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Abstract

Some types of electronic systems are working in the
environment with an increased occurrence of faults such
as space, aerospace or medical systems. Faults in these
systems can lead to the failure of the whole system and
can cause high economical losses or endanger human
health. Fault tolerance is one of the techniques, the
goal of which is to avoid such situations. This pa-
per presents an approach to fault-tolerant data-paths
design that is based on the modification of High-level
Synthesis (HLS) input specification. The description
and evaluation of the impacts of some HLS optimiza-
tion methods are demonstrated in the paper as well.
Higher reliability is achieved through the modification
of input description in the C++ programming language
which the HLS synthesis tools are based on. Our work
targets SRAM-based FPGAs that are prone to Single
Event Upsets (SEUs). For the evaluation of the pro-
posed method we use our evaluation platform, which
allows us to analyze fault tolerance properties of the
Design Under Test (DUT). The evaluation platform
is based on functional verification in combination with
fault injection.

1. Introduction

Nowadays, electronic systems are used in various
devices which play an important role in our everyday
lives. The increase of chip-level integration results in
a higher susceptibility to faults. The number of digi-
tal systems with a high demand on reliability, such as
medicine, space, industry, is growing as well. In these
cases especially, reliability is very important because
the consequences of failure can result in injury or heavy
financial losses or can endanger human health. One of

the main approaches to increase reliability is the so-
called fault tolerance [10]. Fault tolerance accepts the
fact a fault can appear, but the goal of this approach
is to keep the system functional even in the presence
of faults. Techniques based on various types of redun-
dancy are used for this purpose. Many fault tolerance
methodologies exist, which combine and improve these
basic methods (e.g. the HW and temporal redundancy
is combined in approach shown in [9]).

The HLS is a set of methods transforming a digital
circuit description into its RTL representation. The
architecture of a typical HLS-generated circuit is com-
posed of the so-called data-path and control-path (the
controller) [4]. The HLS tools usually allow the de-
signer to explore the state space of various RTL real-
izations very effectively and easily. The main decisions,
such as setting a degree of parallel computation of a
programming loop (unrolling) or pipelining a program-
ming loop, are still the designer’s responsibility. These
two optimization techniques are not nearly all used in
the process of accelerating the resulting system, but
we have chosen these as we believe these are the most
important ones. The unrolling basically allows parallel
execution of individual loop iterations. The parameter
of degree of parallel execution expresses the number of
iterations executed in parallel. The pipelining allows
the designer to create a pipelined version of the loop.
When the pipelining is applied, each Initiation Inter-
val (II) the execution of one iteration is started.

These days a lot of effort in the research of fault
tolerance in HLS is dedicated to data-path hardening.
Specifically modified versions of HLS methodologies are
usually used for this purpose. The method described
in [7] is directed against transient faults that last for
several clock cycles. Another heuristic algorithm based
on two-phase resource binding was published in [8]. A
heuristic-based method that was published in [14] en-
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ables designers to choose a trade-off between resources
consumed, resulting system latency and redundancy.
The authors of [2] present an approach to error detec-
tion of arithmetic oriented data-paths.

This paper is organized as follows. Our fault tol-
erance method based on data types modifications is
proposed in Section 2. The proposed method is demon-
strated on the robot controller described in Section 3.
The results of our experiments are summarized in Sec-
tion 4. Section 5 concludes the paper and presents
future plans.

2. HLS-based Fault Tolerance Method-
ology

Our approach is to apply modifications to the speci-
fication as the input of HLS. The modifications should
produce the resulting RTL description fault-tolerant.
Our method is based on the modification of the C++
language. There are three types of locations the mod-
ification can be done at the level of C++ language:
1) data types (storage elements); 2) arithmetic and
logic operations and 3) flow control statements.

In this research we focus on the modification of stor-
age elements and operations of the input description.
We developed a new class of Data Types (DTs), which
we call Redundant Data Types (RDTs), that are able
to incorporate redundancy for all the operations and
storages associated with the corresponding variables.
The concept of RDTs is very similar to that of the Al-
gorithmic C Datatypes [11], which are widely used in
HLS as a principle to specify a bit width of a particular
data type. In this case, this concept is used to spec-
ify a redundancy mechanism. This way we were able
to achieve redundancy on certain parts of the input
digital system description only. An RDT is associated
with the previously used DT which we call the orig-
inal DT in relation to the particular RDT. We show
this concept on the Triple Modular Redundancy (TMR)
principle, although it is not limited to TMR only. If a
user intends to add a redundancy to a particular part
of the system, simply replacing the previously used DT
by the RDT of a desired redundancy in this part of the
system is enough. An example of the usage of RDTs is
shown in Figure 1.

In the following text, TMR is used as an example of
the construction principles of the RDTs. Each instance
of the TMR RDT contains three nested instances of the
original DT. If necessary, support methods to extend
the behavior of the operators can be added. In the
case of TMR, one method implementing the voter is
included. In the C++ language, 1) unary, 2) binary
and 3) ternary operators can be distinguished from the

int a;
int b;
int c;

b = 7;
c = 8;

a = b + c;

/* a = 15 */

int a_x, a_y, a_z;
int b_x, b_y, b_z;
int c_x, c_y, c_z;

b_x = 7; b_y = 7; b_z = 7;
c_x = 8; c_y = 8; c_z = 8;

a_x = b_x + c_x;
a_y = b_y + c_y;
a_z = b_z + c_z;
vote(&a_x, &a_y, &a_z);

/* a_x, a_y and a_z = 15 */

1
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triple<int> a;
triple<int> b;
triple<int> c;

b = 7;
c = 8;

a = b + c;

/* a = 15 */

Original code Modified code Preprocessed result (semantically)

Figure 1. An example of a C++ program code
before/after its modification and after the
code is preprocessed by a C++ preprocessor.

arity point of view. For each unary operator, a new
operator is constructed that is composed of three op-
erations, each for one of the nested instances. After
that, the voter method is called to choose the major-
ity result, which is then written back to each nested
instance of the original DT. For binary operators there
are three cases to be distinguished when considering
operations with RDTs. These include a) intra-data
type operations – RDT vs. RDT of equivalent redun-
dancy types (e.g. TMR vs. TMR subsystem); b) inter-
data type operations – RDT vs. RDT of different re-
dundancy types – (e.g. TMR vs. duplex subsystem);
and c) original-data type operations – RDT vs. it’s
original (unhardened) DT (e.g. TMR vs. unhardened
subsystem). These three cases are schematically illus-
trated in Figure 2. For the ternary (conditional) op-
erator, it is enough to provide a way to decide which
value should be considered in place of the (conditional)
operator. Therefore, the solution is to add an ability
to cast the RDT to the Boolean DT.
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Figure 2. Three types of cases that can be
distinguished when considering binary oper-
ations, intra-DT operation between two TMR
subsystems (a), inter-DT operation between
system with TMR and duplex hardening (b)
and original-DT operation between TMR and
unhardened subsystems (c).

The advantage of our approach includes the ease
of its use with any HLS tool and its ability to ensure
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fault tolerance for a specific part of the system that
corresponds to a particular variable and its associated
operations on the description level. Another benefit
includes an automatic ability to interface fault-tolerant
parts with the unmodified remainder of the system.

The method is intended to be a part of a larger
system that would make the modifications automati-
cally with the impacts of these changes in mind. The
methodology will have to be aware of the importance
of each component to assign the proper fault tolerance
methodology.As the input description is in the form of
an executable code, a possible option could be to in-
volve a profiler tool, which can be used to determine
the frequency of function calls. This might be a good
guide to find out the functions with variables in order
to apply fault tolerance to. Figure 3 shows the pro-
posed flow.

C++
description

Fault-tolerant
C++ descr.

ModificationsProfiler

High-level
synthesis

Fault-tolerant
RTL descr.

Figure 3. The new approach to FT design.

3. Case Study: Robot Controller

To demonstrate and evaluate our approach, an ex-
perimental electro-mechanical system has been devel-
oped which is composed of the robot which searches a
path through a maze and its electronic controller. The
robot controller unit was developed according to the
HLS methodology flow using the C++ language. The
HLS tool we used in our experiments is the Catapult
C University Version [6]. The unit is based on the left
hand algorithm, that is, in case of a crossroad the robot
always follows the wall of the maze on its left side.

In our previous papers (e.g. [13]) the evaluation
platform for checking the impact of faults was pre-
sented. Our evaluation platform uses functional verifi-
cation [12] as a tool for monitoring the impacts of faults
injected into an electronic controller implemented into
FPGA. In case of the fault injection, the verified cir-
cuit must operate in FPGA, so we do not use classical
simulation-based functional verification, but modified
FPGA-based functional verification.

Nowadays, many electronic systems are a part of
electro-mechanical systems, where a mechanical part
is controlled by its electronic controller. The trend
is to move more functionality to electronic controllers

because it results in lower costs on device operation.
As an example, the results published in [3] and [1]
can serve, where moving more functionality to elec-
tronic controllers results in a lower weight of the air-
craft saving costs on aircraft operation. Based on
these facts, our evaluation platform is able to use an
electro-mechanical application as an experimental sys-
tem, which allows us to monitor the impact of faults
not only on electronic controller, but also on the con-
trolled mechanical parts.

The main components which our evaluation plat-
form is composed of, are shown in Figure 4. The two
main parts are a computer and an FPGA development
board. We use the ML506 board with the Virtex 5
FPGA, which allows us to implement a verified elec-
tronic controller in FPGA and inject faults directly into
the FPGA. The fault injector is one of the components
which is running on the computer. Our fault injector
[15] is based on the partial reconfiguration and uses
JTAG interface for communication with the configu-
ration memory. The platform is designed to evaluate
the impact of faults on the electro-mechanical applica-
tion, so the simulation of the mechanical part is im-
portant and also runs on the computer. We use the
Player/Stage [5] simulation environment to simulate
the robot and its environment. The electronic con-
troller implemented into FPGA is connected with the
simulation of mechanical part through Ethernet inter-
face. The software part of the verification environment
also runs on the computer and performs the evaluation
of impacts of injected faults both on the electronic and
mechanical parts.

Computer

Software Part of 

Verification 

Environment

Fault 

Injector 

ML506 Virtex 5 FPGA Board

FPGA with Hardware 

Part of Verification 

Environment 

JTAG

Ethernet

Mechanical 

Part

Figure 4. The evaluation platform architec-
ture.

4. Experiments and Results

The previously mentioned robot controller imple-
mentation was used as an experimental electronic sys-
tem in our experiments. In the first stage of the ex-
periments, we evaluated the impact of some of the
main optimization and acceleration techniques of the
HLS methods to the resulting system’s susceptibility
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to SEUs. The other parameters monitored were the
number of slices, slice registers and slice Lookup tables
(LUTs) occupied.

Parts of Table 1 labeled as noft summarize the re-
source requirements for each of the four robot con-
troller units synthesized with a different parameters
set. The first and the second set of parameters, denoted
as noopt-area and noopt-latency, include area and la-
tency optimizations with no additional requirements
added. As can be seen in Figure 5, the results are al-
most equal, which may be caused by a relatively small
design size. The third one, pipeline1-area, includes the
main loop pipelined with II set to 1 and the overall goal
set to the area. The fourth one, unroll2-area, contains
the main loop partially unrolled with the level of paral-
lel computation set to 2. As can be seen, the unrolled
loop requires more resources as the pipelined one, but
it is slightly faster.

Table 1. Resources consumed for each ver-
sion of the HLS synthesized robot controllers.

Version
Occupied Slice Slice Max. LUT

slices reg. LUTs frequency bits
[−] [−] [−] [MHz] [−]

noopt-latency noft 170 346 381 74.85 19392

noopt-area
noft 170 346 381 74.85 19392
triple 378 638 851 82.01 48704
TMR 546 1038 1143 74.85 58176

pipeline1-area
noft 196 152 405 58.82 21952
triple 411 512 1101 65.81 67264
TMR 540 456 1215 58.82 65856

unroll2-area
noft 399 656 854 59.70 48704
triple 1341 1791 3738 50.48 224256
TMR 1224 1968 2562 59.70 146112

noopt-latency noopt-area pipeline1-area unroll2-area

noft triple noft triple noft triplenoft

Figure 5. Comparison of resources con-
sumed for each version of the HLS synthe-
sized robot controllers.

The first experiments with fault injection were tar-
geted to evaluate the resilience against faults of pro-
posed versions of the robot controller. In these exper-

iments only three versions (noopt-area, pipeline1-area
and unroll2-area) were taken into account, because the
detailed analysis showed that noopt-area and noopt-
latency led to a very similar VHDL description.

The three resulting robot controller units were ex-
amined for their susceptibility to SEUs. Exactly 1000
verification runs were performed with each version of
the three robot controller units. Before the experi-
ments started, a list of configuration bits that were
used as a content of LUTs was generated for each ver-
sion of the robot controller bitstream. These bits were
then used in the processes of SEU injections. The sce-
nario of each verification run was as follows:

1. the robot controller unit was reinstated into its
initial state, the maze map as well as its starting
and target positions were the same for all the
verification runs,

2. the Player/Stage simulation environment was
started, the robot was placed on the starting po-
sition,

3. one SEU was injected into a bit that was utilized
as an LUT content bit, the bit was selected uni-
formly at random from all bits utilized as con-
tents of LUTs, the bit remained in a faulty state
during the whole verification run,

4. the robot was started and the ability of the robot
to reach the target position was monitored and
eventually the reason of its failure was observed.

Results of these experiments are summarized in Ta-
ble 2. The first row shows the number of verifica-
tion runs without any impact on the electronic con-
troller, while the second row indicates the number of
faults that cause discrepancy on the output of the elec-
tronic controller. The third row enumerates the reli-
ability improvement of the units with triplication ap-
plied. The reliability improvement was calculated us-
ing Equation 1 for each pair of units with corresponding
HLS settings set s.

reliab improvs =
fails nofts − fails triples

fails nofts
∗ 100

(1)

Table 2 also shows that electronic failure sometimes
led to “Goal not reached” or “Goal reached”. It should
be noted that sometimes the robot reached the goal po-
sition although its electronic system failed. The table
shows that the noopt-area version of robot controller is
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the most prone to injected faults. The number of faults
which led to electronic failure is 51 which is 5.1% of in-
jected faults.

Table 2. Impact of faults on various versions
of robot controller without and with fault tol-
erance method applied.

Monitored impact
noopt-area pipeline1-area unroll2-area

noft triple noft triple noft triple

Electronic OK [−] 949 982 967 996 979 995
Electronic failed [−] 51 18 33 4 21 5
Reliability improvement [%] – 64.7% – 87.9% – 76.2%

Goal not reached [−] 50 16 32 4 19 4
Collision with wall [−] 4 2 5 1 4 1
Goal reach. alth. el. fail. [−] 1 2 1 0 2 1

The next stage of our experiments was targeted to
applying the proposed methodology to each variable of
the robot controller algorithm specification (in tables
and charts labeled as triple version). We evaluated 1)
a resource consumption, 2) a susceptibility of modified
robot controllers to the faults and the comparison of
the results with the versions without any fault toler-
ance modifications.

The comparison of the resource consumption of the
noft and triple versions (with the proposed method ap-
plied) is available in Table 1. The synthesis tool used
was the Xilinx Integrated Synthesis Environment (ISE)
[16]. It is evident that the robot controller hardened by
the proposed methodology consumes more resources.
In comparison with the complete triplication of the
robot controller (rows of Table 1 labeled as TMR) that
were synthesized using three copies of the correspond-
ing noft version, less resources are consumed, although
in some cases such as in the case of the unroll2-area
the resource utilization increased. However, it is im-
portant to keep in mind the complete triplication com-
prises three copies of the control-path, while the pro-
posed method is data-path only.

From the reliability point of view the same exper-
iments were prepared. In this stage, we also injected
one single fault during one verification run. The sce-
nario of each verification run, including the maze map,
was identical to that of the experiments mentioned in
the first phase. Based on 1000 verification runs we can
say that the proposed methodology leads to a lower
sensitivity on injected faults as is shown in Figure 6.
The most significant contribution can be seen in the
case of the pipeline1-area where our methodology led
to an improvement of 87.9%. In case of unroll2-area
the improvement is 76.2%. The smallest improvement
of 64.7% was achieved in case of noopt-area. Based on
these experiments we can conclude that the proposed
methodology leads to improvement of the fault toler-

ance against SEUs with the best efficiency for pipelined
designs. However, this method needs to be combined
with another approach considering the control-path,
which would provide even better resilience to faults.

Figure 6. Number of faults that led to failure
of the electro-mechanical system for each of
the versions.

5. Conclusions and Future Research

In this paper we introduced a newly emerging ap-
proach to easily achieve a certain level of fault tolerance
with the usage of HLS. In our experiments, robot con-
troller system is modeled in the C++ language. After
that, the model is modified using our approach and
synthesized using HLS with selected settings sets. Re-
sulting systems, which have all data-path components
and data elements triplicated, are evaluated using sin-
gle fault injections. The experiments monitor the im-
pacts of injected faults, both on robot controllers with-
out proposed fault tolerance methodology applied, and
also on robot controllers hardened against faults. The
experiments show that single faults injected into uti-
lized LUTs of the hardened robot controller had smaller
impact on the robot controller and its behavior. In
our experiments, resource consumption was also an-
alyzed. The proposed methodology leads to a greater
consumption of resources, the comparison of each of the
versions with the TMR triplication the corresponding
robot controller was provided as well. The objective
of our research is to improve this principle to make it
generally usable and show its usability on other appli-
cations or benchmarks.

The next step in our research would be to involve
the evaluation of the impact of these modifications on
different parts of the system. The main idea is that
each part of the system deserves a different level of re-
liability, based on its function and thus a different level
of fault tolerance. Therefore, it is not necessary to ap-
ply the same level of fault tolerance to every part of the
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system and it is very likely that another configuration
of fault tolerance that has at least the same level of
dependability with less resources consumed exists.
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