
State Synchronization of Faulty Soft Core Processors

in Reconfigurable TMR Architecture

Karel Szurman

5th year, part-time study

Supervisor: Zdeněk Kotásek

Faculty of Information Technology, Brno University of Technology

Božetěchova 1/2, 612 66 Brno

iszurman@fit.vutbr.cz

Abstract—Fault-tolerant systems implemented into SRAM-

based FPGA are frequently protected by combination of triple

modular redundancy and partial dynamic reconfiguration. When

a part of the SRAM configuration memory with the copy of the

protected circuit is reconfigured on the run, the system restart is

the easiest way how to bring all three copies of the circuit back to

fully synchronous and operating state. Soft core processors are

complex systems which require more precise technique for

synchronization of the system state space and data gained from

previous calculations without disruption of processors

functionality and executed program. This paper presents current

state of our research focused on the state synchronization

methodology for soft core processors.

Keywords—Fault tolerant system, FPGA, state synchronization,

partial dynamic reconfiguration, recovery, soft core processor.

I. INTRODUCTION

Emerging technologies used in avionics and space

systems have growing demands on computing frequency and

data throughput. Examples of such systems can be LiDAR

(Light Detection and Ranging) system for 3D sensing of the

Earth surface in real time, software defined radio system for

space telecommunication or research satellite using a number

of highly accurate sensors for data acquisition during its

exploration mission. These digital systems are usually based

on combination of Digital Signal Processors (DSPs), Field

Programmable Gate Arrays (FPGAs), Application Specific

Integrated Circuits (ASICs) and custom-made electronic

hardware. Avionics and space systems are safety-critical

systems the failure of which can lead to catastrophic

consequences. These systems are exposed to various failure

conditions during their lifetime. Radiation effects, caused by

energetic particles in the space radiation environment, are one

of the most serious. Nowadays, SRAM-based FPGAs become

broadly used inside these systems for their low price, high

performance, ability for reprogramming and flexibility even

when they are very sensitive to radiation effects and mainly to

Single Event Upset (SEU) effect. SEUs can cause changes in a

state of bistable element and affect configuration memory and

user logic. Usage of SRAM-based FPGA requires

implementation of SEU mitigation technique and employing

of fault tolerance strategy to operate correctly even in the

presence of failure.

Two main SEU mitigation strategies for Fault

Tolerant Systems (FTSs) exist [1]. Both approaches employ

hardware redundancy. The most used form is Triple Modular

Redundancy (TMR) due to its fault-masking ability,

possibility to scale the TMR protection by changing its

granularity, tolerable overhead and the availability of tools for

automated TMR generation [2]. The first technique, referred

as scrubbing, is based on periodic writing a known copy of the

original bitstream to configuration memory in order to correct

corrupted bits. The copy is stored usually in external radiation-

hardened memory. The scrubbing has various implementations

and it is also often combined with hardware redundancy

applied automatically on netlist of the circuit. The second

technique is based on the usage of hardware modular

redundancy together with Partial Dynamic Reconfiguration

(PDR). In our terminology, TMR consists of replicated

circuits, the circuits contain components. Fault detection in a

TMR is operating by means of majority voting from copies of

protected circuit. When a failure caused by SEU in one of the

circuit copies is detected then corresponding TMR module

located in FPGA configuration memory is reconfigured

through PDR process. In our research, the PDR is controlled

by Generic Partial Dynamic Reconfiguration Controller

(GPDRC) [5]. After the faulty circuit reconfiguration is

finished, its operational state is not up-to-date and needs to be

synchronized with correctly operating circuit copies in TMR

architecture before it is incorporated back into the system.

The aim of our research is to propose a new

methodology for a state synchronization of faulty soft core

processors in reconfigurable TMR architecture implemented

into SRAM FPGA. We targeted soft core processors as a

computation platform alternative to microprocessor, DSPs or

general-purpose processor, which can be synthetized for any

FPGA design and easily modified and customized by

implementation of additional features or application of a

specific optimization. The new methodology should complete

existing FT methodologies which address fault masking, fault

detection and fault recovery based on hardware redundancy

and PDR.

Počítačové architektúry & diagnostika PAD 2017 Smolenice, 6.9. - 8.9.2017

51

II. STATE SYNCHRONIZATION METHODOLOGY

At the beginning of the research, we focused on methods

for state synchronization for digital system implemented by

random logic and state machines, synchronization strategies

and parameters which could be evaluated. Then, we started to

deal with the state synchronization for soft-core processors as

the platform with complex functionality and structure where

the state synchronization is more demanding.

A. Initial development phase

Results gained during the initial development phase of our

state synchronization methodology are as follows [3] [4]:

 We defined a set of parameters (criteria) for

evaluation and optimization of various state

synchronization techniques.

 We developed fundamental state synchronization

methodology and described the basic principles of

state synchronization.

 We implemented reconfigurable fault tolerant CAN

bus control system together with implementation of

specific synchronization strategy based on our

methodology.

We realized that the principles of state synchronization

and its implementation have a strong impact on the FTS and

its parameters. Therefore, all aspects including requirements

on its real time behavior, principles of performing its function,

the type and volume of the synchronized context must be

taken into account when the method of a state synchronization

after fault occurrence is developed.

B. State synchronization parameters

As the first, we identified set of dynamic and static

parameters. The dynamic parameters reflect the impact of the

synchronization on operation and function of the system and

overall timing. According to the synchronization impact, the

methods can be divided into function blocking and function

non-blocking methods. Another dynamic parameter is the time

needed to perform the synchronization which is closely

associated with other parameters, requirements on the

synchronization implementation and the volume of data which

needs to be synchronized. On the other hand, the static

parameters have an indirect impact on system features and

have a close relation to an algorithm used to implement the

synchronization procedure. This set of parameters include area

and FPGA resource overhead, the power demands and

reliability of implemented synchronization.

The time needed for system resynchronization is the one

of the most important criteria since the goal is to maximize

Mean Time Between Failures (MTBF) metric. The overall

timing for SEU recovery process in shown in Figure 1. The

total fault recovery time is given by the sum of time durations

of all following recovery phases:

 the time needed for error detection,

 the wait for synchronization time,

 the reconfiguration time for repairing the SEU,

 the synchronization time.

The time needed for error detection is the time between

SEU occurrence and the moment when an error caused by this

fault is detected in majority voter. The reconfiguration time is

proportional to the size of reconfigured partition and speed.

The wait for synchronization time is the time needed for

finishing ongoing calculations. The synchronization time is

the time required to copy the correct values from reference

circuit instance to a recently reconfigured circuit.

C. Essential design considerations

We determined the set of essential design considerations

which must be satisfied by the implemented synchronization

method. The design considerations are following:

1) The selection of the state in which the

synchronization of a reconfigured circuit copy will be

performed – the proper state must be considered with

respect to the synchronization method feasibility,

real-time requirements, the system architecture and

data consistency.

2) The definition of the system context which will be

used for the synchronization – the context is defined

by data type and its volume, the two types of data can

be distinguished: the data which are processed and

reproduced (i.e. application-related data) and the data

which are important for system function and

operation (i.e. system related data).

3) The design of the interconnection between redundant

components and the control mechanism which will be

needed for performing the synchronization process.

Figure 1: SEU recovery process [2]

Figure 2: Generic architecture for state synchronization

52

D. State synchronization implementation

We designed generic architecture for synchronization with

arbiter and controllers [3]. This architecture is shown in Figure

2. It was designed on the basic of consideration that the FTS

architecture can consists of various components with complex

hierarchy and in each of components, registers with data of the

system state can be stored. For this reason, the synchronization

process of a reconfigured circuit copy in the TMR architecture

has to be controlled on two levels. From the outside, on the

level of individual circuits, and inside on the level of circuits

for synchronization of their internal components.

The basic principle of the fault recovery strategy is as

follows. A protected circuit is implemented within coarse

grained TMR architecture. Majority voter performs voting

from input signals and indicates any mismatch to GPDRC and

initiate reconfiguration of faulty circuit. After the process of

reconfiguration is finished, GPDRC indicates the index of

reconfigured unit to the synchronization arbiter which needs to

be synchronized. The arbiter determines the roles of replicated

units in TMR architecture (it specifies which of them is

synchronized, referenced or paused during the synchronization

process). The arbiter controls all state synchronization phases

for components and data objects inside the synchronized

circuit. In the end, the arbiter exits the synchronization process

and switches the circuit copies back into its operational mode.

The crucial task for state synchronization strategy is the

implementation of the interconnection between redundant

modules which must be designed with compromise between

FPGA resource utilization overhead, implementation

complexity and the goal to complete the synchronization in the

shortest possible time.

III. RECONFIGURABLE FT CAN BUS CONTROL SYSTEM

The proposed state synchronization methodology for digital

system implemented on random logic and state machines was

evaluated by experiments with reconfigurable FT CAN bus

control system, published in [3] and [4].

IV. FAUL TOLERANCE AND SYNCHRONIZATION OF SOFT

CORE PROCESSORS

Our current research is focused on soft core processors,

aspects of their fault recovery with the usage of PDR process

and state synchronization. Till now, we were considering only

coarse grained TMR architecture for protection of target

system in our experiments. The scheme of processors

protected by coarse grained TMR and the illustration of fault

recovery strategy is shown in Figure 3.

Moreover, our goal is also to explore possibilities of fine

grained TMR architecture used for protecting internal

components within soft core processor.

A. The state of the art methods

The paper [2] describes methods for synchronization of

faulty processors in coarse grained TMR architecture. The aim

of authors was to research essential steps for synchronization

in more details since this topic is insufficinelty addressed by

researchers studying various FT methodologies and PDR.

They proposed and evaluated four different methods for

Xilinx PicoBlaze soft core processor which span from an

implementation with minimal hardware overhead to

completely hardware-based synchronization technique.

 Synchronization by reset – processors are brought

into synchronized and known state of program

execution by the system reset.

 Synchronization with shared memory – processors

are synchronized by concurrent writing into TMR

protected memory by all processors, followed by a

concurrent reading of the data. Synchronization has

to be triggered externally by program at the moment

when no interrupt is executed.

 Synchronization with shared memory driven by

interrupt – processors are synchronized by interrupt

and it can be performed almost immediately after

reconfiguration is finished. However, it requires

hardware synchronization of the stack context.

 Complete hardware-based synchronization –

processors are synchronized through hardware

synchronization interface which allows copying of

processor core registers with flags, stack pointe, the

stack data and the scratchpad memory stored in block

RAM (BRAM). Multiplexers and synchronization

counters are implemented for each memory element

enabling synchronization of one element in one

cycle.

The evaluation of synchronization methods and

experiments demonstrate significant increase in utilization

FPGA resources and impact on the system frequency for

synchronization methods exploiting hardware implementation

and modifications inside processors [2].

Figure 3: Recovery process for soft core processors

protected by TMR architecture

53

B. Design of soft core processor synchronization

We evaluated several open-source soft core processors

available for our research including LEON3, Plasma, ZPU and

neo430. The neo430 was selected as the main platform for our

experiments since it is a small, powerful and customizable 16-

bit soft-core microcontroller, compatible to TI’s MSP430 [6].

This microcontroller uses separated instruction and data

memory and integrates high precision timer, watchdog timer,

serial interface UART, GPIOs, Wishbone bus interface and

internal bootloader.

Synchronization procedure for a soft core processor must

synchronize all processor registers, program stack pointer and

stack data. Moreover, instruction and data caches and program

memory can be synchronized.

The scope of synchronization strategy depends on soft core

processor complexity and application requirements for the

synchronization itself and the recovery process.

V. PH.D. THESIS GOALS

The aim of our research is to propose new methodology for

design and implementation of state synchronization procedure

for reconfigurable FTS based on soft core processors protected

by coarse grained or fine grained TMR architecture with

respect to defined criteria for state synchronization procedure.

Recent results and goals satisfied during previous research

were summarized in section II.A. The future goals of the

research and Ph.D. thesis are as follows:

1. Implementation of CAN bus control system in

neo430 soft core processor protected by coarse

grained reconfigurable TMR architecture. Design

state synchronization method, perform experiments

and compare results with previous hardware

implementation of the FT CAN bus control system.

2. Implementation of the robot controller algorithm [7]

in neo430 soft core processor protected by fine

grained reconfigurable TMR architecture. The design

of state synchronization method and execution of the

experiments. The motivation is also in further

participation on collective research activities within

Fault Tolerant Systems Design, Diagnostics and

Testing group at Brno FIT. The robot controller is an

integral part of the verification environment for

evaluating impacts of faults in electro-mechanical

systems.

3. Comparison and generalization of advantages and

disadvantages of various state synchronization

methods for soft core processor with respect to

selected granularity of the TMR architecture based on

performed experiments.

4. Evaluation of various synchronization methods for

soft core processors against defined design criteria

for synchronization method and execution (impact on

the system function, speed, overhead).

5. Evaluation of reliability of unprotected soft core

processor and soft core processor protected by coarse

grained and fine grained TMR architecture, the

system with and without reconfiguration and

implementation of a state synchronization strategy.

6. Comparison of different ways for construction of

synchronization circuit for digital system based on

random logic and soft core processors.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, the present research related to development of

new state synchronization methodology for FTS based on soft

core processors was described.

The future work will be mainly focused on the

implementation of various synchronization methods for soft

core processors with respect to selected TMR architecture

granularity, defined synchronization criteria and the evaluation

of experiments and results with the aim to generalize gained

knowledge for any soft core processor platform.

VII. ACKNOWLEDGEMENTS

 This work was supported by The Ministry of Education,

Youth and Sports from the National Program of Sustainability

(NPU II); project IT4Innovations excellence in science -

LQ1602. This work was also supported by Brno University of

Technology under number FIT-S-14-2297 and by ARTEMIS

JU under grant agreement no 641439 (ALMARVI).

REFERENCES

[1] Siegle, F.; Vladimirova, T.; Ilstad, J.; Emam, O.: Mitigation of Radiation
Effects in SRAM-Based FPGAs for Space Applications. ACM Comput.
Surv. 47, 2, Article 37, pp 1-34, January 2015. ISSN 0360-0300.

[2] Kretzschmar, U.; Gomez-Cornejo, J.; Astarloa, A.; Bidarte, U.; Del Ser,
J.:Synchronization of faulty processors in coarse-grained TMR protected
partially reconfigurable FPGA designs. Reliability Engineering &
System Safety, Volume 151, 2016, pp.1-9. ISSN 0951-8320.

[3] Szurman, K.; Mičulka, L.; Kotásek, Z.: State Synchronization after
Partial Reconfiguration of Fault Tolerant CAN Bus Control System.
17th Euromicro Conference on Digital Systems Design. Verona: IEEE
Computer Society, 2014, pp. 704-707. ISBN 978-0-7695-5074-9.

[4] Szurman, K.; Mičulka, L.; Kotásek, Z.: Towards a State Synchronization
Methodology for Recovery Process after Partial Reconfiguration of
Fault Tolerant Systems. 9th IEEE International Conference on Computer
Engineering and Systems. Cairo: IEEE Computer Society, 2014, pp.
231-236. ISBN 978-1-4799-6593-9.

[5] Mičulka, L.; Kotásek, Z.: Generic Partial Dynamic Reconfiguration
Controller for Transient and Permanent Fault Mitigation in Fault
Tolerant Systems Implemented Into FPGA. 17th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems, Warszawa,
PL, 2014, pp. 171–174, ISBN 978-0-7695-5074-9.

[6] Nolting, S.: The NEO430 Processor - A small, powerful and
customizable open-source 16-bit soft-core microcontroller, compatible
to TI’s MSP430 ISA. https://opencores.org/project,neo430, available
online, april 2017.

[7] Podivínský, J.; Čekan, O.; Lojda, J.; Kotásek, Z.: Verification of Robot
Controller for Evaluating Impacts of Faults in Electro-mechanical
Systems. Proceedings of the 19th Euromicro Conference on Digital
Systems Design. Limassol: IEEE Computer Society, 2016, pp. 487-494.
ISBN 978-1-5090-2817-7.

54

