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Abstract

Motivation: G-quadruplexes (G4s) are one of the non-B DNA structures easily observed in vitro

and assumed to form in vivo. The latest experiments with G4-specific antibodies and G4-

unwinding helicase mutants confirm this conjecture. These four-stranded structures have also

been shown to influence a range of molecular processes in cells. As G4s are intensively studied, it

is often desirable to screen DNA sequences and pinpoint the precise locations where they might

form.

Results: We describe and have tested a newly developed Bioconductor package for identifying po-

tential quadruplex-forming sequences (PQS). The package is easy-to-use, flexible and customiz-

able. It allows for sequence searches that accommodate possible divergences from the optimal G4

base composition. A novel aspect of our research was the creation and training (parametrization)

of an advanced scoring model which resulted in increased precision compared to similar tools. We

demonstrate that the algorithm behind the searches has a 96% accuracy on 392 currently known

and experimentally observed G4 structures. We also carried out searches against the recent

G4-seq data to verify how well we can identify the structures detected by that technology. The cor-

relation with pqsfinder predictions was 0.622, higher than the correlation 0.491 obtained with the

second best G4Hunter.

Availability and implementation: http://bioconductor.org/packages/pqsfinder/ This paper is based

on pqsfinder-1.4.1.

Contact: lexa@fi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA sequences capable of forming alternative secondary structures,

called non-B DNA, have long been at the center of research interest

because of their possible biological functions (Du et al., 2013) and

their involvement in mutagenesis and disease (Bacolla and Wells,

2009). Instead of forming canonical B-DNA helices with Watson-

Crick base pairing, these regions of DNA can engage in different

types of base pairing and form cruciforms, triplexes (or H-DNA),

G-quadruplexes (G4s), i-motifs and a few other alternative struc-

tures (Wells, 2007). After previous work on algorithms and practical

solutions to identify triplex DNA (Hon et al., 2013; Lexa et al.,

2011), we focus here on identifying potential quadruplex-forming

sequences (PQS).

As evidenced by sequencing (Chambers et al., 2015), as well as a

large number of other experimental and in silico studies, PQS are

found in high numbers in eukaryotic genomes (Huppert, 2005; Lexa
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et al., 2014). They are implicated in several genome-wide processes,

mostly as positive or negative regulators of transcription (Rhodes

and Lipps, 2015), negative regulators of replication which require

specialized helicases for the processes to continue (Mendoza et al.,

2016) and may be dispersed into critical locations of the genome by

the activity of transposable elements (Kejnovsky and Lexa, 2014).

Today, several software tools for identification of PQS in biolo-

gical sequences are available. The oldest and most commonly used

algorithms are based on a simple folding rule representing four runs

of guanines separated by relatively short loops (or spacers). These

include quadparser (Huppert, 2005), QGRS Mapper (D’Antonio

and Bagga, 2004; Kikin et al., 2006) and Quadfinder (Scaria et al.,

2006). The folding rule used in these tools is usually of the form

G{3,6}.{1,8}G{3,6}.{1,8}G{3,6}.{1,8}G{3,6} reflecting the fact that

PQS with short loops and four perfect G runs form the most stable

G4s in vitro. These tools consider only sequences that match the se-

quence formula perfectly.

In recent years, different in vitro experiments have confirmed the

existence of imperfect G4s (Mukundan and Phan, 2013). They have

also been explored in silico by molecular dynamics (Varizhuk et al.,

2017). As a result, new tools for prediction of imperfect G4s began

to be developed. Such tools include TetraplexFinder/QuadBase2

(Dhapola and Chowdhury, 2016), ImGQfinder (Varizhuk et al.,

2014) and G4Hunter (Bedrat et al., 2016). For example,

TetraplexFinder considers potential bulges of defined length in runs

of three guanines, while ImGQfinder considers the possibility of a

single bulge or mismatch in a wider variety of guanine run lengths.

Finally, G4Hunter does not define individual defect types, but uses a

simple encoding and statistics over a sliding window, that can

accomodate different types of defects.

It has also been discovered that a given DNA segment (sequence)

can form several overlapping G4s, by definition mutually exclusive,

where individual nucleotides in the sequence compete with each

other for binding via Hoogsteen bonds (Agrawal et al., 2014). In

these cases, it is very useful to have a tool for predicting all overlap-

ping instances and evaluate them with scores that correlate with the

propensity for G4 formation. The only tool predicting overlapping

G4s and at the same time capable of assigning scores to their indi-

vidual instances is QGRS Mapper. Its score function considers the

number of Gs in each run, loop lengths as well as the difference in

loop lengths. Features of existing software tools for PQS identifica-

tion are summarized in Table 1.

In this paper, we introduce an R package and the underlying al-

gorithm for PQS detection that addresses certain shortcomings of

the available tools.

Five main ideas projected into the package functioning are to: (i)

allow imperfections in PQS as mismatches or bulges in G runs and

excessively long loops between the G runs, (ii) provide a PQS score

that is closely related to G4 stability, (iii) give the user a choice be-

tween reporting all overlapping PQS and/or only the locally best,

(iv) provide the overall number (density) of possible PQS conform-

ations covering each position in the input sequence and (v) allow

users to define their own criteria for matching and scoring, overrid-

ing the defaults determined by calculations in this paper.

The package and the algorithm were called pqsfinder and ac-

cepted into Bioconductor (Huber et al., 2015) in April 2016. Here,

we explain how the ideas were implemented in the package and

apart from tuning its default parameters and settings, we show how

pqsfinder predictions relate to recently carried out G4 sequencing

(also called G4-seq or G-seq) (Chambers et al., 2015).

2 Approach and algorithm

The main principle of the algorithmic approach presented here is

based on the fact that monomolecular G4 structures arise from com-

pact sequence motifs composed of four consecutive and possibly im-

perfect guanine runs (G runs) interrupted by loops of semi-arbitrary

lengths.

The algorithm first identifies four consecutive G run sequences

(G run quartet). Subsequently, it examines the potential of such G

run quartet to form a stable G4 and reports a corresponding quanti-

tative score.

The pqsfinder algorithm can be divided into three logical steps:

(i) identification of all possible G run quartets, (ii) score assignment

and (iii) overlap resolution. All three parts are described in the fol-

lowing sections.

2.1 Identification of all possible G run quartets
The first G run is matched freely in the sequence by a regular expres-

sion G{1,10}.{0,9}G{1,10} with limited minimal and maximal

length. This regular expression allows us to match imperfect G runs

containing both mismatches and bulges while requiring at least two

guanines. The remaining three G runs are matched by the same regu-

lar expression with the following additional constraints: (i) each

subsequent G run must lie beyond the 3’-end of the previous one (no

overlap), (ii) the distance of each G run to the previous G run must

be in the range of minimal and maximal loop length and at most

one loop is allowed to have zero length (Marusic et al., 2013) and

(iii) each G run has to fit in a sequence window defined by the first

G run starting position and the user-defined maximal PQS length.

These constraints are summarized in Figure 1.

As regular expressions are able to capture only one match (usu-

ally the maximal one), to list all possible combinations we use a

backtracking approach. After four initial G runs are matched and

processed, the last successfully matched G run is shortened by one

Table 1. Feature comparison of existing tools for PQS identification

Name Model Overlaps Imperf. Score Avail.

quadparser Folding rule � � � �

QGRS Mapper Folding rule � � � Web

Quadfinder Folding rule � � � �

ImGQfinder Folding rule � �a � Web

TetraplexFinder Regular expression � �b � Web

G4Hunter Sliding window �c � � R script

aImGQfinder allows at most one imperfection.
bTetraplexFinder supports only bulges of fixed length between 0 and 7.
cG4Hunter model inherently merges overlapping and neighbouring PQS. For this reason, the boundaries of individual PQS are not well-defined.
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nucleic acid base from the end and if it is still a valid G run, the algo-

rithm proceeds normally to scoring and overlap resolution. On the

other hand, if the shortened G run is not valid, the algorithm tracks

back to the previous successfully matched G run and applies the

same shortening modification. In this case, if the modified G run is

valid, the algorithm proceeds to match all the following G runs

again. Once the backtracking procedure gets to the first G run and

finds its shortened variant to be invalid, the whole process of G run

identification is rerun from position one after the starting position

of the first G run. The backtracking procedure increases the compu-

tational complexity of the search, but allows us to rigorously model

the competition between overlapping PQS.

2.2 Score assignment
The pqsfinder scoring scheme was designed to quantitatively ap-

proximate the relationship between G4 sequence and the stability of

its structure. While the scoring function is purely empirical, we in-

tentionally chose an approach where the score is modular and, ob-

tained by addition of scores representing the binding affinities of

smaller regions within the G4. This kind of approach has already

been proven to work for simpler DNA structures, such as nucleic

acid duplexes and hairpins. (SantaLucia, 2012; Zuker, 2003)

The first part of the scoring scheme quantifies the quality of indi-

vidual G runs. It awards the PQS a score for each G-tetrad stacking

and penalizes mismatches and bulges in G runs.

The scoring is then defined by Equation 1, where Nt is the num-

ber of tetrads, Bt is a G-tetrad stacking bonus, Nm is the number of

inner mismatches, Pm is mismatch penalization, Nb is the number of

bulges, Pb is bulge penalization, Fb is bulge length penalization fac-

tor, Lbi is the length of the i-th bulge and Eb is bulge length

exponent.

Sr ¼ ðNt � 1ÞBt �NmPm �
XNb

i¼1

Pb þ FbLEb

bi (1)

However, discrimination between bulges and mismatches can be a

demanding task requiring multiple sequence alignment. To avoid

this, we made two simplifying assumptions that allowed us to effi-

ciently analyze bulges and mismatches by only counting lengths of G

runs and their G content. First, we require at least one G run to be

perfect (consisting of just guanines). Second, we limit the number of

imperfections to one per G run. Based on the available literature, we

consider bulges and long loops to be strong destabilizers of G4s and

do not expect more than a few of these imperfections to be possible

at the same time.

In the scoring procedure, a perfect G run is taken as a reference

and other G runs are assessed relatively to the reference. A G run is

classified as mismatched, if it has the same length as the reference

and the G content lower by one. When a G run has a greater length

than the reference and at least the same G content, it is classified as

bulged. Finally, all G runs can only be either perfect, mismatched or

bulged. Other cases are considered to be invalid G runs. When there

are multiple perfect G runs present, the shortest one is used as the

reference.

The second part of the scoring scheme quantifies the destabiliz-

ing effect of the loops on G4 stability. At this time we have no mech-

anistic understanding of possible loop sequence and length effects.

Hence, we limit ourselves to an empirical formula that can accom-

modate some of the observations made by Guédin et al. (2010).

Loop length mean Lm is multiplied by the factor Fm and raised to

the power of Em. Complete scoring function is then expressed by

Equation 2.

S ¼ maxðSr � FmLEm
m ; 0Þ (2)

Fm and Em are numerical parameters that empirically model the

relationship between loop lengths and their destabilization effects

on the quadruplex. These permit a non-linear relationship, while

their values are derived by fitting the model to experimental results

(see Section 4). Sr is the value from Equation 1.

2.3 Overlap resolution
The overlap resolution is an iterative process that is designed to al-

ways prefer dominant PQS. First, all PQS sharing the highest ob-

tained score are selected (in subsequent iterations, PQS sharing the

highest remaining score are used). Second, the selected PQS are pro-

cessed one by one in the order of their increasing starting position as

follows: (i) if the current PQS overlaps the previous PQS, the current

PQS is removed, (ii) if the current PQS is completely included in the

previous PQS, the previous PQS is removed. Third, all lower-scoring

PQS overlapping with any of the remaining selected PQS are dis-

carded. Fourth, all selected PQS are reported and removed. Fifth,

the next iteration begins again with the remaining PQS. Iterations

continue until all PQS are checked (either reported or removed).

We implemented the process above effectively in order to reduce

the memory usage. The main optimization idea is to run the iterative

process progressively as the identification algorithm proceeds

through the sequence. As a result, only a small set of recently identi-

fied overlapping PQS has to be in memory.

3 Implementation

The pqsfinder package was created following recommended prac-

tices for R/Bioconductor packages and all functions are well-

documented within the inline R documentation system. A detailed

user guide with convenient examples was also prepared as a package

vignette. Source code is written in both R and Cþþ, each having its

own important role in the package architecture.

The R code implements the interface that is needed for a seam-

less user interaction within the Bioconductor framework, relying on

the following R packages: Biostrings (Pagès et al., 2016a),

GenomicRanges, IRanges (Lawrence et al., 2013), S4Vectors (Pagès

et al., 2016b), Rcpp (Eddelbuettel and François, 2011) and BH

(Eddelbuettel et al., 2016). The package provides one main function

pqsfinder for running the PQS search algorithm and several second-

ary functions that operate on the search results.

The central data structure for results is the PQSViews class

which is derived from the XStringViews class from the Biostrings

package. It maintains the sequence coordinates of the identified PQS

along with other useful metadata: (i) score, (ii) strand, (iii) number

of tetrads, (iv) number of bulges, (v) number of mismatches and (vi)

loop lengths.

Fig. 1. PQS constraints. Every PQS consists of two types of elements: G runs

(R1–4) and loops (L1–3). The minimal and maximal length of each element

type is constrained by the corresponding options depicted in the picture as

well as the overall PQS length. All these options can be freely customized

when using the pqsfinder package

pqsfinder 3
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This aside, the PQSViews object provides access to two add-

itional vectors. The first is a density vector—for each sequence pos-

ition it gives the number of different PQS conformations

overlapping that position. The second vector maxScores reports the

PQS quality along the sequence—for each sequence position it gives

the maximal score of all PQS overlapping that position. We consider

these two vectors particularly useful as additional information to the

exact PQS coordinates and metadata. The density and maxScores

vectors can be easily used to discriminate low-complexity regions

(full of guanines) that inherently allow a large amount of folded

PQS conformations from regions that on the other hand contain a

singular high-scoring PQS.

The main PQS search logic is implemented purely in the

Cþþ language for speed since the algorithm is based on an exhaust-

ive search of the PQS topological space and it is computationally in-

tensive by definition. The Rcpp library was used to easily link the

Cþþ code with R scripts. We also employed the Boost regular ex-

pression library (Maddock, 2016) to match individual G runs.

However, we soon realized that the general regular expression en-

gine has a significant overhead and is too slow for our needs. For

this reason, we implemented an optimized matching function for the

default G run regular expression. At the same time, we are linking

the Boost library for the case where users would like to use their

own definition of a G run using an alternative regular expression.

3.1 Customization
Since we strongly support the Bioconductor goal to further scientific

understanding by producing extensible, scalable and interoperable

software, we designed pqsfinder to be easily customizable. The users

can tweak the algorithm options for their personal needs or test new

hypotheses about PQS conformations and develop novel innovative

scoring schemes. Supported options are divided into three logical

groups: (i) filters, (ii) scoring and (iii) advanced (see Table 2).

Filter options control the main algorithmic constraints (see Fig. 1).

These have great impact on the algorithm sensitivity and speed. All

PQS that do not satisfy the basic constraints are excluded immediately

and do not proceed further to the scoring step.

Scoring options include all the constants that appear in the scor-

ing Equations 1 and 2. By default, these constants are set to reason-

able values as described in the next section and its modification is

recommended only to users who would like to bias the scoring sys-

tems towards a specific type of G4 or to refine the constants on

novel data.

Advanced options allow to get full control over the search algo-

rithm by providing alternative G run regular expression and scoring

function. However, the custom scoring function can negatively in-

fluence the overall algorithm performance, particularly on long se-

quences, since there is a significant overhead linked to the calling of

custom R function instead of efficient inline Cþþ implementation.

Thus, this feature is recommended only for rapid prototyping of

novel scoring techniques, which can be later implemented efficiently

in Cþþ and delivered in the next version of the pqsfinder package.

4 Model training

As described in the foregoing section, the scoring model requires sev-

eral constants to be chosen (see scoring group in Table 2). It is, how-

ever, very difficult to estimate these parameters. For this reason, we

decided to construct a training set from available experimental data

and search for a setting that gives the best performance on these

data. The dataset construction process and parameter-search algo-

rithm are discussed in detail in this section.

4.1 Existing datasets
Methods for G4 prediction are usually evaluated on a set of experi-

mentally verified (in vitro) G4s, extracted from different publica-

tions. For example, a recently published method G4Hunter involved

collecting a set of 392 experimentally verified G4s consisting of 298

positive and 94 negative samples (later referred to as Lit392).

However, these datasets have several disadvantages: (i) they are

unbalanced regarding the number of positive and negative samples,

(ii) significant number of items differ only by a single mutation and

(iii) datasets are very small and cover only a small proportion of pos-

sible G4 conformations given all the possible loop lengths, bulges,

mismatches and other defects.

On the other hand, (Chambers et al., 2015) recently published a

novel approach for high throughput sequencing of DNA G4 struc-

tures called G4-seq. The technique detects noisy sequences that

emerge on treatment of DNA samples with Kþ or PDS (pyridostatin,

a chemical G4 stabilizer). As a result of this technology, the authors

released a track (in BED format) that shows the propensity of refer-

ence Human DNA sequence (hg19) to form G4s.

This track has two disadvantages. First, it only shows the level of

mismatches at given sequence positions that were observed during

the sequencing process. Hence, in reality, we have no evidence that a

G4 has been formed, but based on the G4-seq method the level of

mismatches should show high correlation with the probability that

the sequence forms the G4 structure. Second, as the G4 structure is

formed during sequencing, the level of mismatches remains high,

until the end of the sequenced read, even downstream of the actual

G4 structure. As a result, the BED file constructed by mapping the

reads onto the reference sequence, can be affected by this ‘memory

effect’.

Despite these disadvantages, the G4-seq dataset is extremely

valuable, because it shows the G4 structure propensity for the entire

human genome and thus it covers many more possible conform-

ations and imperfect structures (including long loops and bulges)

than any dataset extracted from the published literature.

Table 2. Overview of pqsfinder options

Group Name Description

Filters strand Strand symbol: þ, – or * (both).

overlapping Enables overlapping PQS.

max_len Maximal PQS length.

min_score Minimal PQS score.

run_min_len Minimal G run length.

run_max_len Maximal G run length.

loop_min_len Minimal loop length.

loop_max_len Maximal loop length.

max_bulges Maximal number of bulges.

max_mismatches Maximal number of mismatches.

max_defects Maximal number of all defects.

Scoring tetrad_bonus G-tetrad stacking bonus Bt.

mismatch_penalty Inner mismatch penalization Pm.

bulge_penalty Bulge penalization Pb.

bulge_len_factor Bulge length penal. factor Fb.

bulge_len_exponent Bulge length penal. exponent Eb.

loop_mean_factor Loop mean penal. factor Fm.

loop_mean_exponent Loop mean penal. exponent Em.

Advanced run_re G run regular expression.

custom_scoring_fn User-defined scoring function.

use_default_scoring Enables internal scoring system.

verbose Enables detailed text output.
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Based on these facts we decided to use a subset of G4-seq data

for training of the pqsfinder scoring model. We then used two add-

itional independent datasets for testing: Lit392 and a different (non-

overlapping with training data) subset of G4-seq data. The whole

process was operated as follows:

1. We prepared independent training and test sets from G4-seq

data.

2. We trained pqsfinder parameters on G4-seq training set.

3. We selected those parameters that performed best on the G4-seq

training set.

4. Finally, the selected pqsfinder parameters were evaluated and

compared to other tools on the Lit392 dataset and G4-seq test

set.

In the following subsection, individual steps of this procedure are

described in more detail.

4.2 Preparation of the training and test sets
From the G4-seq data, we used BED files representing the level of

mismatches from two experimental treatments. In the first treat-

ment, the authors stabilized G4s using Kþ while in the second case

they used PDS. In both cases, measurements were done on both

DNA strands separately resulting in four BED files (two treatments

with two strands each).

In the first step, as the Kþ and PDS measurements do not cover

100% of hg19 genome, we identified only those DNA fragments

where both Kþ and PDS measurements were available. Then, we fil-

tered out fragments shorter than 10 kbp and longer fragments were

trimmed to 10 kbp. In the next step, we combined Kþ and PDS BED

files by calculating the average value from both treatments.

Subsequently, we filtered out those fragments that did not include a

significant level of mismatches (where the averaged level of mis-

matches from Kþ and PDS never exceeded threshold 40). In order to

eliminate cases where potential G4 overlapped the beginning or the

end of the fragment, we also filtered out those fragments that

included a significant level of mismatches in the first 30 bp or the

last 30 bp of the fragment.

The described procedure was applied to each strand separately.

Finally, 1100 fragments were chosen at random, 100 as G4-seq

training set (for a total of 1 Mbp) and 1000 as G4-seq test set (for a

total of 10 Mbp). Both datasets are available as Supplementary

Data.

4.3 Training of scoring parameters on the G4-seq train-

ing set
We used the genetic algorithm implemented in the R package GA

(Scrucca, 2013) as a method for parameter-space exploration and

training. In order to make the exploration process easier, the G-tet-

rad stacking bonus was fixed at 40. The remaining scoring options

were trained. Their names, number of bits allocated in GA chromo-

some and ranges of values considered are summarized in Table 3.

Total GA chromosome length was 33 bits. Other pqsfinder options

were fixed to the default values.

To evaluate fitness, we calculated Pearson’s correlation coeffi-

cient between the vector maxScores generated by pqsfinder (see sec-

tion 3) and the averaged level of mismatches from Kþ and PDS

treatments of G4-seq training set. More specifically, maximal values

of the pqsfinder score were calculated for all positions of all DNA

fragments in the training set and these values were correlated with

appropriate positions in the G4-seq training set (experimentally veri-

fied level of mismatches). The basic idea behind this fitness function

is: the higher the correlation coefficient between pqsfinder score and

G4-seq mismatch level, the better the prediction of putative G4

structures will be.

A genetic algorithm was set up with the following parameters: (i)

population size 24, (ii) probability of crossover 0.5, (iii) probability

of mutation 0.5 and (iv) number of generations 200. During the ex-

ploration process, we used monitor function and recorded 1157

unique combinations of parameters and their fitness values.

As the final parameters, we selected the combination with the

maximal fitness value. Concrete values of selected parameters are

listed in Table 3 (column Result). The table of all explored param-

eter combinations and their fitness values is available as

Supplementary Data.

5 Results

In the first step, we compared pqsfinder to other tools capable to

predict whether a given sequence can form a G4 or not. As candi-

date tools that are still working and available online/offline, we se-

lected: G4Hunter, QGRS Mapper, TetraplexFinder and

ImGQfinder. We applied these to a recently published dataset

(Bedrat et al., 2016) containing 392 in vitro verified G4s (Lit392),

originally used to test G4Hunter.

In the next step, we configured and executed the selected tools

with the following parameters. (i) pqsfinder was executed with the

parameters that had the best fitness value on the G4-seq training set.

(ii) G4Hunter was executed with the default parameters. (iii) QGRS

Mapper was executed with the most relaxed parameters, i.e. min-

imal G run length was 2, loop length was in the range 0 to 36 and

maximal length was 45. As pqsfinder, G4Hunter and QGRS

Mapper report scores, to calculate accuracy and Matthews correl-

ation coefficient (MCC), we always systematically found a threshold

that resulted in the highest possible values for each tool.

Interestingly, we found out that for G4Hunter, the threshold 0.71

works even better than thresholds 1.0, 1.2 and 1.5 that are recom-

mended by the authors. (iv) TetraplexFinder was executed with the

following combinations of parameters: G run length 2 and 3, greedy

and non-greedy approach, bulge length in the range 0 to 7 and max-

imal loop length 50. Of all possible TetraplexFinder parameter com-

binations, only the best ones are reported in Table 4. (v)

ImGQfinder was executed with G run length in the range 2 to 5,

maximal loop length 25 and number of defects 0 and 1. Again, only

the best combinations are presented in Table 4.

Finally, for all selected tools and their configurations, we meas-

ured basic performance characteristics, namely accuracy (ACC) and

Matthews correlation coefficient (MCC). For tools that report a

score or allow us to specify a threshold, we also measured the area

under the ROC curve (AUC). The results are summarized in Table

4. Since the Lit392 dataset is unbalanced, MCC is the most relevant

value. As we can see, pqsfinder outperformed other tools

significantly.

Table 3. Trained parameters and their encoding in chromosome

Name Bits Range Step Result

bulge_penalty 6 0–63 1 20

mismatch_penalty 6 0–63 1 28

bulge_len_factor 5 0–3.1 0.1 0.2

bulge_len_exponent 5 0–3.1 0.1 1

loop_mean_factor 6 3–9.3 0.1 6.6

loop_mean_exponent 5 0–3.1 0.1 0.8
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Subsequently, we identified tools capable of predicting overlap-

ping G4s and assigning them a score. Only those tools could also be

evaluated on the G4-seq test set. The basic idea behind this test is to

calculate all possible overlapping G4s for a given sequence and ex-

tract the characteristics of maximal score values (for every sequence

position maximal score of all overlapping G4s is selected). Such

characteristic can then be correlated with the level of mismatches at

the same positions of the G4-seq test set. From the set of available

tools, only the QGRS Mapper and G4Hunter met the requirement.

As a dataset, we used G4-seq test set consisting of 1000 randomly

selected DNA fragments with length of 10 kbp (procedure for data-

set construction is described in Section 4.2).

In the next step we configured and executed selected tools with

the following parameters: pqsfinder was executed with parameters

trained on G4-seq training set. G4Hunter was executed with all

thresholds between 0 and 4 (with step 0.05). Predicted G4s were

refined and merged together. QGRS Mapper was evaluated with the

most relaxed parameters as before, i.e. minimal G run length is 2,

loop length is in range 0 to 36 and maximal length is 45. For results

from each tool, the characteristic of maximal score value was calcu-

lated and compared with the G4-seq test set. This comparison was

done in two ways. First, Pearson correlation coefficient was calcu-

lated for every fragment separately. As the result, we got a

distribution of correlation coefficients with individual means and

standard deviations (see Fig. 2 and Table 5, columns CC mean and

CC SD). Second, Pearson correlation coefficient was calculated for

all fragments joined together to get a single overall value (see Table

5, column Overall CC). As we can see, the pqsfinder significantly

outperformed other tools.

6 Discussion

The objective of the tools for G4 prediction is to model the complex

relationship between DNA sequence and G4 structure. Despite our

ability to model this relationship directly at the molecular level,

using for example molecular dynamics Amber tool (Salomon-Ferrer

et al., 2013), this approach is computationally demanding and the

accuracy of the state-of-the-art force fields is still limited. For these

reasons, existing tools for G4 prediction use much simpler models.

The majority of tools are based on a simple folding rule and are

very fast, but do not allow for possible defects (mismatches and

bulges) easily. There are tools, such as TetraplexFinder and

ImGQfinder that allow for imperfections in G-quadruplexes.

However, without a properly trained scoring model this can easily

lead to a large number of false positives. These tools performed better

in our tests when imperfections were limited or not allowed at all.

A very interesting approach allowing imperfections that is based

on specific encoding and simple statistic over a sliding window was

implemented in G4Hunter. Despite its simplicity, it shows very good

performance characteristics. Unfortunately, we believe that such

simple encoding and statistics cannot reveal all complex relation-

ships between sequence and G4 stability, and thus the accuracy of

such approach is limited.

On the other hand, the approach proposed in this article that

combines pattern matching and detailed inspection of possible de-

fects is configurable and easily extensible. Using advanced options,

it can be quickly customized to detect novel and experimental G4

types that are currently not commonly studied or might be dis-

covered in the future. One such example is the recently postulated

interstrand G4s (Kudlicki, 2016) or G4s formed in cis, as proposed

by Hegyi (2015).

By default, the pqsfinder provides a scoring function that was

trained on G4-seq experimental data and performs better than com-

peting tools. We are aware that G4-seq data essentially represent

conditions in vitro and may not necessarily be directly related to the

ability of G4s to form in vivo, but our current view is that in vivo

G4 formation is a function of their in vitro stability. Therefore,

G-seq experimental data is the best publicly available dataset we

could find at this moment.

However, detailed inspection and modularity are at the cost of

lower processing speed. In the extremely sensitive configuration

Table 4. Performance comparison of different tools on Lit392

dataset

Tool Configuration ACC MCC AUC

pqsfinder Best on G4-seq training set 0.964 0.902 0.975

G4Hunter Default 0.952 0.865 0.969

QGRS Mapper g�2, ll ¼ 36, l ¼ 45 0.954 0.872 0.968

TetraplexFinder g ¼ 2, ll ¼ 50, gr, bl ¼ 0 0.946 0.850 –

TetraplexFinder g ¼ 2, ll ¼ 50, ngr, bl ¼ 0 0.946 0.850 –

ImGQfinder g ¼ 2, ll ¼ 25, d ¼ 0 0.941 0.835 –

ImGQfinder g ¼ 2, ll ¼ 25, d ¼ 1 0.918 0.767 –

Note: The meaning of the configuration options is as follows: t is threshold,

g is G run length, ll is maximal loop length, l is maximal G4 length, gr is

greedy approach, ngr is non-greedy approach, bl is bulge length and d is num-

ber of defects. For tools that report score (pqsfinder, G4Hunter and QGRS

Mapper), we systematically determined thresholds that resulted in the highest

possible ACC and MCC. We also found that for tools without scoring system

(TetraplexFinder and ImGQfinder) it is always better to disable

imperfections.

Fig. 2. Histogram of correlation coefficients for QGRS Mapper, G4Hunter and

pqsfinder on the G4-seq test set fragments. The correlation was measured

between the averaged level of mismatches of the G4-seq test set fragments

(see Section 4.2) and the vector of maximal scores predicted by each tool.

While histograms of QGRS Mapper and G4Hunter correlations are almost the

same, the histogram of pqsfinder correlations is much more positively

skewed

Table 5. Comparison of correlation coefficient (CC) statistics for dif-

ferent tools

Tool CC mean CC SD Overall CC

pqsfinder 0.583 0.106 0.622

G4Hunter 0.450 0.093 0.491

QGRS Mapper 0.422 0.112 0.479

Note: The individual CCs were measured between the averaged level of

mismatches of the G4-seq test set fragments (see Section 4.2) and the vector

of maximal scores predicted by each tool. Overall CC was calculated between

concatenated averaged level of mismatches of all G4-seq test fragments and

concatenated vector of the corresponding predicted maximal scores.

6 J.Hon et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/doi/10.1093/bioinformatics/btx413/3923794/pqsfinder-an-exhaustive-and-imperfection-tolerant
by guest
on 04 September 2017

Deleted Text:  
Deleted Text: subsection 
Deleted Text: <italic>std. deviation</italic>
Deleted Text:  
Deleted Text:  


having the minimal G run length set to 2, the algorithm is able to

process approximately 4 kb per second on current hardware. For ex-

ample, pqsfinder running time on the G4-seq test set (in total 10

Mbp) was around 40 minutes. When the minimal G run length is

increased by one, the speed is usually more than doubled. We do not

consider the speed limitations to be critical. For the most frequently

studied sequences, pqsfinder results can be precomputed and pro-

vided to many users, for example as an R data file or a GFF3-

formatted file.

7 Conclusion

We created a PQS detection tool with a sequence scoring function

that has a moderate number of tunable parameters reflecting se-

quence properties previously associated with observed G4s or their

destabilization (number of Gs in G runs, loop length, presence of

mismatches and bulges). To model G-quadruplexes and search for

the responsible sequences, we selected a mix of known and novel

approaches that give the pqsfinder several desirable characteristics.

In our tests it achieved the best accuracy on both experimentally

verified G-quadruplexes (Lit392) and the independent part of

G4-seq data (none of these datasets were used for training). The

pqsfinder estimates the total number of possible local conform-

ations, accounts for competition between them and allows for im-

perfections with a sound, carefully trained structure-based scoring

model. The presented model was trained on a subset of G4-seq data

that represents the largest set of experimentally verified quadruplex-

forming sequences available so far and includes a wide variety of

imperfections. This new tool also evaluates all the competing con-

formations and can be easily expanded or modified for newly dis-

covered rules and scoring functions in future. We provide evidence

that the pqsfinder is a convenient R/Bioconductor package compat-

ible with many other packages available in this environment.
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