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Given a graph G, for every ordinal α > 1, we introduce and study closure operators 
on G induced by sets of α-indexed walks. For such sets, we define a property called 
terseness and investigate how it affects the induced closure operators. We show, 
among others, that the induction, if regarded as a map, is one-to-one for terse walk 
sets. We also determine a poset of closure operators (on a given graph) that is 
a direct limit of a direct system of sets of terse α-indexed walks ordered by set 
inclusion for certain ordinals α > 1. Possible applications of the closure operators 
studied in digital topology are indicated.
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1. Introduction

It is always worthwhile to deal with nontrivial relationships between different mathematical theories be-
cause such relationships bear witness to the interconnectedness of mathematics enabling us to use tools of 
one theory for studying another. In the present paper, we discuss relationships between graph theory, rep-
resenting discrete mathematics, and topology, representing continuous mathematics. Particularly, we will 
introduce and study closure operators on graphs induced by sets of walks of identical (possibly infinite) 
lengths. While the sets of walks of length 1 induce completely additive closure operators with connected-
ness coinciding with the usual graph connectedness, the sets of walks of identical lengths greater than 1 
induce more sophisticated closure operators. The idea of studying topological properties, connectedness in 
particular, of a graph with respect to walk sets was used in [16] where special walk sets, called path parti-
tions, were employed to obtain convenient geometric properties of the connectedness. In [18], the concept of 
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closure operators on graphs induced by sets of walks of the same finite lengths was introduced and studied. 
In particular, connectedness with respect to these closure operators was discussed there. A certain type of 
walk sets was also determined in [18] having the property that the induction of closure operators, if regarded 
as a map, is one-to-one. The present paper may be seen as a continuation of [18] working with generalized, 
α-indexed walks for arbitrary ordinals α > 1 instead. We will define a certain type of walk sets, more general 
than the one found in [18], for which the induction of closure operators by walk sets, if regarded as a map, 
is one-to-one. The walk sets of this type will be called terse and we will determine a set of closure operators 
on a given graph which is a direct limit of the family of sets of terse α-indexed walks for certain ordinals 
α > 1. Possible applications of the closure operators induced on graphs by terse walk sets (which are shown 
to contain the well-known Khalimsky and Marcus-Wyse topologies) in digital topology are indicated.

For the graph-theoretic terminology, we refer to [8]. By a graph G = (V, E) we understand an (undirected 
simple) graph (without loops) with V �= ∅ the vertex set and E ⊆ {{x, y}; x, y ∈ V, x �= y} the set of edges. 
We will say that G is a graph on V . As usual, two vertices x, y ∈ V are said to be adjacent (to each other) if 
{x, y} ∈ E. A key role will be played by the concept of a walk. Unlike the usual walks, in the present paper, 
the walks are allowed to be transfinite. More precisely, given an ordinal α > 1, by an α-walk (a walk for 
short) in G we understand a sequence (xi| i < α) of vertices of V such that xi is adjacent to xi+1 whenever 
i + 1 < α. If α > 1 is a finite ordinal, then α− 1 is called the length of the walk (xi| i < α). An α-walk is 
called an α-path (a path for short) if its members are pairwise different.

By a closure operator u on a set X, we mean a topology in Čech’s sense [3], i.e., a map u: expX → expX

(where expX denotes the power set of X) which is

(i) grounded (i.e., u∅ = ∅),
(ii) extensive (i.e., A ⊆ X ⇒ A ⊆ uA), and
(iii) monotone (i.e., A ⊆ B ⊆ X ⇒ uA ⊆ uB).

The pair (X, u) is then called a closure space. Thus, the usual topologies [2] (i.e., Kuratowski closure 
operators) are the closure operators u on X that are

(iv) additive (i.e., u(A ∪B) = uA ∪ uB whenever A, B ⊆ X) and
(v) idempotent (i.e., uuA = uA whenever A ⊆ X).

Given a cardinal m > 1, a closure operator u on a set X and the closure space (X, u) are called an 
Sm-closure operator and an Sm-closure space (an Sm-space for short), respectively, if the following condition 
is satisfied:

A ⊆ X ⇒ uA =
⋃

{uB;B ⊆ A, cardB < m}.

In [4], S2-closure operators and S2-spaces are called quasi-discrete. S2-topologies (S2-topological spaces) 
are usually called Alexandroff topologies (Alexandroff spaces) – cf. [1]. Clearly, every S2-closure operator is 
additive and every Sm-closure operator is an Sn-closure operator whenever m ≤ n. If m ≤ ℵ0, then every 
additive Sm-closure operator is an S2-closure operator. Of course, if cardX = n, then every closure operator 
on X is an Sn+1-closure operator. It is therefore useful to know, for a given closure operator u on X, the 
minimal cardinal m for which u is an Sm-closure operator. Such a minimal cardinal is an important invariant 
of the closure space (X, u) as mentioned in [3].

Given an ordinal α, we denote by 〈α〉 the least cardinal m with α ≤ m. The predecessor of an isolated 
ordinal α > 1 is denoted by α− 1 and, if α− 1 is isolated, too, then the predecessor of α− 1 is denoted by 
α− 2 and α is said to be double isolated.
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We will use some basic topological concepts (see e.g. [5]) naturally extended to closure spaces. Given 
closure operators u, v on a set X, we put u ≤ v if uA ⊆ vA for every subset A ⊆ X. Clearly, ≤ is a partial 
order on the set of all closure operators on X. If u ≤ v, then u is said to be finer than v and v is said to be 
coarser than u. Note that, for topologies given by open sets, just the converse partial order is usually used.

We will also employ one categorical concept, the one of a direct limit [9] restricted to posets (i.e., partially 
ordered sets) and isotone maps, hence avoiding the categorical terminology. More precisely, a direct system
of posets consists of a collection {Pα; α ∈ I} of posets indexed by a directed poset I and a collection of 
isotone maps ϕα,β : Pα → Pβ defined for all α, β ∈ I, α ≤ β, such that

(i) ϕα,α = idPα
whenever α ∈ I and

(ii) ϕβ,γ ◦ ϕα,β = ϕα,γ whenever α, β, γ ∈ I, α ≤ β ≤ γ.

We denote such a direct system by ({Pα}, {ϕα,β}, I). A direct limit of the direct system ({Pα}, {ϕα,β}, I)
is a poset P with the property that there exists an isotone map ϕα : Pα → P for every α ∈ I such that

(1) ϕβ ◦ ϕα,β = ϕα whenever α, β ∈ I, α ≤ β;
(2) If G is a poset and ψα : Pα → G is an isotone map for every α ∈ I such that ψβ ◦ ϕα,β = ψα for all 

α, β ∈ I, α ≤ β, then there exists a unique isotone map χ : P → G such that χ ◦ϕα = ψα for all α ∈ I.

2. Closure operators on graphs induced by walk sets

Throughout this section, we assumes that there is given an ordinal α > 1. We denote by Wα(G) the set 
of all α-walks in G. Every subset B ⊆ Wα(G) will be called an α-walk set, or a walk set for short, in G. If 
every element of B is even a path, then B will be called an α-path set, or a path set for short, in G.

Let G = (V, E) be a graph. Given a subset B ⊆ Wα(G), we put uBX = X ∪ {x ∈ V ; there exist (xi|
i < α) ∈ B and an ordinal i0, 0 < i0 < α, such that {xi; i < i0} ⊆ X and xi0 = x} for every X ⊆ V .

It may easily be seen that uB is an S〈α〉-closure operator on G. It will be said to be induced by B. It is 
evident that every walk belonging to B is a connected subset of the closure space (V, uB). We clearly have 
B ⊆ D ⇒ uB ⊆ uD whenever B, D ⊆ Wα(G).

Remark 2.1. Let G = (V, E) be a graph and u a closure operator on G. Then it is obvious that there exists 
an α-walk set B in G such that u = uB if and only if the following condition is satisfied:

If X ⊆ V and x ∈ uX −X, then there exist (xi|i < α) ∈ Wα(G) and an ordinal β, 0 < β < α, such that 
{xi; i < β} ⊆ X, xj ∈ u{xi; i < j} for each j, 0 < j < β, and x ∈ u{xi; i < β}.

In general, uB is clearly neither additive nor idempotent. On the other hand, the following assertion is 
proved in [18] (for sets of walks of finite lengths only but, for the walk sets in our setting, the proof is 
analogous):

Proposition 2.2. Let G = (V, E) be a graph and B ⊆ Wα(G) a walk set. Then

(1) The union of a system of closed subsets of (V, uB) is a closed subset of (V, uB).
(2) The closure operator uB is idempotent if and only if (V, uB) is an Alexandroff space.

The following Definition and Theorem are also taken from [18] (Definition 3.7 and Theorem 3.8) where 
they are formulated for a finite ordinal α > 1. For an arbitrary ordinal α > 1, the Theorem may be proved 
analogously to that in [18].
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Definition 2.3. Let G be a graph. A walk set B ⊆ Wα(G) is said to be strongly terse if the following condition 
is true:

If (xi| i < α), (yi| i < α) ∈ B are walks with {x0, x1} = {yi0 , yi1} for some i0, i1 < α, then (xi| i < α) =
(yi| i < α).

Theorem 2.4. For strongly terse α-walk sets B in a graph G, the correspondence B �→ uB is one-to-one.

In [18], also some other properties of the closure operators on graphs induced by strongly terse walk sets 
are discussed. In the present paper, we focus on a property of α-walk sets B (in a graph) weaker than strong 
terseness but still sufficient for the correspondence B �→ uB to be one-to-one.

Definition 2.5. Let G be a graph. A walk set B ⊆ Wα(G) is said to be terse if the following condition is 
true:

If (xi| i < α) ∈ Wα(G) has the property that, for every ordinal i0 with 0 < i0 < α, xi0 ∈ {xi; i < i0}
or there exist (yj | j < α) ∈ B and j0, 0 < j0 < α, such that xi0 = yj0 and {yj ; j < j0} ⊆ {xi; i < i0}, then 
(xi| i < α) ∈ B.

It is evident that every strongly terse walk set is terse but not vice versa.

Example 2.6. Note that every 2-walk set in a graph is terse. A 3-walk set B in a graph is terse if and only 
if each of the following four conditions implies (x, y, z) ∈ B:

(1) (x, y, t) ∈ B, (x, z, u) ∈ B,
(2) (x, y, t) ∈ B, (y, z, u) ∈ B,
(3) (x, y, t) ∈ B, (y, x, z) ∈ B,
(4) (x, y, t) ∈ B, x = z.

Theorem 2.7. Let B, D be terse α-walk sets in a graph. Then B ⊆ D if and only if uB ≤ uD.

Proof. The implication B ⊆ D ⇒ uB ≤ uD is obvious. To prove the converse implication, let uB ≤ uD and 
let (xi|i < α) ∈ B. Then, xi0 ∈ uB{xi; i < i0} = xi0 ∈ uD{xi; i < i0} for each i0, 0 < i0 < α. Hence, for 
every i0 with 0 < i0 < α, xi0 ∈ {xi; i, i0} or there exist (yj | j < α) ∈ D and j0, 0 < j0 < α, such that 
xi0 = yj0 and {yj ; j < j0} ⊆ {xi; i < i0}. Therefore, (xi| i < α) ∈ D and we have shown that B ⊆ D. �
Corollary 2.8. For terse α-walk sets B in a graph, the correspondence B �→ uB is one-to-one.

Theorem 2.9. Let G be a graph and B ⊆ Wα(G) a terse walk set. Then, for every (xi|i < α) ∈ Wα(G), 
(xi|i < α) ∈ B if and only if xi0 ∈ uB{xi; i < i0} for every ordinal i0, 0 < i0 < α.

Proof. If (xi|i < α) ∈ B, then it is obvious that xi0 ∈ uB{xi; i < i0} for every ordinal i0, 0 < i0 < α. 
Conversely, let xi0 ∈ uB{xi; i < i0} for every ordinal i0, 0 < i0 < α. Then, for every ordinal i0 with 
0 < i0 < α, xi0 ∈ {xi; i < i0} or there exist (yj | j < α) ∈ B and j0, 0 < j0 < α, such that xi0 = yj0 and 
{yj ; j < j0} ⊆ {xi; i < i0}. Since B is terse, we have (xi| i < α) ∈ B. �

Let α, β > 1 be ordinals and G be a graph. For every terse walk set B ⊆ Wα(G) in G, we put ϕα,β(B) =
{(yj | j < β) ∈ Wβ(G); for every j0 with 0 < j0 < β, yj0 ∈ {yj ; j < j0} or there exist (xi| i < α) ∈ B
and i0, 0 < i0 < α, such that yj0 = xi0 and {xi; i < i0} ⊆ {yj ; j < j0}. Clearly, for any terse walk sets 
B, D ⊆ Wα(G), ϕα,α(B) = B and B ⊆ D implies ϕα,β(B) ⊆ ϕα,β(D).
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Remark 2.10. Let G be a graph. We clearly have

(1) ϕα,α(B) = B for every walk set B ⊆ Wα(G),
(2) B ⊆ D implies ϕα,β(B) ⊆ ϕα,β(D) whenever B, D ⊆ Wα(G) are walk sets,
(3) (yj | j < β) ∈ ϕα,β(B) implies (yj | j < α) ∈ B for every walk set B ⊆ Wα(G).

Lemma 2.11. Let α, β > 1 be ordinals, α double isolated and α ≤ β. Let G be a graph and B, D terse α-walk 
sets in G. Then B ⊆ D if and only if ϕα,β(B) ⊆ ϕα,β(D).

Proof. The implication B ⊆ D ⇒ ϕα,β(B) ⊆ ϕα,β(D) is obvious. To prove the converse implication, suppose 
that ϕα,β(B) ⊆ ϕα,β(D) and let (xi| i < α) ∈ B. Let (yj | j < β) ∈ Wβ(G) be the walk given by yj = xj for 
every j with 1 < j < α and

yj =
{

xα−2 if k = δ + n where δ = α or δ is a limit ordinal and n is an even (finite) ordinal,
xα−1 if k = δ + n where δ = α or δ is a limit ordinal and n is an odd (finite) ordinal

for every j with α ≤ j < β. Then, for all ordinals j0 with 0 < j0 < α (including those satisfying yj0 ∈
{yj ; j < j0}), we have yj0 = xj0 and {xi; i < j0} = {yj ; j < j0}. Next, for every ordinal j0 with α ≤ j0 < β, 
we have yj0 ∈ {yj ; j < j0}. Consequently, (yj | j < β) ∈ ϕα,β(B), so that (yj | j < β) ∈ ϕα,β(D). Therefore, 
(yj | j < α) ∈ D (see Remark 2.10(3)). Since (yj | j < α) = (xi| i < α), we have shown that B ⊆ D and the 
proof is completed. �
Lemma 2.12. Let α, β > 1 be ordinals, G a graph, and B a terse α-walk set in G. Then, ϕα,β(B) is a terse 
β-walk set in G such that ϕγ,β(ϕα,γ(B)) ⊆ ϕα,β(B) for every ordinal γ with α ≤ γ ≤ β.

Proof. Let (yj | j < β) ∈ Wβ(G) be a walk such that, for every ordinal j0 with 0 < j0 < β, yj0 ∈ {yj ; j < j0}
or there exist (zk| k < β) ∈ ϕα,β(B) and k0, 0 < k0 < β, such that yj0 = zk0 and {zk; k < k0} ⊆ {yj ; j < j0}. 
Suppose that yj0 /∈ {yj ; j < j0}. Then, zk0 ∈ {zk; k < k0}, so that there exist (xi| i < α) ∈ B and i0, 
0 < i0 < α, such that zk0 = xi0 and {xi; i < i0} ⊆ {zk; k < k0}. Thus, we have yj0 = xi0 and 
{xi; i < i0} ⊆ {yj ; j < j0}. Therefore, {yj ; j < j0} ∈ ϕα,β(B), so that ϕα,β(B) is terse.

To prove the second part of the statement, let (zk| k < β) ∈ ϕγ,β(ϕα,γ(B)). Then, for every ordinal k0 with 
0 < k0 < β, zk0 ∈ {zk; k < k0} or there exist (yj | j < γ) ∈ ϕα,β(B) and j0, 0 < j0 < γ, such that zk0 = yj0
and {yj ; j < j0} ⊆ {zk; k < k0}. Suppose that zk0 /∈ {zk; k < k0}. Then yj0 /∈ {yj ; j < j0}, so that there 
are (xi| i < α) ∈ B and i0, 0 < i0 < α, such that yj0 = xi0 and {xi; i < i0} ⊆ {yj ; j < j0}. Thus, zk0 = xi0

and {xi; i < i0} ⊆ {zk; k < k0}. Consequently, (zk| k < β) ∈ ϕα,β(B), so that ϕγ,β(ϕα,γ(B)) ⊆ ϕα,β(B). �
Proposition 2.13. Let α, β, γ > 1 be ordinals, α double isolated and α ≤ γ ≤ β. Let G be a graph and B a 
terse α-walk set in G. Then ϕγ,β(ϕα,γ(B)) = ϕα,β(B).

Proof. Let (yj | j < β) ∈ ϕα,β(B). Then, for every ordinal j0 with 0 < j0 < β, yj0 ∈ {yj ; j < j0} or there 
exist (xj0

i | i < α) ∈ B and i0, 0 < i0 < α, such that yj0 = xj0
i0

and {xj0
i ; i < i0} ⊆ {yj ; j < j0}. For every 

j0 such that 0 < j0 < β and yj0 /∈ {yj ; j < j0}, let (zj0k | k < γ) ∈ Wγ(G) be the path with zj0k = xj0
k for 

every k < α and

zj0k =
{

xj0
α−2 if k = δ + n where δ = α or δ is a limit ordinal and n is an even (finite) ordinal,

xj0
α−1 if k = δ + n where δ = α or δ is a limit ordinal and n is an odd (finite) ordinal

for every ordinal k with α ≤ k < γ. Let j0 be an ordinal such that 0 < j0 < β and yj0 /∈ {yj ; j < j0}. 
For all ordinals k0, 0 < k0 < α (including those with zk0 /∈ {zk; k < k0}) we have zj0 = xj0 and 
k0 k0
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{xj0
i ; i < k0} = {zj0k ; k < k0}. Next, for every ordinal k0, α ≤ k0 < γ, we have zk0 ∈ {zk; k < k0}. Thus, 

for every ordinal j0 such that 0 < j0 < β and yj0 /∈ {yj ; j < j0}, we have (zj0k | k < γ) ∈ ϕα,β(B) and also 
yj0 = xj0

i0
= zj0i0 and {zj0k ; k < i0} = {xj0

i ; i < i0} ⊆ {yj ; j < j0}. Thus, (yj | j < β) ∈ ϕγ,β(ϕα,γ(B)). We 
have shown that ϕα,β(B) ⊆ ϕγ,β(ϕα,γ(B)). Since the converse inclusion is true by Lemma 2.12, the proof is 
completed. �

Given a graph G, we denote by Tα(G) the set of all terse α-walk sets in G. The sets Tα(G) (α > 1
an ordinal) are understood to be partially ordered by set inclusion. The following statement follows from 
Remark 2.10(2) and Lemma 2.11:

Proposition 2.14. Let α, β > 1 be ordinals and G = (V, E) be a graph. Then, ϕα,β : Tα(G) → Tβ(G) is an 
isotone map and, if α is double isolated and α ≤ β, then it is an embedding.

We will need the following observation:

Lemma 2.15. Let α, β > 1 be ordinals, α double isolated and α ≤ β. Let G a graph and B a terse α-walk 
sets in G. Then, uϕα,β(B) = uB.

Proof. Let X ⊆ V and x ∈ uϕα,β(B)X. If x ∈ X, then x ∈ uBX. Suppose that x /∈ X. Then there are 
(yj | j < β) ∈ ϕα,β(B) and an ordinal j0, 0 < j0 < β, such that {yj ; j < j0} ⊆ X and yj0 = x. Let j1, 
0 < j1 ≤ j0, be the smallest ordinal with yj1 = x. Then, there is a walk (xi| i < α) ∈ B and an ordinal 
i0, 0 < i0 < α, such that x = yj1 = xi0 and {xi; i < i0} ⊆ {yj ; j < j1}. Thus, {xi; i < i0} ⊆ X, so that 
x ∈ uBX. The inclusion uϕα,β(B) ⊆ uB is proved.

Conversely, let x ∈ uBX. If x ∈ X, then x ∈ uϕα,β(B)X. Suppose that x /∈ X. Then, there are (xi|
i < α) ∈ B and an ordinal i0, 0 < i0 < α, such that {xi; i < i0} ⊆ X and xi0 = x. Let (yj | j < β) ∈ Wβ(G)
be the walk given by yj = xj for every j with 1 < j < α and

yj =
{

xα−2 if k = δ + n where δ = α or δ is a limit ordinal and n is an even (finite) ordinal,
xα−1 if k = δ + n where δ = α or δ is a limit ordinal and n is an odd (finite) ordinal

for every j with α ≤ j < β. Then, for all ordinals j0 with 0 < j0 < α (including those satisfying yj0 ∈
{yj ; j < j0}), we have yj0 = xj0 and {xi; i < j0} = {yj ; j < j0}. Next, for every ordinal j0 with α ≤ j0 < β, 
we have yj0 ∈ {yj ; j < j0}. Consequently, (yj | j < β) ∈ ϕα,β(B) and we have {yj; j < j0} ⊆ X and yi0 = x. 
Thus, x ∈ uϕα,β(B)X. The inclusion uB ⊆ uϕα,β(B) is proved. Therefore, uϕα,β(B) = uB and the proof is 
completed. �

Given an ordinal γ, we denote by Iγ the set of all ordinals α with γ + 1 < α < γ +ω where ω is the least 
infinite ordinal. Note that α ∈ Iγ means that α is double isolated. Let G = (V, E) be a graph and γ an 
ordinal. Put Uγ(G) = {u; u is a closure operator on G such that, for every subset X ⊆ V and every point 
x ∈ uX −X, there exist an ordinal α ∈ Iγ , a walk (xi| i < α) ∈ Wα(G), and an ordinal β, 0 < β < α, such 
that {xi; i < β} ⊆ X, xj ∈ u{xi; i < j} for each ordinal j, 0 < j < β, and x ∈ u{xi; i < β}}. The set 
Uγ(G) is considered to be partially ordered by ≤ (i.e., “finer than”).

Remark 2.10(1) and Proposition 2.13 immediately result in:

Corollary 2.16. ({Tα(G)}, {ϕα,β}, Iγ) is a direct system.

Theorem 2.17. Let G be a graph and γ an ordinal. Then, the set Uγ(G) is a direct limit of the direct system 
({Tα(G)}, {ϕα,β}, Iγ).
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Proof. For every α ∈ Iγ and every B ∈ Tα(G), put ϕα(B) = uB. By Remark 1, ϕα : Tα(G) → Uγ(G) is a 
map such that, for every u ∈ Uγ(G), there are α ∈ Iγ and B ∈ Tα(G) with ϕα(B) = u. By Theorem 2.7, 
ϕα is an embedding for every α ∈ Iγ . We have ϕβ ◦ ϕα,β = ϕα (so that ϕα(Tα(G)) ⊆ ϕβ(Tβ(G))) whenever 
α, β ∈ Iγ , α ≤ β, by Lemma 2.15. Let P be a poset (with a partial order ≤) and, for every α ∈ Iγ , let 
ψα : Tα(G) → P be an isotone map such that ψ ◦ ϕα,β = ψα whenever α, β ∈ Iγ , α ≤ β. For every 
u ∈ Uγ(G), put χ(u) = ψα(B) where α ∈ Iγ is the least ordinal with u ∈ ϕα(Tα(G)) and B ∈ Tα(G) is the 
walk set with uB = u. Then, χ ◦ ϕα = ψα for every α ∈ Iγ and χ : Uγ(G) → P is clearly a unique map 
with this property. Let u, v ∈ Uγ(G), u ≤ v, and let α ∈ Iγ be the least ordinal such that u ∈ ϕα(Tα(G))
and β ∈ Iγ be the least ordinal such that v ∈ ϕβ(Tβ(G)). Without loss of generality, we may assume that 
α ≤ β. Then u = uB and v = uD for some B, D ∈ Tβ(G) and, by Theorem 2.7, B ⊆ D. Since ψβ is an isotone 
map, we have ψβ(B) ≤ ψβ(D) = χ(v). Next, we have u = uA for some A ∈ Tα(G), so that ϕα,β(A) = B. 
Consequently, χ(u) = χ(uA) = ψα(A) = ψβ(ϕα,β(A)) = ψβ(B). Thus, χ(u) ⊆ χ(v) and we have shown that 
the map χ is isotone. The proof is completed. �

In particular, U0 is the direct limit of the direct system ({Tα(G)}, {ϕα,β}, α > 1 finite ordinals).

3. Closure operators on 4- and 8-adjacency graphs on Z2 induced by terse path sets

Recall that digital topology (cf. [12]) is a theory developed for the study of geometric and topological 
properties of digital images. Though the classical approach to digital topology is based on using graph 
theory rather than topology, the topological approach, which was founded in [10] and developed in [17], 
uses purely topological methods for the purposes of digital topology. It was shown in [15] and [19] that, 
instead of topologies, closure operators may be used to advantage as basic tools in digital topology. In the 
following examples, we will propose using closure operators on the digital plane Z2 that are induced by 
terse path sets in certain graphs on Z2. Employing such closure operators is a combination of the classical 
approach to digital topology and the topological one, thus taking advantages of both of them. We will show 
that the well-known Marcus-Wyse topology [13] and Khalimsky topology [11] on Z2, which often occur in 
digital topology (cf. [6,7]) may be obtained as closure operators on graphs on Z2 induced by certain terse 
path sets.

Example 3.1. Let G4 = (Z2, E) where E = {{(x, y), (z, t)}; (x, y), (z, t) ∈ Z
2, |x − z| + |y − t| = 1}. Then 

G4 is called the 4-adjacency graph on Z2. Put B2 = {((xi, yi)| i < 2); (xi, yi) ∈ Z
2 for every i < 2,

|x0 −x1| + |y0 − y1| = 1 and x0 + y0 is even}. Then, B2 is a terse 2-path set in G4. A portion of B2 is shown 
in the following figure where the paths from B2 are represented by arrows directed from first to last vertices.
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Clearly, (Z2, uB2) is a connected Alexandroff topological space in which the points (x, y) ∈ Z
2 with x +y even 

are open while those with x + y odd are closed. The closure operator uB2 coincides with the Marcus-Wyse 
topology.

Example 3.2. For an arbitrary finite ordinal n > 1, let G8 = (Z2, E) be the graph where E = {{(x, y), (z, t)};
(x, y), (z, t) ∈ Z

2, |x − z| + |y − t| > 0, |x − z| ≤ 1, |y − t| ≤ 1}. The graph G8 is called 8-adjacency graph 
on Z2.

For an arbitrary finite ordinal n > 1, let Dn be the set of all sequences ((xi, yi)| i < n) such that 
(xi, yi) ∈ Z

2 for every i < n and one of the following eight conditions is satisfied:

(1) x0 = x1 = ... = xn−1 and there is k ∈ Z such that yi = 2k(n − 1) + i for all i < n,
(2) x0 = x1 = ... = xn−1 and there is k ∈ Z such that yi = 2k(n − 1) − i for all i < n,
(3) y0 = y1 = ... = yn−1 and there is k ∈ Z such that xi = 2k(n − 1) + i for all i < n,
(4) y0 = y1 = ... = yn−1 and there is k ∈ Z such that xi = 2k(n − 1) − i for all i < n,
(5) there is k ∈ Z such that xi = 2k(n − 1) + i for all i < n and there is l ∈ Z such that yi = 2l(n − 1) + i

for all i < n,
(6) there is k ∈ Z such that xi = 2k(n − 1) + i for all i < n and there is l ∈ Z such that yi = 2l(n − 1) − i

for all i < n,
(7) there is k ∈ Z such that xi = 2k(n − 1) − i for all i < n and there is l ∈ Z such that yi = 2l(n − 1) + i

for all i < n,
(8) there is k ∈ Z such that xi = 2k(n − 1) − i for all i < n and there is l ∈ Z such that yi = 2l(n − 1) − i

for all i < n.

It may easily be seen that Dn is a terse n-path set in G8. A portion of Dn is demonstrated in the following 
figure. The paths belonging to Dn are represented by arrows directed from first to last terms. Between any 
pair of neighboring parallel horizontal or vertical arrows (having the same direction), there are n − 2 more 
parallel arrows with the same direction that are not displayed.
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Clearly, (Z2, uDn
) is a connected Sn-space. The closure operators uDn

, n > 1 a finite ordinal, coincide with 
the closure operators on Z2 studied in [14]. In particular, uD2 is an Alexandroff topology, which coincides 
with the Khalimsky topology on Z2. Note that, for n > 2, the connectedness in (Z2, uDn

) cannot be obtained 
as the usual graph connectedness.
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