
A Probabilistic Context-Free Grammar Based
Random Test Program Generation

Ondrej Cekan, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations

Bozetechnova 2, 612 66 Brno, Czech Republic

Tel.: +420 54114-{1361, 1223}
Email: {icekan, kotasek}@fit.vutbr.cz

Abstract—The aim of this paper is to show the use of a
probabilistic context-free grammar in the domain of stimulus
generation, especially random test program generation for proces-
sors. Nowadays, the randomly constructed test stimuli are largely
applied in functional verification to verify the proper design and
final implementation of systems. Context-free grammar cannot be
used by itself in this case, because conditions for instructions of
the program are changing during the generation. Therefore, there
is a need to introduce additional logic in the form of constraints.
Constraints guarantee the continuous changes of probabilities
in the grammar and their application in order to preserve
the validity of the program. The use of the grammar system
provides a formal description of the stimuli, while the connection
with constraints allows for the wide use in various systems.
Experiments demonstrate that this approach is competitive with
a conventional approach.

Keywords—Probabilistic Context-Free Grammar, Random Test
Program Generation, Stimulus, Constraint

I. INTRODUCTION

Electronic circuits are presently used in many facilities,
therefore, people regularly meet them in their lives. Reliability
in terms of hardware components, and also in terms of the
software design and solution, plays an important role in these
systems. The incorrect behaviour which may occur in a system
during the operation could be very costly for manufacturers
and human lives can be endangered, especially in critical
applications. For these reasons, systems under development
must be tested thoroughly for the purpose of eliminating design
and implementation errors during development. The usual and
unusual combinations of input values that can occur in the
system must be taken into account. The complexity of the
system is continually growing, as well as the complexity
associated with thorough verification of the system functions
which are increasing [1]. It is not difficult to test simple
systems manually. For more complex systems, manual testing
is very time consuming. In addition, previously developed
formal techniques for the verification of large systems have
failed. Therefore, the technique called functional verification
was developed.

Functional verification [2] is the activity of checking the
correctness of the system according to its specification. In this
activity, two systems are tested in parallel with the same input
data (stimulus). At present, the stimulus is obtained from a
generator and is constructed randomly.

In our research, we benefit from the grammar systems
which allow us to formally define and generate any language.

This language forms desired stimuli for the given system. In
this paper, we show that is possible to generate an assembly
code for a processor through the probability context-free
grammar with our extension. An innovation that we bring to
this grammar is the dynamic change of probabilities during
the generation of the language through a special constraint
definition.

The text of the paper is structured as follows. Section 2
describes the state of the art in the area. In section 3, the
aim of our research is presented. A probabilistic context-free
grammar with the process of instructions encoding is described
in section 4. Section 5 describes the purpose of constraints. In
section 6, a method of generating stimuli is demonstrated. The
experiments with the generation of assembly programs through
the proposed principle and conventional approach is presented
in section 7. Finally, in section 8, we summarize the results.

II. RELATED WORK

The current research in the field of program generation
deals with the automatic generation of an assembly code for
a specific processor. The programs are obtained from several
input blocks that describe the processor. These input blocks
are typically designed for the given type of processor and,
therefore, it loses the flexibility of the solution for wider use.
The description of the instruction set (ISA) [3] of the processor
is used as an input which is combined with another description.
The paper [4] uses certain elements of the processor micro-
architecture as the second description. The paper [5] uses the
VHDL description (VHSIC Hardware Description Language)
of the processor as the second description. Another work [6]
that automatically generates programs for processors, utilizes
self-designed instruction library which describes the assembler
syntax of each instruction and valid operand combinations.
Together with a genetic algorithm (GA) [7], the resulting
program is constructed. The work [8] shows the generation
of assembly programs on the basis of an abstract model of
the processor. According to this abstract model, programs are
formed by means GA.

A significant disadvantage in the above mentioned solu-
tions is seen due to the complexity of the stimuli description
and the inability of using the generator in various systems other
than the selected processors. The presented solutions are based
on proprietary formats that work with detailed information
about a selected processor and it is very time consuming to
use such generators.

2017 Euromicro Conference on Digital System Design

978-1-5386-2146-2/17 $31.00 © 2017 IEEE

DOI 10.1109/DSD.2017.26

356

From among versatile solutions which deal with a random
test stimuli generation, the MicroGP tool can be mentioned [9].
Originally it was an assembly program generator for testing
microprocessors, but later it was used for a wider range of
problems. MicroGP uses GA for finding the optimal solution
of hard problems. The architecture of this tool is composed of 3
separated blocks: an evolutionary core, a problem definition (an
instruction library) and an external evaluator. The evolutionary
core generates a population of individuals and performs the
optimization process. The problem definition contains macros
of instructions for valid assembly code generation in the case
of the processor. The external evaluator simulates the program
and provides the feedback to the evolutionary core.

In this paper, we present the solution which uses context-
free grammars that allow us to define stimuli for the selected
system in a consistent way. This work represents a gener-
alization of knowledge gained from our previous research
[10] where we generated assembly programs based on two
proprietary input structures which defined the format of the
stimulus and its restrictive conditions. The comparison of our
principle will be done with MicroGP which is similar in
versatile functionality but different in the used approach.

III. THE GOALS OF THE RESEARCH

We have two main goals in our research:

1) To develop a stimuli generation framework for vari-
ous systems.

2) To develop a methodology for using this framework
in stimuli generation.

Under the concept of stimulus generation we understand
generating randomly constructed input test data that determine
the behaviour of the system. In the case of a processor, the
input stimulus is a program which determines its computing
operation. In the case of a robot controller, input stimulus is a
maze that the robot goes through. This random stimulus creates
new circumstances which the system must solve.

The first goal of our research is described in this paper.
It represents a generalization of the gained knowledge and
definition of a universal description of stimuli which is based
on the grammar system. The description of stimulus through
probabilistic context-free grammar with constraints provides a
formal representation of the stimulus and a possibility of its use
in various systems. In our architecture, we use the previously
designed schematic of the universal generation (see Fig. 1).

Fig. 1: The architecture of the universal stimuli generation.

The second main goal represents our long-term direction
which we intend to achieve in our research.

IV. A PROBABILISTIC CONTEXT-FREE GRAMMAR

Probabilistic context-free grammars [11] were introduced
in bioinformatics where they have been used for modelling
RNA structures. Their possible usage was found in other
areas, especially in the field of natural language processing or
creating a programming language. These grammars are based
on fundamental context-free grammars where into the rewrite
rules the probabilities that a rule can be applied are delivered.
Probabilistic context-free grammar is the quintuplet:

G = (N,T,R,S,P); where:

N is a finite set of non-terminal symbols.
T is a finite set of terminal symbols, applies N∩T =

0.
R is a finite set of rewrite rules with form A → α,

where A ∈ N a α ∈ (N∪T)*.
S is starting non-terminal.
P is a finite set of probabilities for rewrite rules.

For the probability in the context-free grammar, the fol-
lowing Definition 1 must be applied.

Definition 1: Consider a probabilistic context-free grammar
G. For each rule r in grammar G, the transition probability
πr is defined. For each non-terminal A ∈ N with its rewrite
rules r1:A → α1, r2:A → α2, ..., rk:A → αr the following

rule must be applied:
∑k

i=1 πri = 1.

A sample of writing probability for individual rules (the
character | means ’or’) is:

S → AS(90%)|A(10%)
A → aBc(70%)|abc(30%)
B → bb(100%)

A. Encoding Instructions Into the Grammar

Processor instructions should be divided into several groups
depending on the type of the instruction. Each group is defined
by a custom non-terminal into which it is possible to get
from the starting symbol. Each group has a defined probability
which is increased/decreased on the basis of the type and the
count of instructions. The arithmetic instructions will typically
have a higher probability than jump instructions. Based on
the format of the instruction, each group is subdivided into
another non-terminal which brings together the same format
of instructions. For example, the arithmetic instructions which
work with two register operands will be in a different group
than the arithmetic instructions which work with a register and
immediate operand. In the next step, each instruction is defined
by using a template that is composed of non-terminal and
terminal symbols. Non-terminal symbols are already rewritten
to specific registers and operations which create the actual
instruction of the program.

V. CONSTRAINT DEFINITIONS

Constraints represent restrictions and limitations for deriva-
tion of rewrite rules and their application will change defined
probabilities for specific rules. These constraints are defined

357

as a function call without a return value, so it is a command.
The constraint is defined as the quintuplet:

cons(RS,RD,P,[RE],[C]); where:

RS is the identifier of the rule which calls this con-
straint.

RD is the identifier of the rule for which the proba-
bility is changed.

P is the new probability value.
RE (optional) is the identifier of the rule, the ap-

plication of which causes the abolition of the
constraint.

C (optional) is the count of derivations of RE rule
before abolishing the constraint.

The task of the constraint is to set the probabilities during
the generation process so that the result is a valid stimulus.
After the application of the RS rule, the algorithm will call
all the constraints that have defined this identifier and the
value of the P probability will be set for the rule with the RD

identifier. In the case that the RE parameter is not defined,
the probability is permanently set. In the case that the RE

identifier is specified, the value of the probability will be set
until C derivations of the RE rule will not be done. If the C
parameter is not defined, the default value for C is set to one.

VI. RANDOM PROGRAM GENERATION

Random generation of stimuli (programs) is based on
our architecture of universal generation. We continue in our
research in this direction. The difference from the previous
version can be seen in the core of generator and in processing
the specific inputs. [12] The architecture based on the grammar
presented in this paper is shown in Fig. 2. The probabilistic
context-free grammar is defined in the input structure called
Format, while the constraints for rules are in input Con-
straints. The preprocessing (Preprocess) of inputs is the first
step before the generation starts. Since context-free grammar
cannot effectively define numerical ranges or names for jump
instructions, we use the templating system Jinja2 [13] for the
Python programming language [14] which allows us to define
the cycles, branches and other special macros that we use.
The demonstration of the IMM non-terminal definition for the
derivation of random decimal number in the range from 1 to
1,000 through the library Jinja2 follows:

{% for i in range(1,1000) %}
IMM → {{i}}

{% endfor %}

The output of preprocessing is an extended format of
the probabilistic context-free grammar and constraints which
already contains the complete definitions of the rewrite rules
and constraints necessary to ensure the completeness and
validity of the generated program.

The extended formats are processed by the core of the gen-
erator. It performs the application of the rules from the starting
non-terminal with leftmost derivations. After the derivation of
any rule is performed, the constraints for the relevant rule are
triggered and thus the new probabilities are set for the given
rules.

Fig. 2: The detailed architecture for a probabilistic context-free
grammar based stimuli generation.

VII. EXPERIMENTAL RESULTS

During our experiments, we have verified that the proposed
method of encoding program instructions into the grammar is
possible and is fully suitable for the generation of valid test
programs.

We describe the experiment which is based on compar-
ing the generation time of assembly programs with different
number of instructions. Generation time is an important factor
that affects the whole process of testing and verification of the
system. It can significantly contribute to reducing the overall
time needed for system testing. The comparison was done
between this proposed approach of generation (referred to as
USG generator), MicroGP tool (where we utilize only instruc-
tion library block), and our previously optimized generator
of assembly programs for processors (referred to as RISC
generator). We have defined adequate input structures for the
creation of a valid assembly code for each tool. The results of
our experiment can be seen in Fig. 3 and Table I.

The fastest tool is the RISC generator which is our specific
generator, especially designed for RISC and VLIW processors.
The generation time was less than 1 second for 25,000 valid
instructions. The USG generator was in the second position
with a generation time slightly over 1 second for the same
number of instructions. The worst was MicroGP tool with 43
seconds for the same number of instructions. The generation
speed of our generators is obvious. The main contribution
which makes our approach different from conventional ones
is in the description. We do not use any semantic information
about the system. The whole process of the generation is
based solely on ensuring defined constraints, without additional
calculations and semantic dependencies. Thanks to this, we are
able to save up to 42 seconds through the USG generator in
comparison with the MicroGP tool.

358

TABLE I: The comparison of generation time for USG, RISC, and MicroGP tool (in seconds).

Number of instructions 1000 2000 5000 10000 15000 20000 25000

MicroGP 0.7 1.5 4.0 10.0 18.0 29.0 43.0
USG generator 0.1 0.1 0.2 0.5 0.7 0.9 1.1
RISC generator 0.1 0.1 0.2 0.3 0.5 0.6 0.7

Fig. 3: The comparison of generation time for USG, RISC,
and MicroGP tool.

However, there is also a minor difference between our ap-
proaches. The difference exists because grammar systems can-
not effectively define the above mentioned numerical ranges
or labels and all possible cases have to be enumerated. For this
reason, a large set of rules is defined which results in browsing
slowing down generation performance.

VIII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, our research in the field of randomly gen-
erated test stimuli was presented and the application of the
approach to a processor was described. In this case, stimuli
representing the programs consist of instructions. We have
demonstrated the universal architecture of stimuli generation
which is based on two input structures. We have defined the
format using a probabilistic context-free grammar which is
a context-free grammar with added probabilities for rewrite
rules. Through the constraints we ensured an application of
rewrite rules in the defined grammar so that the final program
was valid for the given processor. The experiment with gener-
ation time demonstrated a substantial acceleration against the
conventional tool.

Although we presented our approach on the processor, the
architecture allows us to generate stimuli for different systems
which will be the focus of our future research. We shall also
examine optimization possibilities of the complete generation

process in order to achieve higher quality of the generated
stimuli.

ACKNOWLEDGEMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602, ARTEMIS JU under grant agreement no 621439
(ALMARVI) and BUT project FIT-S-17-3994.

REFERENCES

[1] S. Roy and S. Ramesh, “Functional verification of system on chips -
practices, issues and challenges,” in Proceedings of ASP-DAC 2002,
2002, pp. 11–13.

[2] A. Meyer, Principles of Functional Verification. Amsterdam: Elsevier
Science, 2003.

[3] D. A. Patterson, “Reduced instruction set computers,” Commun. ACM,
vol. 28, no. 1, pp. 8–21, January 1985.

[4] V. Belkin and S. Sharshunov, “Isa based functional test generation with
application to self-test of risc processors,” in Design and Diagnostics
of Electronic Circuits and systems, 2006 IEEE, April 2006, pp. 73–74.

[5] J. Hudec, “An efficient technique for processor automatic functional
test generation based on evolutionary strategies,” in Proceedings of the
ITI 2011, 33rd International Conference on Information Technology
Interfaces, May 2011, pp. 527–532.

[6] F. Corno, E. Sanchez, M. Reorda, and G. Squillero, “Automatic test
program generation: a case study,” IEEE Design and Test of Computers,
vol. 21, no. 2, pp. 102–109, March 2004.

[7] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms,
1st ed. Springer Publishing Company, Incorporated, 2007.

[8] F. Corno, M. Reorda, G. Squillero, and M. Violante, “A genetic
algorithm-based system for generating test programs for microprocessor
ip cores,” in Proceedings of the 12th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2000). IEEE Computer
Society, November 2000, pp. 195–198.

[9] G. Squillero, “Microgp—an evolutionary assembly program generator,”
Genetic Programming and Evolvable Machines, vol. 6, no. 3, pp.
247–263, 2005. [Online]. Available: http://dx.doi.org/10.1007/s10710-
005-2985-x

[10] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The
evaluation platform for testing fault-tolerance methodologies in
electro-mechanical applications,” Microprocessors and Microsystems,
vol. 39, no. 8, pp. 1215 – 1230, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933115000630

[11] R. Giegerich, Introduction to Stochastic Context Free Grammars,
J. Gorodkin and L. W. Ruzzo, Eds. Totowa, NJ: Humana Press, 2014.

[12] O. Cekan, M. Simkova, and Z. Kotasek, “Universal pseudo-random
generation of assembler codes for processors,” in Proceedings of The 4th
Workshop on Manufacturable and Dependable Multicore Architectures
at Nanoscale. COST, European Cooperation in Science and
Technology, 2015, pp. 70–73. [Online]. Available: http://www.median-
project.eu/wp-content/uploads/18 IV-2 median2015.pdf

[13] A. Ronacher. (2014) Jinja2 (the python template engine). [Online].
Available: http://jinja.pocoo.org/

[14] M. Lutz, Learning Python, 2nd ed. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2003.

359

