical part. The modified verification environment is shown

n Fig. 10 where the reference model is missing, information from

ensors is routed directly to the scoreboard which can monitor the

peration of the mechanical part. It means that scoreboard imple-

ents functions for checking reactions of mechanical part based

n information from sensors.

. Casestudy: robot searching a path through a maze and its

lectronic controller

General principles used in our platform were presented in pre-

ious sections and our experimental electro-mechanical system

ill serve as a demonstration example in the following text. As an

xperimental system we chose a robot which searches for a path

hrough the maze. The mechanical part is a robot in the maze and

he electronic part is its electronic controller. Unfortunately, we do

ot have a real robot device, so we used simulation environment

or a robot and its environment. We use Player/Stage [42] simula-

ion environment which is freely available and offers lots of possi-

ilities for robot configuration.

Our robot is a simple cubical robot which goes through the

aze. The robot is equipped with a few sensors, three sensors

hich inform us about distances from three control points placed

t fixed positions in the robot environment. They are used for de-

ermining its location (inspired by Global Positioning System). Four

ensors are located on the sides of the cubical robot and inform

s about the distances from barriers in the robot surrounding. The

peration of the robot is driven by two inputs - speed of robot in

-axis and y-axis directions (x_speed, y_speed).

The robot controller, whose structure is shown in Fig. 11 con-

ists of various blocks, their function is described in [43] . The con-

roller is connected to the PC on which the robot simulation en-

ironment (SEPC) runs via the Interface Block. Through this block,

ata from the simulation are received, and in the opposite direc-

ion, instructions defining the required movement of the robot are

ent back. The central block of the robot controller is a bus through

hich communication between blocks is accomplished. The Posi-

ion Evaluation Unit (PEU) calculates the positions of the robot in
he maze and provides them to other units as coordinates x and

. The Barrier Detection Unit (BDU) uses four sensors and provides

he information about the distance to the surrounding barriers. The

ap updating provided by the Map Unit (MU) is based on the in-

ormation about the positions of the robot and the barriers vec-

or. The Map Memory Unit (MMU) stores the information about an

p-to-date map. The Path Finding Unit (PFU) implements a simple

teration algorithm for finding a path through the maze. The me-

hanical parts of the robot are driven by setting the speed in the

equired direction of the movement by the Engine Control Module

ECM). The communication of functional units with a bus is ac-

omplished through the bus wrapper (FU_WB) and controlled by

he finite state machine (FU_FSM).

Our electro mechanical system was introduced, but verification

nvironments for three phases of verification process must also

e proposed. These verification environments are implemented ac-

ording to principles presented above.

.1. Simulation based verification environment (the first phase)

The general verification environment for the first phase shown

n Fig. 2 is a standard UVM-based functional verification environ-

ent which is usually created during electronic systems develop-

ent. In our example, the electronic controller is a robot controller

nd the mechanical part is a robot going through a maze. The

eference model is implemented with respect to the same spec-

fication as the robot controller, the inputs are the information

rom sensors and outputs are speed values in x-axis and y-axis

irections. These speeds are compared with the speed values re-

eived from the robot controller. Naturally, the compared speed

alues must be the same. The verification environment and refer-

nce model are presented in more details in [44] .

The verification environment is able to process multiple ver-

fication scenarios (see 3), while one verification scenario is, in

he case of robot, represented by a maze and start and goal po-

itions of the mission. Therefore, stimuli generation in this case-

tudy means mazes generation.

.2. Maze generation

Maze generation is a well known and explored area for which

 considerable number of algorithms generate simple or sophisti-

ated mazes [45] . The vast majority of algorithms operate in a two-

imensional space, keeping their current state and can constantly

hange cell values of a maze in time. These algorithms are highly

nsuitable for our proposed architecture of the universal genera-

ion, because the output of the generator (a line of the maze) can-

ot be determined in one step, therefore, it is determined gradu-

lly by many factors and dependencies between different cells of

he maze. However, an algorithm exists such that is based on a bi-

ary tree and a particular line of the maze can be determined only

rom the previous one. This principle is completely satisfactory for

ur generator and the output maze is fully sufficient for our needs.

The basic principle of the binary tree algorithm is shown in

ig. 12 . It starts from the basic matrix of the maze (a) in which

ome cells are tightly specified - either the corner or the wall.

e represent the corridors by zeros and the walls by ones. Cells

arked with a question mark represent areas that can take the

alue of 0 or 1, thus the corridor or the wall. In order to maintain

he continuity from any corner of the maze to another, it is neces-

ary to perform a modification of the basic matrix of the maze so

hat each two adjacent sides of the maze must contain the corridor

ver its entire dimension (b). In our case, we chose this corridor to

he northern and the western side of the maze. The final and most

ritical task is to determine cells A, B, C, D which allows us to have

he maximal continuous maze (c).

154 J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159

Fig. 11. The block diagram of the robot controller.

Fig. 12. The demonstration of a conversion of the basic matrix of the maze for

needs of the generator.

Fig. 13. The architecture of the FPGA-based verification environment for the robot

controller.

p

a

9

t

t

j

a

d
The original description of the algorithm [45] divides cells of

the maze in a line into groups of corridors bordered by walls. For

each group, an algorithm determines one entrance, either in the

northern or western part of the border. This ensures the passage

from the northern part of the maze to the south and the same

applies for the passage from the west to the east. We transferred

this principle into one line dependency in the maze and the result

is the following dependence. If cell A, respectively C, was randomly

selected for the corner in Fig. 12 .b, then cell B, respectively D, will

be a wall and vice versa.

9.3. FPGA-based verification environment (the second phase)

The second phase of our verification process is based on the

FPGA-based verification environment. The environment is shown

in Fig. 13 . It can be seen that the electronic controller is repre-

sented by the robot controller implemented into FPGA and the me-

chanical part is represented by a robot in a maze simulated in the

Player/Stage environment for robot simulation. The verification en-

vironment just observes the communication between the robot in

the maze and its robot controller.

Multiple verification scenarios evaluation is done with respect

to the process shown in Fig. 8 . Stored verification scenarios are

mazes with start and goal positions saved during the previous
hase. The important step in this process is fault injection which

llow us to inject faults according to various strategies.

.4. Mechanical part reactions (the third phase)

Checking behaviour of the mechanical part is done by moni-

oring the information provided by sensors on a robot. The dis-

ances from three control points are used for monitoring robot tra-

ectory through the maze, especially checking if the robot finds

 goal position. The information about barriers are used for the

etection of collisions with a wall. The information about barri-

J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159 155

Fig. 14. Three types of mazes.

Table 1

Average number of robot steps.

Maze size 7 × 7 15 × 15 31 x 31

Average number of steps 16 93 433

e

f

c

t

t

t

s

c

a

t

s

e

i

i

a

m

t

1

p

1

o

n

m

d

E

W

r

s

o

t

e

c

i

m

v

t

m

i

a

s

o

T

b

c

o

a

i

s

c

d

3

t

e

w

v

p

j

n

w

o

1

g

i

u

c

e

t

e

r

p

g

v

g

m

consists of 15 functional units which leads to 750 verification runs
rs are represented by four values with distances from the wall in

our-neighbourhoods of the robot in the maze. These values can be

ompared with predefined minimal values and verification can de-

ect if the robot is closer to the wall or if the robot crashes into

he wall.

Fig. 10 shows general functional verification environment for

he third phase. The values from sensors are routed directly to the

coreboard and this verification environment is dedicated just to

hecking behavior of the mechanical part. In our example, we cre-

ted one combined verification environment which serves both for

he second and the third phase. This verification environment is

hown in Fig. 13 where values from sensors and values from a ref-

rence model are inputs to the scoreboard which checks electron-

cal and mechanical parts concurrently. It means that scoreboard

mplements functions both for checking outputs of robot controller

nd also for checking reactions of mechanical robot. Behavior of

echanical robot is checked by monitoring distances of robot to

he wall.

0. Casestudy: experiments and results

Performed experiments correspond to the activities of all

hases of the fault tolerance evaluation process.

0.1. The first phase - simulation based verification

The outputs of the first phase are: 1) the electronic part with-

ut bugs (robot controller), 2) the list of the used verification sce-

arios, and 3) achieved coverage. Fig. 14 shows three types of

azes which were used in our experiments. The presented mazes

iffer in their dimensions and we chose 7x7, 15x15 and 31x31 cells.

xamples of start and goal positions are also shown in Fig. 14 .

ith the growing size of the maze the number of steps that the

obot must go through increases. The average number of the robot

teps in various types of mazes is shown in Table 1 . The main goal
Table 2

The experimental results.

of verification scenarios 10 100

Size of mazes 7 x 7 15 x 15 31 x 31 7 x 7 15 x 15

Statement coverage 93,54% 93,70% 93,70% 93,54% 93,70%

Branch coverage 94,91% 95,07% 95,07% 94,91% 95,07%

Expression coverage 81,33% 81,33% 81,33% 81,33% 81,33%

Condition coverage 88,28% 89,18% 89,18% 88,28% 89,18%

Total coverage 91,61% 91,85% 91,85% 91,61% 91,85%
f the experiments, including debugging the robot controller, was

o determine the optimal size of the maze and the number of gen-

rated mazes (verification scenarios) which will lead to the best

ode coverage.

For the experiment, we chose the number of performed ver-

fication scenarios equal to 10, 10 0, 20 0 and 50 0, for which we

onitored an achieved code coverage. The numbers of performed

erification scenarios were the same for all types of mazes and in

otal 1500 verification scenarios were performed with a variety of

azes. Various bugs were identified and debugged during the ver-

fication process. It can be stated that the robot controller operates

ccording to its specification for the performed 1500 verification

cenarios.

Experimental results are presented in Table 2 . It can be rec-

gnized that the maximal achieved total code coverage is 91.85%.

he inability of achieving an ideal 100% is caused by the default

ranches in the source code which are never executed (which is

orrect), and also by some of the control expressions that are used

nly when an abnormal situation occurs (e.g. a fault). The table

lso shows that a rising number of verification scenarios does not

ncrease the achieved code coverage. It is probably because in one

cenario multiple input transactions are packed.

On the other hand, resizing the maze from 7 x 7 to 15 x 15

ells led to a slight increase of code coverage, which is possibly

ue to the effect of the maze. When increasing the size of maze to

1x31 cells, the coverage was not changed. Such studies show that

he 7 x 7 cells maze is too small for the next phase of fault impact

valuation process. This trend is shown in the bar chart in Fig. 15

hich shows the code coverage for different sizes of mazes for 100

erification scenarios (the part of Table 2).

The results needed to perform the next phase of the fault im-

act evaluation were obtained in the experiment. Faults will be in-

ected into the electronic controller during each verification sce-

ario in the second phase of evaluation. Each verification scenario

ill be repeated several times and during each run, various faults

r various sequences of faults will be injected.

0.2. The second phase - controller reactions

The second phase in the proposed evaluation process is tar-

eted towards evaluating the correct function of a robot controller

mplemented into the FPGA. For this purpose fault injection is

sed. No fault tolerance methodology implemented in the robot

ontroller for these experiments was used and the goals of the

xperiment were: 1) detailed reliability analysis of the robot con-

roller and its functional units, and 2) a demonstration that the

valuation platform can be used for a fault tolerance evaluation.

As was mentioned above, faults can be injected in a way which

eflects various strategies. Similar experiments were done in our

revious work [13] , but significant differences in evaluation strate-

ies are presented in this paper. We have decided to perform 50

erification runs and inject one fault into one functional unit (sin-

le fault) during one verification run and to use mazes of larger di-

ensions, the mazes of 15 x 15 for this phase. The robot controller
200 500

31 x 31 7 x 7 15 x 15 31 x 31 7 x 7 15 x 15 31 x 31

93,70% 93,54% 93,70% 93,70% 93,54% 93,70% 93,70%

95,07% 94,91% 95,07% 95,07% 94,91% 95,07% 95,07%

81,33% 81,33% 81,33% 81,33% 81,33% 81,33% 81,33%

89,18% 88,28% 89,18% 89,18% 88,28% 89,18% 89,18%

91,85% 91,61% 91,85% 91,85% 91,61% 91,85% 91,85%

156 J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159

Fig. 15. Code coverage for each type of mazes for 100 verification scenarios.

Table 3

Experimental results in functional verification.

Unit Number of fails Fails in % Unit Number of fails Fails in %

bdu 40 80.00 mu_wb 32 64.00

bdu_fsm 20 40.00 peu 39 78.00

bdu_wb 35 70.00 peu_fsm 40 80.00

ecu 38 76.00 pfu 34 68.00

intercon 30 60.00 pfu_wb 28 56.00

mmu 31 62.00 sif_fsm 50 10 0.0 0

mu 25 50.00 sif_wb 34 68.00

mu_fsm 1 2.00

Fig. 16. Experimental results in functional verification.

Table 4

Extended experimental results.

Unit Number of fails Fails in %

mu_fsm 18 8

peu_fsm 181 80.4

sif_fsm 219 97.3

w

r

d

a

1

t

F
and injected faults in total. The task of the verification environ-

ment was to compare the outputs of the robot controller and check

the impact of injected fault. Table 3 shows the number of verifica-

tion runs where the incorrect outputs of the robot controller were

caused by faults (percentage values are shown as well). The total

number of verification runs for each functional unit is 50 and the

main reason for this is the time complexity of the verification runs,

because the robot has to go through the whole maze.

The results of our experiments are shown in Fig. 16 as well.

The bar chart expresses a percentage number of faults with their

impact on the robot controller. As can be seen, some anomalies

in the results of the experiments exist. These include results com-

bined with three functional units mu_fsm, peu_fsm and sif_fsm . In

the case of mu_fsm , it is apparently a low number of faults with an

impact on the correct function of the robot controller. The peu_fsm

and sif_fsm functional units represent a completely different sit-

uation, the number of faults with an impact that is significantly

higher than for other units. That is why we repeated the experi-

ments on a higher number of verification runs (225 in this case)
 o
ith these functional units. Table 4 shows additional verification

uns that were performed in order to analyse these anomalies in

etail. As can be seen, the additional results are closer to the over-

ll average.

0.3. The third phase - mechanical part reactions

The evaluation of mechanical robot behaviour was the main

ask for the third phase. In this phase fault injection is also used.

aults are injected according to the same strategy as in the sec-

nd phase because the second and the third phases share the

J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159 157

Fig. 17. Experimental results in functional verification.

Table 5

Number of robot collisions.

Unit Number of el. fails Number of collisions Collisions in %

bdu 40 11 27.50

bdu_fsm 20 1 5.00

bdu_wb 35 0 0.00

ecu 38 10 26.32

intercon 30 0 0.00

mmu 31 2 20.00

mu 25 11 4.00

mu_fsm 1 1 22.00

mu_wb 32 3 2.00

peu 39 31 6.00

peu_fsm 40 14 62.00

pfu 34 12 28.00

pfu_wb 28 0 0.00

sif_fsm 50 3 6.00

sif_wb 34 0 0.00

s

w

t

t

a

v

p

q

c

e

t

d

o

s

a

w

w

b

b

s

t

u

m

i

e

t

W

e

f

t

u

r

m

c

m

p

o

n

c

p

m

o

i

f

o

1

i

o

p

c

t

a

F

p

v

a

p

s

o

t

m

m

e

o

r

t

o
ame verification environment. The robot controller was also used

ithout fault tolerance methodologies application and the goal of

he experiments corresponding to the third phase was 1) to show

he most frequent incorrect behavior of mechanical part; and 2)

 demonstration that the evaluation platform based on functional

erification is able to monitor the behaviour of the mechanical

art.

In these experiments, we found that the most common conse-

uences of injected faults are robot stopping at one place and robot

ollision with a wall. We can say that all verification runs with

lectronic failure leads to one of these consequences. If the elec-

ronic failure leads to the robot stopping at one place, it usually

oes not cause any damage. But on the other hand, the collision

f the robot with the wall can lead to economical losses. Table 5

ummarizes the number of electronic failures for each component

nd this information is supplemented by the number of collisions

ith the wall. Also, the number of percentage of electronic failure

hich lead to a collision is shown.

These results are also presented in the graphical version in the

ar chart shown in Fig. 17 . It is evident that the percentage num-

er of collisions is different for each functional unit. It shows that

ome of functional units are more important to robot navigation

han others. For example, the percentage for peu_fsm functional

nit is the highest and the main task of this unit is routing infor-

ation about its position to the bus. The path through the maze

s searched by pfu and the movement of the robot is controlled by

cu , so the percentage number of collisions corresponding to these

wo functional units is also quite high.
We have made a fault injection analysis of the robot controller.

e found out that some blocks are more prone to faults than oth-

rs. As can be recognized in the chart showing the results, the

unctional unit mu_fsm is less prone to faults than other units. On

he other hand, the units peu_fsm and sif_fsm are the most prone

nits for faults. A failure of electronic part usually leads to the

obot stopping at a place and to its collision with a wall. As was

entioned above, some of the damaged functional units lead to

ollisions in more cases than others. So, these functional units are

ore problematic from a safety point of view. This analysis is es-

ecially important for future applications of fault-tolerant method-

logies. A system designer obtains the information on which blocks

eed more attention from a reliability point of view.

The second finding is that we are able to use functional verifi-

ation in conjunction with the fault injector to determine the im-

act of faults on the electro-mechanical system. If fault tolerance

ethodologies will be applied to the electro-mechanical system (in

ur case, the robot controller) our platform would be used to mon-

tor impact of faults on system hardened against faults and there-

ore to automate the evaluation of these fault tolerance method-

logies.

1. Conclusions and future research

In this work, we presented our evaluation platform for test-

ng fault-tolerant methodologies and evaluation impact of faults

n correct operation of electro-mechanical systems. Our evaluation

latform is based on functional verification where the verified cir-

uit is running on FPGA which allows us to inject faults directly

o the FPGA. Our evaluation process is divided into three phases

nd each of these phases needs a specific verification environment.

irstly, a basic verification environment was introduced for the first

hase of the evaluation process which is able to evaluate a single

erification scenario and the creation of an extension that allows

utomated evaluation of multiple verification scenarios which were

resented as well. This automated evaluation uses the verification

cenarios produced by our generator or those which are part of the

ptimized regression test suite. The verification environment for

he second phase where DUT is implemented to the FPGA was also

entioned. In the proposed methodology, the verification environ-

ent acts as an observer that checks data transferred between the

lectronic and mechanical parts. During the last phase, the impact

f faults to the mechanical part is monitored by checking values

eceived from sensors placed on a robot in a maze. The verifica-

ion environment for the third phase was also introduced.

For a demonstration of our evaluation platform we proposed

ne demonstration example which uses a robot and its electronic

158 J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159

[

controller as an experimental electro-mechanical application. Per-

formed experiments correspond to all phases of a fault impact

evaluation process. The output of the first phase was the debugged

electronic controller and the list of verification scenarios for the

next phase. During the concurrent second and third phase, the reli-

ability analysis was done by means of fault injection into the FPGA.

The result was the ratio of faults that caused an incorrect output

of the electronic controller and the number of faults that caused

the robot collision.

The goal of our future work is to apply various fault tolerance

methodologies on the robot controller and evaluate them with our

evaluation platform. For example, we plan to construct our robot

controller as a fault-tolerant neural network mentioned in this pa-

per. We can also use more conventional fault-tolerant methodolo-

gies, such as TMR, on-line checkers or error correction codes. We

will focus on testing fault tolerance methodologies targeted to FP-

GAs in the context of electro-mechanical systems which is often

the way of using fault-tolerant electronic controllers. On the basis

of these results, we are going to develop generally usable princi-

ples of developing systems for evaluating fault-tolerant qualities of

electro-mechanical systems.

Acknowledgment

This work was supported by The Ministry of Education, Youth

and Sports from the National Programme of Sustainability (NPU II);

project IT4Innovations excellence in science - LQ1602, ARTEMIS JU

under grant agreement no 621439 (ALMARVI) and BUT project FIT-

S-17-3994.

References

[1] A. Benso , P. Prinetto , Fault Injection Techniques and Tools for Embedded Sys-
tems Reliability Evaluation, Frontiers in Electronic Testing, vol. 23, Springer Sci-

ence & Business Media, 2003 .

[2] A. Meyer, Principles of Functional Verification, Elsevier Science, 2003 http://
books.google.cz/books?id=qaIiX3hYWL4C .

[3] A. standard, Universal Verification Methodology, 2016 http://www.accellera.
org/downloads/standards/uvm .

[4] V.R. Cooper , Getting Started with UVM: A Beginner’s Guide, Austin, TX:Verilab,
2013 .

[5] IEEE Standard for Systemverilog - Unified Hardware Design, Specification, and

Verification Language, 2005, doi: 10.1109/IEEESTD.2005.97972 .
[6] I. Koren , C.M. Krishna , Fault-Tolerant Systems, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2007 .
[7] F. Siegle, T. Vladimirova, J. Ilstad, O. Emam, Mitigation of radiation effects in

SRAM-based FPGAs for space applications, ACM Comput. Surv. 47 (2) (2015)
37:1–37:34, doi: 10.1145/2671181 .

[8] XILINX, FPGA, 2014 http://www.xilinx.com/fpga/index.htm .

[9] M. Ceschia , M. Violante , M. Reorda , A. Paccagnella , P. Bernardi , M. Rebaudengo ,
D. Bortolato , M. Bellato , P. Zambolin , A. Candelori , Identification and Classifi-

cation of Single-event Upsets in the Configuration Memory of SRAM-based FP-
GAs, vol. 50, 2003, pp. 2088–2094 .

[10] C. Bernardeschi , L. Cassano , A. Domenici , L. Sterpone , Accurate simulation of
SEUs in the configuration memory of SRAM-based FPGAs, in: Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFT), 2012 IEEE International

Symposium on, IEEE, 2012, pp. 115–120 .
[11] M. Alderighi , S. D’Angelo , M. Mancini , G.R. Sechi , A fault injection tool for

SRAM-based FPGAs, in: On-Line Testing Symposium, 2003. IOLTS 2003. 9th
IEEE, IEEE, 2003, pp. 129–133 .

[12] M. Alderighi , F. Casini , S. d’Angelo , M. Mancini , S. Pastore , G.R. Sechi , Evalu-
ation of single event upset mitigation schemes for SRAM-based FPGAs using

the FLIPPER fault injection platform, in: Defect and Fault-Tolerance in VLSI

Systems, 2007. DFT’07. 22nd IEEE International Symposium on, IEEE, 2007,
pp. 105–113 .

[13] J. Podivinsky , O. Cekan , M. Simkova , Z. Kotasek , The evaluation platform for
testing fault-tolerance methodologies in electro-mechanical applications, in:

Digital System Design (DSD), 2014 17th Euromicro Conference on, IEEE, 2014,
pp. 312–319 .

[14] O. Goloubeva , M. Rebaudengo , M.S. Reorda , M. Violante , Software-Imple-
mented Hardware Fault Tolerance, Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006 .

[15] H.R. Mahdiani, S.M. Fakhraie, C. Lucas, Relaxed fault-tolerant hardware imple-
mentation of neural networks in the presence of multiple transient errors, IEEE

Trans. Neural Netw. Learn. Syst. 23 (8) (2012) 1215–1228, doi: 10.1109/TNNLS.
2012.2199517 .
[16] L. Miculka, Z. Kotasek, Generic partial dynamic reconfiguration controller for
transient and permanent fault mitigation in fault tolerant systems imple-

mented into FPGA, in: Design and Diagnostics of Electronic Circuits Systems,
17th International Symposium on, 2014, pp. 171–174, doi: 10.1109/DDECS.2014.

6 86 8784 .
[17] M. Chen, R. Mei, Actuator fault tolerant control for a class of nonlinear systems

using neural networks, in: Control Automation (ICCA), 11th IEEE International
Conference on, 2014, pp. 101–106, doi: 10.1109/ICCA.2014.6870903 .

[18] Z. Li, Fault diagnosis and fault tolerant control of mobile robot based on neu-

ral networks, in: Machine Learning and Cybernetics, 2009 International Con-
ference on, vol. 2, 2009a, pp. 1077–1081, doi: 10.1109/ICMLC.2009.5212376 .

[19] Z. Li, Application of fault tolerant controller based on RBF neural networks for
mobile robot, in: Intelligent Ubiquitous Computing and Education, 2009 Inter-

national Symposium on, 2009b, pp. 531–534, doi: 10.1109/IUCE.2009.140 .
[20] B.S. Arad, A. El-Amawy, On fault tolerant training of feedforward neural

networks, Neural Netw. 10 (3) (1997) 539–553, doi: 10.1016/S0893-6080(96)

0 0 089-5 .
[21] C. Sequin, R. Clay, Fault tolerance in artificial neural networks, in: Neural Net-

works, 1990., 1990 IJCNN International Joint Conference on, 1990, pp. 703–
708 vol.1, doi: 10.1109/IJCNN.1990.137651 .

[22] Z.-H. Zhou, S.-F. Chen, Z.-Q. Chen, Improving tolerance of neural networks
against multi-node open fault, in: Neural Networks, 2001. Proceedings. IJCNN

’01. International Joint Conference on, . 3, 2001, pp. 1687–1692 vol.3, doi: 10.

1109/IJCNN.2001.938415 .
[23] B. Girau, FPNA: Concepts and Properties, in: A.R. Omondi, J.C. Rajapakse (Eds.),

FPGA Implementations of Neural Networks, Springer US, 2006, pp. 63–101,
doi: 10.1007/0- 387- 28487- 7- 3 .

[24] M. Krcma, J. Kastil, Z. Kotasek, Mapping trained neural networks to FPNNs, in:
Design and Diagnostics of Electronic Circuits Systems (DDECS), 2015 IEEE 18th

International Symposium on, 2015a, pp. 157–160, doi: 10.1109/DDECS.2015.50 .

[25] M. Krcma, Z. Kotasek, J. Kastil, Fault tolerant field programmable neural net-
works, in: Nordic Circuits and Systems Conference (NORCAS): NORCHIP Inter-

national Symposium on System-on-Chip (SoC), 2015, 2015b, pp. 1–4, doi: 10.
1109/NORCHIP.2015.7364381 .

[26] J. Podivinsky, O. Cekan, M. Simková, Z. Kotásek, The evaluation platform for
testing fault-tolerance methodologies in electro-mechanical applications, Mi-

croprocess. Microsyst. 39 (8) (2015) 1215–1230, doi: 10.1016/j.micpro.2015.05.

011 .
[27] R. Giegerich, Introduction to Stochastic Context Free Grammars, Humana Press,

Totowa, NJ, 2014, doi: 10.1007/978- 1- 62703- 709- 9 _ 5 .
[28] A. Meduna , Formal Languages and Computation: Models and Their Applica-

tions, first, Auerbach Publications, Boston, MA, USA, 2014 .
[29] A. Ronacher, Jinja2 (the python template engine), 2014 http://jinja.pocoo.org/ .

[30] M. Lutz , Learning Python, second, O’Reilly & Associates, Inc., Sebastopol, CA,

USA, 2003 .
[31] M. Belesova , M.Simkova , Z.Kotasek , T.Hruska , Application of evolutionary algo-

rithms for regression suites optimization., in: IEEE 18th International Sympo-
sium on Design and Diagnostics of Electronic Circuits and Systems, IEEE Com-

puter Society, 2015, pp. 91–949 .
[32] M. Belesova , M.Zachariasova , Z.Kotasek , Regression test suites optimization for

application-specific instruction-set processors and their use for dependability
analysis., in: Proceedings of the 19th Euromicro Conference on Digital Systems

Design, IEEE Computer Society, 2016, pp. 380–387 .

[33] B. Wille , J. Goss , W. Roesner , Comprehensive Functional Verification, Elsevier,
2005 .

[34] T. Bäck , J. Kok , Handbook of Natural Computing, Springer-Verlag, Berlin Heidel-
berg, 2012 .

[35] M. Straka , J. Kastil , Z. Kotasek , SEU simulation framework for Xilinx FPGA: first
step towards testing fault tolerant systems, in: 14th EUROMICRO Conference

on Digital System Design, IEEE Computer Society, 2011, pp. 223–230 .

[36] C.-Y. Huang , Y.-F. Yin , C.-J. Hsu , T.B. Huang , T.-M. Chang , SoC hw/sw verification
and validation, in: 16th Asia and South Pacific Design Automation Conference

(ASP-DAC 2011), IEEE, 2011, pp. 297–300 .
[37] Accellera, Standard Co-Emulation Modeling Interface (SCE-MI) Reference

Manual, 2011 http://accellera.org/images/downloads/standards/sce-mi/
SCEMIv21110112final.pdf .

[38] Xilinx Inc. , Ml506 Evaluation Platform User Guide, UG347 (v3. 1.2), 2011 .

[39] P. Skibik, Implementation of Ethernet Communication Interface into
FPGA Chip, Technical Report, 2011 https://www.vutbr.cz/wwwbase/

zavpracesouborverejne.php?fileid=40494 .
[40] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, B. Hutchings, Rapid prototyp-

ing tools for FPGA Designs: RapidSmith, in: Field-Programmable Technology
(FPT), 2010 International Conference on, 2010, pp. 353–356, doi: 10.1109/FPT.

2010.5681429 .

[41] N. Dorairaj , E. Shiflet , M. Goosman , PlanAhead software as a platform for par-
tial reconfiguration, vol. 55, 2005, pp. 68–71 .

[42] B. Gerkey , R.T. Vaughan , A. Howard , The player/stage project: tools for mul-
ti-robot and distributed sensor systems, in: Proceedings of the 11th Interna-

tional Conference on Advanced Robotics, vol. 1, 2003, pp. 317–323 .
[43] J. Podivinsky , M. Simkova , Z. Kotasek , Complex control system for testing fault-

-tolerance methodologies, in: Proceedings of The Third Workshop on Manufac-

turable and Dependable Multicore Architectures at Nanoscale (MEDIAN 2014),
COST, European Cooperation in Science and Technology, 2014, pp. 24–27 .

44] S. Krajcir, Functional Verification of Robotic System Using UVM, Technical Re-
port, 2015 http://www/study/DP/DP.php?id=15154 .

[45] J. Buck, Maze generation: algorithm recap, 2011 http://weblog.jamisbuck.org/
2011/2/7/maze- generation- algorithm- recap .

http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0001
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0001
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0001
http://books.google.cz/books?id=qaIiX3hYWL4C
http://www.accellera.org/downloads/standards/uvm
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0004
http://10.1109/IEEESTD.2005.97972
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0006
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0006
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0006
http://dx.doi.org/10.1145/2671181
http://www.xilinx.com/fpga/index.htm
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0009
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0010
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0010
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0010
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0010
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0010
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0011
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0011
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0011
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0011
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0011
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0014
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0014
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0014
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0014
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0014
http://dx.doi.org/10.1109/TNNLS.2012.2199517
http://dx.doi.org/10.1109/DDECS.2014.6868784
http://dx.doi.org/10.1109/ICCA.2014.6870903
http://dx.doi.org/10.1109/ICMLC.2009.5212376
http://dx.doi.org/10.1109/IUCE.2009.140
http://dx.doi.org/10.1016/S0893-6080(96)00089-5
http://dx.doi.org/10.1109/IJCNN.1990.137651
http://dx.doi.org/10.1109/IJCNN.2001.938415
http://dx.doi.org/10.1007/0-387-28487-7-3
http://dx.doi.org/10.1109/DDECS.2015.50
http://dx.doi.org/10.1109/NORCHIP.2015.7364381
http://dx.doi.org/10.1016/j.micpro.2015.05.011
http://dx.doi.org/10.1007/978-1-62703-709-9_5
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0028
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0028
http://jinja.pocoo.org/
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0030
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0030
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0031
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0031
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0031
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0031
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0031
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0032
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0032
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0032
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0032
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0033
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0033
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0033
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0033
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0034
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0034
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0034
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0035
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0035
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0035
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0035
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0036
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0036
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0036
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0036
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0036
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0036
http://accellera.org/images/downloads/standards/sce-mi/SCEMIv21110112final.pdf
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0038
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0038
https://www.vutbr.cz/wwwbase/zavpracesouborverejne.php?fileid=40494
http://dx.doi.org/10.1109/FPT.2010.5681429
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0041
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0041
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0041
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0041
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0042
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0042
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0042
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0042
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0043
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0043
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0043
http://refhub.elsevier.com/S0141-9331(17)30020-0/sbref0043
http://www/study/DP/DP.php?id=15154
http://weblog.jamisbuck.org/2011/2/7/maze-generation-algorithm-recap

J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159 159

 (MSc) at the Department of Computers Systems of the Faculty of Information Technology,

 studies at the Department of Computers Systems. His scientific research is focused on
d functional verification of digital systems.

Sc) at the Department of Computers Systems of the Faculty of Information Technology,

 studies at the Department of Computers Systems. His scientific research is focused on

Sc) at the Department of Computers Systems of the Faculty of Information Technology,

 studies at the Department of Computers Systems. His scientific research is focused on

aduated (MSc) at the Department of Computers Systems of the Faculty of Information
rted her PhD studies at the same university and successfully finished in 2015. The topics

mization of UVM-based functional verification, automated verification of processors and

Sc) at the Department of Computers Systems of the Faculty of Information Technology,
 studies at the Department of Computers Systems. His scientific research is focused on

s in FPGAs.

. and PhD. degrees (in 1969 and 1991) from Brno University of Technology (BUT), both

d at the Department of Computer Science of the Faculty of Electrical Engineering and

puter Systems (DCSY) of the Faculty of Information Technology, both at BUT. He is an
ition of the DCSY head since 2005 till 2015. His research interests include digital circuit

 synthesis for testability and reliability, fault tolerant system design. He is an IEEE senior
Jakub Podivinsky was born in 1989. In 2013 he graduated

Brno University of Technology. In 2013 he started his PhD
evaluation quality of fault tolerant systems and FPGA-base

Ondrej Cekan was born in 1989. In 2013 he graduated (M

Brno University of Technology. In 2013 he started his PhD
functional verification and stimuli generation.

Jakub Lojda was born in 1991. In 2015 he graduated (M

Brno University of Technology. In 2015 he started his PhD
fault-tolerant systems design automation.

Marcela Zachariasova was born in 1987. In 2011 she gr
Technology, Brno University of Technology. In 2011 she sta

of her PhD thesis and the main areas of interest are opti

fault-tolerant system design.

Martin Krcma was born in 1988. In 2014 he graduated (M
Brno University of Technology. In 2014 he started his PhD

fault tolerant implementations of artificial neural network

Zdenek Kotasek was born in 1947. He received his MSc

in computer science. Between 1969 and 2001, he worke

Computer Science, since 2002 at the Department of Com
Associate Professor at BUT since 20 0 0, he was in the pos

diagnostics and testing, testability analysis and design and
member (since 2015).

	Functional verification based platform for evaluating fault tolerance properties
	1 Introduction
	2 Goals of the research
	3 Basic concept of the evaluation process
	4 The first phase - verification environment architecture
	5 Electronic controller - implementation alternatives
	5.1 The use of processor as electronic controller of mechanical part
	5.2 Hard coded electronic controller
	5.3 The use of neural networks as fault-tolerant electronic controller

	6 Verification scenarios generation
	6.1 Pseudo-random generation of verification scenarios
	6.2 Regression test suites optimization using evolutionary algorithms

	7 The second phase - evaluation platform architecture
	7.1 Architecture of FPGA-based verification environment
	7.2 Communication between software and hardware parts
	7.3 Evaluation of reliability by fault injection

	8 The third phase - mechanical part reactions
	9 Casestudy: robot searching a path through a maze and its electronic controller
	9.1 Simulation based verification environment (the first phase)
	9.2 Maze generation
	9.3 FPGA-based verification environment (the second phase)
	9.4 Mechanical part reactions (the third phase)

	10 Casestudy: experiments and results
	10.1 The first phase - simulation based verification
	10.2 The second phase - controller reactions
	10.3 The third phase - mechanical part reactions

	11 Conclusions and future research
	 Acknowledgment
	 References

