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Abstract

This document summarizes implementations of XNOR nets and related experimental results.

Training implementation is provided in CAFFE. For inference of the trained networks, a custom

standalone C++ code is available. The inference code has minimal dependencies, is well
optimized, and supports wide range of network architectures.
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Code repositories

e (Caffe implementation of XNORNet training https://github.com/kohuthonza/caffe, with
short documentation at https://github.com/kohuthonza/caffe/wiki

e C++ inference using logical operations https://github.com/DCGM/XNOR-inference, with
short documentation at https://github.com/DCGM/XNOR-inference/wiki. The inference
code does not have any dependencies except Eigen library which is used for efficient
floating point matrix multiplication.

o Network definitions are at
https://github.com/kohuthonza/caffe-net-generator/tree/master/definitions

e Results and trained networks: TODO

Caffe implementation

The XNORNet Caffe extension consists of two layers BinaryConvolution and Signum which
have both GPU and CPU implementations. All computation is done in float numbers. The layers
are implemented in files:

e Signum - signum_layer.cpp (CPU), signum_layer.cu (GPU)

e BinaryConvolution - binary _conv_layer.cpp (CPU),
cudnn_binary_conv_layer.cpp (GPU), cudnn_binary_conv_layer.cu (GPU). GPU
implementation works only with cuDNN, if cuDNN isn't avalible and GPU mode is
set, the CPU implementation is used.

e Binary fully connected layer is not provided, use BinaryConvolution with appropriate
kernel size (1x1) instead.

The XNOR nets (Rastegari et al., 2016) approximate floating point convolution by binary
convolution where both inputs and weights are limited to values {-1, +1}. The results are scaled
to reflect the energy of the individual convolution filters.

XNOR convolution “layer sequence” has to be composed of three layers
BNorm->Signum->BinaryConvolution (see Figure 1). Batch normalization centers the
previous activations around zero to minimize information loss. Signum layer binarizes
the activations to {-1, +1} - this operation is non-linear and no additional activation function
(e.g- ReLU) is needed. Pooling can be added after BinaryConvolution - to pool float
(integer values). Pooling of binary values would result in extreme information loss.
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Figure 1. The basic building block of XNORNet. The Pooling layer is optional. The block
produces real-valued outputs. From (Rastegari et al., 2016).

BinaryConvolution layer keeps floating point weight tensor which is updated during
learing. In forward pass, the weight tensor is binarized. The approximation of the
floating point convolution 7 « W is with binary filter weights is:

I« W =(I«B)o; B=sign(W); a=1||W||,
where B is a binarized weight tensor, and ais a floating point constant for each
convolution filter which maintains the energy of the filters. This approximation is defined
by equations (4) and (6) in (Rastegari et al., 2016).

BatchNorm-Signum. The full XNOR approximation in the original paper (Rastegari et
al., 2016) in equation (11) is:

I« W = (sign(l) = sign(W)) © Ka
where K captures energy of each image position K; = t”)(l.j”l1 where X is the

filter-sized activation map patch (all channels) centered around pixel ij . The symbol ©
indicates elementwise multiplication after K is repeated for each output channel of the
convolution. This operation best preserves local energy; however, the term K is omitted
by the authors of XNORNets in the reference implementation®. It adds a relatively large
number of floating-point operations and it would prevent purely integer/binary network
inference (see Section Binary Inference). The K term does not seem to be needed and
we omit it.

Gradients of binarization (Signum). Signum function does not have a gradient - itis 0
everywhere except at the discontinuity at 0. However, “pseudo” gradients can be used
and the networks still train. The basic option is to consider the sign function as identity
during backpropagation. In (Rastegari et al., 2016, page 6 bottom), the authors advocate
setting the gradient of sign(r) to Oif |#| > 1. The idea is to ignore gradient of large inputs as it is
“imposible” to change tem anyway, and to try to improve values which are close to 0. Our

' https://github.com/allenai/XNOR-Net/blob/master/newLayers/BinActiveZ.lua



implementation uses this “trick” in the Signum layer? and in BinaryConvolution layer for the
weights. However, for weigths, small gradient is retained even when the weight is
greater than 1.2 Anyway it does not have much effect for the filter weights as they are
generally smaller than 1.

Caffe Layers Cheat Sheet

Signum

Computes signum(x) - output is +1, -1
Cannot be used inplace (input is needed for backward pass)
If value of input is in range (-1, 1) the gradient is passed otherwise the gradient is
multiplied by zero

e |If value of input is in range (-1, 1) the gradient is passed otherwise the gradient is
multiplied by zero

e Signum_layer.cpp, signum_layer.cu

layer {
name: “"name"
type: "Signum"
bottom: "bottom"
top: "top"

BinaryConvolution

e Binarizes weights and computes convolution.
Needs cuDNN.

e Definition is the same as in normal convolution with additional
binary_convolution_param.

e param update_weight_diff - Set to TRUE to match the reference implementation.
Gradients of weights with values outside <-1;+1> are significantly reduced. This option
does not have much effect as weights are normally within the range <-1;+1>. This option
should be irrelevant for per-weight adaptive learning algorithms such as Adam.

e param scale_weight_diff - Set to TRUE to match the reference implementation. It is the
scaling from line 85 in https://github.com/allenai/’XNOR-Net/blob/master/util.lua. This

2 As in https://qithub.com/allenai/XNOR-Net/blob/master/newLayers/BinActiveZ.lua lines 14, 15.
3 https://github.com/allenai/XNOR-Net/blob/master/util.lua line 78 - updateBinaryGradWeight()




constant scaling is not part of the original paper and is almost 1 for higher channel
numbers. This option did not have any measurable effect in our experiments.
e Binary_conv_layer.cpp, cudnn_binary_conv_layer.cpp,
cudnn_binary_conv_layer.cu
layer {

name: "name"

type: "BinaryConvolution"

bottom: "bottom"

top: "top"

param { lr_mult: val decay_mult: val}

param { 1lr_mult: val decay mult: val}

convolution_param {
bias_term: bool
kernel size: val
num_output: val
stride: val
pad: val
group: val
weight_filler {

type: "type"
std: val

Ji

bias_filler {
type: "type"
value: val

}

}

binary_convolution_param {
update_weight_diff: bool (default: true)
scale weight diff: bool (default: true)

Network architectures

First and last layer of all networks should not be binarized. This is consistent with the original
paper (Rastegari et al., 2016) as stated in Section 4.1 and with the reference implementation.

The Caffe implementation allows any network architecture. However, only architectures which
follow the XNOR-Net basic building block in Figure [XNOR block] make sense. The sequence
of layers should mostly be ...->BNorm->Signum->BinConv(->Pooling)->BNorm->Signum.

e BinConv should be preceeded by Signum layer - otherwise it is not a XNOR network.



e Signum layer should be preceeded by BatchNorm layer to retain the most
activation information in the Signum layer (and to conform to the original XNOR
paper).

e Any pooling should be done right after BinConv layer (not on binary values).

Transition from floating point to binary. A straightforward transformation of the first layers of
standard networks is: CONV -> BNorm -> ReLU -> BNorm -> BinConv ...
Some notes:

e This layer progression contains two BatchNorm layers and two non-linearities and could
be repaced just by CONV -> BNorm -> Signum -> BinConv. However, our preliminary
experiments showed slight reduction in accuracy for this simplified version.

e XNOR networks generally need many channels which may be too many for the first
floating point layer filters (resulting in suboptimal speed). A good alternative would be to
use just few filters in the first layer and expand the channels with a second floating point
layer with 1x1 filters.

Transition from binary to floating point. The output of BinConv can be used the same way
as output of standard convolution layer.

Examined architectures

We examined two architectures. Simple linear network similar to VGG-16 (Simonyan and
Zisserman, 2014) and a variant of ResNet (He et al., 2016).

VGG. The VGG networks are simple linear networks with 3x3 convolutional filters. The starting
layers are CONV -> BNorm -> ReLU -> BNorm -> Signum -> BinConv.

ResNet. The original ResNets (He et al., 2015) are not much suitable for XNORNets. As shown
in Figure [ResNet blocks] (a), the nonlinearity is after the elementwise addition, which would
severely restrict the information flow when exchanged to Signum. An updated version of
ResNets which moves all operations to the “computation” branch and removes any non-linearity
from the “identity” branch [ResNet blocks] (b) (He et al., 2016) is more suitable. Here, the order
of layers matches the order of XNORNet layers and the information flow between ResNet blocks
is not limited by binarization.

One issue of the chosen ResNet architecture is how to change the number of channels (e.g.
when reducing spatial resolution by pooling). We used two options. On CIFAR, the number of
channels is changed by a binary convolution on the straight path. On PFC faces, we decided the
to use floating-point convolutions with 1x1 filters between ResNet blocks: ResBlock -> CONV ->
Pooling -> ResBlock -> ResBlock. These 1x1 floating point convolutions are slower, but retain



more information. These layers are not that expensive - these layers amount to 12.3% of
computational time for one of the best XNOR networks* on PFC.
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Figure [ResNet blocks]. The identity mapping ResNet block proposed by He et al.(2016). The
block (b) is suitable for XNORNets - ReLU layer are replaced by Signum layers.

Binary Inference

A Caffe model is transformed such that it would be most efficient to compute inference with
binary operations. Normal floating point layers are mostly preserved and their behavior does not
change. Layers after BinaryConvolution get transformed depending on the network structure.
If possible, layers get merged to minimize computation. BinaryConvolution by itself has integer
outputs in the inference code.

Network transformation related to XNOR nets are:

“ BIN_C128S2_2RES128_P2_2RES192_P2_2RES256_P4_2RES4096_FC1024_FC6300



e Any sequence of BinConv (*-> Pooling | BNorm | ReLU) -> Signum gets transofrmed into
BinConv (*-> Pooling) -> Signum by merging all scaling, biases (BNorm) and ReLU into
the Signum threshold.

e BinConv which is not followed by Signum is transformed into BinConv -> Bias and
produces floating point tensors.

Other transformations include (if not removed):
e BNorm becomes Scale -> Bias

Branching restrictions
e Concatenation is supported both on floating point and binary tensors. However, it is
limited to concatenating channels (not in spatial domain). Channels have to be divisible
by 8 for the binary concatenation.
e Elementwise layer is limited to addition and to floating point values.

Datasets

Two datasets were used in experiments - CIFAR-10 and PFC face dataset.

PFC dataset was created by combining three face datasets: PubFig, FaceScrub a CASIA
WebFace (Stratil, 2017). Common identities were merged and identities from LFW dataset were
removed. The PFC dataset includes 317,328 images of 6,154 people. The images were
geometrically normalized (rotation, translation, scale) to 64x64 resolution, such that positions of
the eyes would be (22,22) and (22,42).

For this study, the number of images of a single person was limited to 200 and 10% of the
images were reserved for testing. The minimal number of images per identity is 15. The final
training set contains 254,963 images and the testing set 29,046 images. Plot showing the image
counts for individual identities is shown in Figure [Dataset distribution]. Note that a maximum
classification accuracy of a blind classifier on the test set is only 0.069% despite the imbalance
in the dataset.



200 A

175 A

150 ~

125 ~

100 A

75 A

50

25+

T T T T T T T
0 1000 2000 3000 4000 5000 6000

Figure [Dataset distribution]. The number of images per identity in the face dataset. TODO

Experiments

Network architecture strings

Network architecture is described by strings such as
BIN_C032S2_2RES32_P2_2RES64 P2 2RES128 P4 2RES4096_FC1024_FC6300. The
meaning is:

C - convolution, number of filters (S2 - spatial stride 2)

2C32 - two convolutional layers with 32 filters

If not stated otherwise, all convolution kernels are 3x3.

RES - resnet block, number of filters

2RES32 - 2x ResNet block with 32 filters

P2 - pooling layer with stride 2

FC1024 - fully connected layer with 1024 channels

BIN_ - XNOR network - All convolutions in the network are binary except the first layer
and the last layers. PFC networks have two floating point layers at the end to reduce
computational complexity due to 6300 output classes.

All inference time measurements of PFC networks were without the last two floating
point layers for both XNOR network and floating point networks. The reason is that these
two layers dominate the computational time and would not be present in other networks
(e.g. gender and age classification) or would be much smaller (e.g. facial fingerprint
extraction).



Some network as named e.g. VGG.32. These networks follow the structure of VGG networks
with stages of 2 convolutional layers followed by pooling. The number of channels doubles
between the stages.

General notes

Speed measured on Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz.
Inference of floating point networks were done using Intel fork of Caffe
https://github.com/intel/caffe. This branch is optimized for CPU computation and uses
MKL. It is up to 10x faster on CPUs compared to the master branch.

e All 4 cores are utilized in the experiments. Batch size for Intel Caffe is 4 as higher batch
sizes improved speed only marginally. Binary inference uses 4 parallel threads.

Convolution inference speed

This experiment measures speed of pure matrix multiplication in single precision float numbers
vs. in binary XNOR operations on standard CPU. The tool used for the measurements is
testGEMM.cpp. Library Eigen was used for the floating point matrix multiplication. The core code
for the binary multiplication is almost the same as in the binary inference code and it computes
value of each output pixel in the inner loop and uses 64-bit popcnt instruction:
for(int k = @; k < kerSize; k++){

cumul += _mm_popcnt_u6b4(input[k] ~ filter[k]);
¥

results[p * fCount + f] = cumul;

The full results are in spredsheet and they were computed on 4 core Intel(R) Core(TM) i5-2500
CPU @ 3.30GHz. The experiment used 4 independent computation threads running in parallel
and the results are reported per thread (multiply by 4 to get the total speed).

Setup. The computation speeds were measured for a range of image sizes, number of input
and output channlels. These three number define the size of matrices in the multiplication - first
matrix is [pixels, #input_channels] and the second matrix is [#input_channels,
#output_channels]. #input_channels is in fact the size of the convolutional filters times the
number of channels of the input activation map (it would be 576 for 3x3 filter and 64 input
channels).

Results. The measured speedup ranges from 2.46x up to 117x, while 80% of the speedups are
between 3.7x and 25x (see Figure [Speedups]). The speed of binary convolution is relatively low
for low number of input channels (64 - that is 1x1 convolution with only 64 input filters). The
floating point convolution is slower when some of the dimension of matrices in the multiplication
is low (see Figure [Speed]). Full scatter plot of the speeds is in Figure [Speeds_compare].
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Figure [Speedups]. Speedups of binary convolution vs. floating point convolution.
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Figure [Speed]. Speed of binary convolution with respect to number of input channels and float
convolution speed with respect to minimum dimension of the matrices in matrix multiplication.
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Figure [Speeds_compare]. Speeds of floating point convolution and equivalent binary
convolutions on 3.30GHz CPU. The speeds are in millions of equivalent floating point operations
per second per thread (multiply by number of available threads and adjust to the target CPU
frequency to get a rough expected speed).

Full network binary inference speedup

This section shows speedup of the binary inference code compared to floating point inference in
Intel Caffe. The speedups are in the range 2-10x. Lower speedups are achieved in networks
which have more floating point operations. These are network with more filters in the first layer
or ResNets on PFC which use floating point convolution to increase number of channels.
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Figure [inference_speedup]. Y-axis show inference speedup. X-axis distinguishes different types
of networks.

The difference can be seen in the binary inference times of the next two networks. The first
network processes one image in 11.2ms and its first layer takes 5.788 ms which is 51% of the
time (in the experiment, 4 images were processed in parallel). The second network takes 7.2 ms
as a whole and the first layer 1.9 ms (25%). The respective speedups are 3.59x and 9. In the
following timings, the blue part represents binary part of the networks.

BIN_1xC128_P2_1xC128_P2_1xC256_P2_FC1024_FC2048 FC512_FC6300
conv1.1-nobias | runtime: 5.788
pool1-float | runtime: 0.38534



signum2.1 | runtime: 0.258631
conv2.1-int | runtime: 2.39226

pool2-int | runtime: 0.177783
signum3.1 | runtime: 0.0590335
conv3.1-int | runtime: 1.43666

pool3-int | runtime: 0.0805233
reshape-int | runtime: 0.063666
signum4.1 | runtime: 0.0414077
conv4.1-int | runtime: 0.440113
signum4.2 | runtime: 0.00305643
conv4.2-int | runtime: 0.0604529
conv4.2-alfa | runtime: 0.0065613
conv4.2 | runtime: 0.00458729
conv4.2-inplace0-bias | runtime: 0.00338247
conv4.2-inplace0 | runtime: 0.00445118
conv4.2-inplace1 | runtime: 0.00382282

BIN_2xC32_P2_2xC64_P2_2xC128 P2_FC2048_FC4096_FC512_FC6300
conv1.1-nobias | runtime: 1.90916
signum-1.2 | runtime: 0.267778
conv1.2-int | runtime: 1.53519
pool1-int | runtime: 0.159606
signum2.1 | runtime: 0.0703179
conv2.1-int | runtime: 0.64008
signum?2.2 | runtime: 0.10252
conv2.2-int | runtime: 0.705865
pool2-int | runtime: 0.0718005
signum3.1 | runtime: 0.0318742
conv3.1-int | runtime: 0.370664
signum3.2 | runtime: 0.0603226
conv3.2-int | runtime: 0.603715
pool3-int | runtime: 0.041454
reshape-int | runtime: 0.0277299
signum4.1 | runtime: 0.012786
conv4.1-int | runtime: 0.38416
signum4.2 | runtime: 0.00391297
conv4.2-int | runtime: 0.179678
conv4.2-alfa | runtime: 0.00732426
conv4.2 | runtime: 0.00515427
conv4.2-inplace0-bias | runtime: 0.00429722
conv4.2-inplace0 | runtime: 0.00565005
conv4.2-inplace1 | runtime: 0.00615179



Batch size

This experiment examines training with different mini-batch sizes on PFC dataset with relatively
small residual network. Both XNOR and float networks train better with larger batch sizes. In
general, XNOR networks benefit more from larger batch size. However the improvement is
stronger on training sed and the accuracy saturates on test set. Experiments on PFC were done
with batch size of 128 in order to be able to train even larger networks.

Most XNOR networks on CIFAR were trained with batch size 128 except the largest ones which
were trained with batch size 64, and the largest XNOR ResNet was trained with 16 due to GPU
memory constraints. The batch size 64 did not affect results significantly on CIFAR. The batch
size 16 probably degraded accuracy of the network significantly. VGG float networks were
trained with batch size 64 and float ResNets with batch size 128.

Learning rate was gradually reduced during training of the networks. We did not observe further
improvement when training beyond the point reached in the experiments.

Dataset: PFC faces

Network: both BINARY and FLOAT

C032S2 2RES32 P2 2RES64 P2 2RES128 P4 2RES4096 FC1024 FC6300
Training: Adam, Ir 0.008, Ir_step 50000 by 0.666, iterations 125000

Batch size on face dataset

1 BIN Train
@ BIN Test
0.75 FLT Train
@ FLT Test
0.5
0.25

4

5 10 50 100

Batch

Figure [batch_size]. Training with different batch sizes. X-axis show batch size. X-axis show
classification accuracy.



Training algorithm

We have experimented with training algorithms - mainly SGD and Adam. On CIFAR, the results
were similar and the final experiments used SGD in most cases. On PFC, the XNOR networks
did not train well with SGD and all the reported experiments use Adam.

CIFAR-10

Speed and accuracy of networks on CIFAR-10 dataset is shown in Figure [CIFAR_RESULTS].
On this task, the float networks provide better absolute accuracy 91.8%°, while the best XNOR
network has 88.7%°. A float network running at the speed of the top XNOR network has
accuracy 0.90% (the inference speeds are 543 and 551). The float and XNOR networks become
comparable at higher speeds (after ~2000 fps). More detailed results follow.

The largest XNOR ResNet’ was trained with batch size of only 16 due to GPU memory
constraints. This probably reduced its accuracy. However, networks of such sizes are becoming
impractical to train.
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Figure [CIFAR_RESULTS]. XNOR nets vs float nets on CIFAR-10. Showing speed as images
per second (x-axis) and classification error (y-axis). Training data (left), testing data (right). BIN -
XNOR; FLT - float.

FLOAT VGG network size

5 2xC64_P2_2xC128_P2_2xC256_P2_2xC512_FC256_FC256_FC10 and
C128_3x2RES128_P2_FC1024_FC10_DROP30

6 BIN_2xC128_P2_2xC256_P2_2xC256_P2_FC1024_FC1024_FC10

7 BIN_C256_3x2RES256_P2_FC1024_FC10



This table compares float networks with VGG architecture of different size. Larger networks
have higher accuracy, but the performance saturates at the 64 channels in the first layer -
training accuracy is already 1.0.

The networks follow the basic VGG structure with with 3x3 convolutions and dropouts before
each pooling layer. The input to fully connected layer is 4x4:

2xC4_P2_2xC8 _P2_2xC16_P2_2xC32_FC256_FC256_FC10,
2xC8_P2_2xC16_P2_2xC32_P2_2xC64_FC256_FC256_FC10, ...

Filters in first layer =~ Testacc. Train acc. Fps
4 0.646 0.655 6383
8 0.798 0.833 2690
16 0.873 0.970 1417
32 0.904 0.999 551
64 0.919 1 186

XNOR VGG network size

XNOR VGG-like networks require relatively large number of filters at the beginning of the
network and do not necessarily require doubling of channels in deeper layer. However, this
effect is probably limited to the CIFAR dataset due to strong tendency to overfit the small
dataset.

The binary fully connected layers have to significantly larger compared to float network. We
1024 for XNOR nets and only 256 for float nets.

The number of filters has to be much higher compared to float networks. Our XNOR “VGG.64”
has similar accuracy as float VGG.8 and the best XNOR network “VGG.128.256” has accuracy
between VGG.32 and VGG.16.

The XNOR networks still benefit from dropout which manages to limit overfitting. However, this
may not be needed on large datasets.

Train
Network Test acc. acc. Fps
2xC64_P2_2xC64_P2_2xC64_P2_FC1024_FC1024_FC10 0.8 0.918 1802
2xC128_P2_2xC128_P2_2xC128_P2_FC1024_FC1024_FC10 0.861 0.995 939
2xC128_P2_2xC128_P2_2xC128_P2_FC1024_FC1024_FC10_DROP30 0.876 0.918 939
2xC128_P2_2xC256_P2_2xC256_P2_FC1024_FC1024_FC10_DROP30 0.887 0.966 543

Float ResNets



Float ResNets had to be larger than VGG nets. The best results were achieved by ResNet with
128 channels in all ResNet blocks and with 2 blocks in each stage (network with 256 channels
did overfit).

Network Test acc. Fps

C64_3x3RES64_P2_FC1024_FC10 0.8210999942 88
C128_3xRES128_P2_FC1024_FC10_DROP30 0.9005999959 226
C128_3x2RES128_P2_FC1024_FC10_DROP30 0.9187999976 48
C256_3x2RES256_P2_FC1024_FC10_DROP30 0.9024999952 26
C64_2RES64_P2_2RES128 P2_2RES256_P2_FC1024_FC10 0.8539999944 115

XNOR ResNets - Filter count
XNOR ResNets peaked at 128 channels. However, Network with 256 channels was trained on
small mini-batches of 16 samples which definitely reduced its accuracy.

Network Train acc. Test acc. Fps

BIN_C64_3x2RES64_P2_FC1024_FC10 0.839766 0.983203 1034.19
BIN_C128_3x2RES128_P2_FC1024_FC10_DROP30 0.885234 0.959375 425.153
BIN_C256_3x2RES256_P2_FC1024_FC10_DROP30 0.866562 0.9625 133.47

XNOR ResNest - depth

XNOR ResNets with more ResNet blocks per pooling stage generally perform better. The effect
is not significant after 2 blocks per stage. The difference between one and two blocks is very
significant.

Network Train acc. Testacc. Fps
BIN_C64_3xRES64_P2_FC1024_FC10 0.797 0.971 2987
BIN_C64_3x2RES64_P2_FC1024_FC10 0.840 0.983 1034
BIN_C64_3x3RES64_P2_FC1024_FC10 0.846 0.985 614
BIN_C128_3xRES128 P2_FC1024_FC10_DROP30 0.855 0.925 1271
BIN_C128_3x2RES128_P2_FC1024_FC10_DROP30 0.885 0.959 425
BIN_C32_RES32_P2_RES64_P2_RES128_P2_FC1024_FC10 0.763 0.953 3072
BIN_C32_2RES32_P2_2RES64_P2_2RES128_P2_FC1024_FC1

0 0.828 0.980 1265
BIN_C64_RES64_P2_RES128 P2_RES256_P2_FC1024_FC10 0.803 0.989 1644

BIN_C64_2RES64 P2 2RES128_P2 2RES256_P2_FC1024_FC
10 0.861 0.997 647



PFC faces

Speed and accuracy of face recognition networks is shown in Figure [PFC_RESULTS]. On this
task, the float networks provide better speed-accuracy tradeoff with accuracy lower by ~2.5%
across the whole range of speeds. The best achieved accuracy with float network is 89%?2 while
best XNOR networks have 86.5%° and 85.5%° accuracy. The best float network with accuracy
around 86% are able to process 240" or 280" images per second while the best XNOR
network only process 96 and 134 images per second. More detailed results follow.
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Figure [PFC_RESULTS]. XNOR nets vs float nets on PFC. Showing speed (x-axis) and
classification error on testing set (y-axis). BIN - XNOR; FLT - float.

8 VGG.48 and FLT_C032S2_6RES32_P2_B6RES64_P2 6RES128_P4_BRES4096_FC1024_FC6300
9 BIN_C128S2_C1_2RES128_P2_2RES192_P2 2RES256_P4 2RES4096_FC1024_FC6300

10 BIN_C128S2_2RES128_P2_2RES192_P2_2RES256_P4 2RES4096_FC1024_FC6300
"VGG.32

2 FLT_C032S2_2RES32_P2 _2RES64_P2 2RES128 P4 2RES4096_FC1024_FC6300



FLOAT VGG network size

This table compares float networks with VGG architecture of different size. Larger networks
have higher accuracy, but the performance saturates at the 48 channels in the first layer -

training accuracy is already 1.0.

The architecture is 2xC64_P2_2xC128_P2 2xC256_P2_FC2048_FC4096_FC512_FC6300.

XNOR VGG network size

Filters in first Test Image per
layer accuracy second

8 0.73 805
16 0.819 440
32 0.875 214
48 0.889 126

Larger networks have higher accuracy. The training accuracy for the network with 64 filters is
already 99%. Larger network was not tested as it did not fit into memory.

FLOAT ResNet network depth

Test Image per
Filters in first layer accuracy second
16 0.617 805
32 0.738 513
64 0.812 228

This tab compares float ResNets with different number of ResNet blocks in each stage. The

general architecture is

C032S2_XRES32_P2_XRES64_P2_XRES128_P4_XRES2048 FC1024_FC6300, where X is the
number of blocks per stage. The results show no significant differences beyond 2 blocks per stage.

XNOR ResNet network depth

Test Image per
ResNet blocks per stage  accuracy second
1 0.816 475
2 0.837 284
3 0.825 194
6 0.839 104

Similarly to floating point networks, no improvement is observed beyond 2 blocks per stage

ResNet blocks per stage

Test Image per
accuracy second



1 0.55 729
2 0.583 435
3 0.572 398

FLOAT ResNet block bottleneck
ResNet blocks are composed of two convolutional layers. The first layer does not necessarily
have to have the same number of channels as the direct route. Speed can be improved by

lowering the number of filters and creating a bottleneck. The compared networks are
FLT_CO032S2_2RES32_P2 2RES64 P2 2RES128 P4 2RES4096_FC1024_FC6300/.

The 0.5 bottleneck improves speed at a slight accuracy cost. The 0.25 bottleneck does not improve speed
much. All ResNets on PCF further use 0.5 bottleneck.

Test Image per
ResNet channel bottleneck ratio accuracy second
0.25 0.833 298
0.5 0.837 284
1.0 0.848 134

XNOR ResNet network channel width
More channels in XNOR ResNets improve results. However, even larger network become

impractical to train. We already had to restrict the number of channels in the deeper layers of
the

Test Image per

NET accuracy second

C032S2_2RES32_P2 _2RES64 P2 2RES128_P4 2RES4096_FC1024_FC
6300/ 0.583

435
C064S2_3RES64_P2 3RES128 P2 3RES256_P4 3RES4096 _FC1024 F
C6300/ 0.793 162
C128S2_2RES128_P2 2RES192_P2 2RES256_P4 2RES4096_FC1024 _
FC6300/ 0.854 134

XNOR ResNet - start with 2 float convolutions

This experiment explores a network which starts with two floating point layers where the second
one has 1x1 kernels. This extension results in slight improvement at significant speed reduction
(30% for this network). An option would be to decrease the number of filters in the first layer.

Test Image per

NET accuracy second



BIN_C128S2_C1_2RES128 P2 2RES192_P2 2RES256_P4 2RES4096_

FC1024_FC6300/ 0.865 96
BIN_C128S2_2RES128 P2 2RES192 P2 2RES256_P4 2RES4096 FC1

024_FC6300/ 0.854 134
Conclusions

e XNOR networks are probably not able to reach the same accuracy as floating point
networks even with increased size on harder recognition tasks which have enough data
to prevent severe overfitting. On some problems, they could provide competitive
speed-accuracy ratio on PC-CPU, but would probably significantly overcome floating
point networks only if SSE/AVX registers could be used for inference of the XNOR
networks. XNOR network would be suitable for platforms which allow fast bit population
count and offer only slow floating point matrix multiplication (no SSE/AVX).

e For the face PFC recognition problem, accuracy could have been probably improved
with larger networks, however such networks would already be too large to train on a
single GPU.

e On CPUs, the observed speedups due to binarization in the current 64-bit
implementation for suitable networks are around 5x. This relatively low speedup is due to
very efficient floating point convolution (GEMM) from MKL which uses AVX registers and
instructions and which is able to process 8 float numbers at once on the target CPU.
This instruction-level parallelism would suggest speedup of XNOR nets of 8x (XNOR
nets are computed using 64-bit instructions). This expected speedup is reduced by
floating point layers of the XNOR networks. The range of speedup of the convolution
itself may be significantly higher and lower due to different efficiencies of floating point
and binary convolutions for different input and filter sizes/counts.
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