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Abstract Advancements in technology developed in the early nineties have enabled

researchers to successfully apply techniques of evolutionary computation in various

problem domains. As a consequence, a new research direction referred to as evolv-

able hardware (EHW) focusing on the use of evolutionary algorithms to create spe-

cialized electronics has emerged. One of the goals of the early pioneers of EHW was

to evolve complex circuits and overcome the limits of traditional design. Unfortu-

nately, evolvable hardware found itself in a critical stage around 2010 and a very

pessimistic future for EHW-based digital circuit synthesis was predicted. The prob-

lems solved by the community were of the size and complexity of that achievable

in fifteens years ago and seldom compete with traditional designs. The scalability

problem has been identified as one of the most difficult problems that researchers are

faced with and it was not clear whether there existed a path forward that would allow

the field to progress. Despite that, researchers have continued to investigate how to

overcome the scalability issues and significant progress has been made in the area

of evolutionary synthesis of digital circuits in recent years. The goal of this chapter

is to summarize the progress in the evolutionary synthesis of gate-level digital cir-

cuits, and to identify the challenges that need to be addressed to enable evolutionary

methods to penetrate into industrial practice.

1 Introduction

Advancements in technology developed in the early 1990s have enabled researchers

to successfully apply techniques of evolutionary computation in various problem

domains. Higuchi et al. [11] and Thompson [30] demonstrated that evolutionary

algorithms (EAs) are able to solve non-trivial hardware-related problems. The

achievements presented in the seminal paper of Higuchi et al. motivated other scien-

tists to intensively explore a new and promising research topic. As a consequence, a
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new research direction referred to as Evolvable hardware (EHW) has emerged [6].

Evolvable hardware, a field of evolutionary computation, focuses on the use of evo-

lutionary algorithms to create specialized electronics without manual engineering.

The vision of EHW is to replace expensive and sometimes unreliable designers and

develop robust, flexible and survivable autonomous systems. EHW draws inspiration

from three fields: biology, computer science and electronic engineering.

Several schemes have been developed for classifying EHW [6]. Usually, two

research areas are distinguished: evolutionary circuit design and evolvable circuits.
In the first case, evolutionary algorithms are used as a tool employed to design a sys-

tem that meets a predefined specification. For example, genetic programming can

be used to discover an area-efficient implementation of a circuit whose function is

specified by a truth table. In the second case, an evolutionary algorithm represents an

inherent part of an evolvable circuit. The resulting adaptive system is autonomously

reconfigured to provide a degree of self-adaptive and self-repair behaviour.

In the context of the circuit design, EHW is an attractive approach as it provides

another option to the traditional design methodology: to use evolution to design cir-

cuits for us. Moreover, a key strength of the EHW approach is that it can be applied

to designing the circuits that cannot be fully specified a priori, but where the desired

behaviour is known. Another often emphasized advantage of this approach is that

circuits can be customized and adapted for a particular environment. For example, if

we know that some input combinations in our target application occur with relatively

low probability, we can take this information into account and evolve a circuit that

shows better parameters such as reduced size, delay or power consumption.

There are several works devoted mainly to the evolvable circuits and adaptive

systems [7, 12, 25, 31]. However, there is no similar work systematically mapping

the history and progress of evolutionary circuit design. Such a situation may suggest

that evolutionary circuit design represents an area in which only marginal results

have been achieved. Let us restrict ourselves to the evolution of digital circuits rep-

resented at the gate-level, i.e. circuits implemented using common (typically two-

input) gates. Considering the complexity of circuits routinely used in industry, we

have to admit that only little was done before 2010 even if many novel and promis-

ing approaches were published, as surveyed in Sect. 2.1. However, this area has been

undergoing a substantial development in the last five years, and many competitive

and real-world results have been obtained (Sect. 2.3).

Before we proceed further, it is necessary to clarify what we mean by a com-

plex circuit, as researchers in EC usually have a somewhat illusory notion about

circuit complexity. In theoretical computer science, the complexity of Boolean func-

tions is expressed as the size or depth of corresponding combinational circuits that

compute them. The size of a circuit is the number of gates it contains; its depth is

the maximal length of a path from an input gate to the output gate. In evolution-

ary computation, complexity is typically assessed according to the number of input

variables, because the number of variables significantly impacts the scalability. In

practice, the number of gates is usually considered as a complexity measure. Since

the goals of the early pioneers of EHW were to evolve complex circuits and over-

come the limits of traditional design, it is necessary to take the parameters of real cir-
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cuits into account. The electronic design automation (EDA) community relies heav-

ily on public benchmarks to evaluate the performance of academic and commercial

design tools, because benchmarking is essential to develop effective methodologies.

Hence we can analyse characteristics of benchmark circuits to provide a real picture

regarding the circuit complexity. The first widely accepted benchmark suite ISCAS-

85 consisting of ten industrial designs was introduced by Brglez and Fujiwara [3].

The circuits included in this benchmark set contain from 32 to 207 inputs and were

originally implemented using 160–3512 logic gates. With advancements in technol-

ogy, several updates have been introduced. The most recent updates are LGSynth93

[17] and IWLS 2005 [1]. LGSynth93 consists of 202 circuits with up to 24,658 gates

and 1,465 registers; IWLS2005 contains 84 designs with up to 185,000 registers and

900,000 gates collected from different websites with open-source IP cores. A combi-

national benchmark suite was introduced by Amaru et al. [2]. This suite is designed

to challenge modern logic optimization tools, and consists of 23 natively combina-

tional circuits that are divided into three classes: arithmetic circuits, random/control

circuits, and difficult benchmarks. The arithmetic benchmarks have up to 512 inputs

and more than a thousand gates; the difficult benchmark set consists of circuits with

more than million gates and more than 100 inputs. As is evident, a complex circuit
is a circuit having at least a hundred inputs and consisting of thousands of gates.

The goal of this chapter is to summarize the progress in the evolutionary synthesis

of gate-level digital circuits, and to identify the challenges that need to be addressed

to enable evolutionary methods to penetrate into industrial practice. The rest of this

chapter is organized as follows. Section 2 briefly maps the history of evolutionary

circuit design. Among others, it summarizes the key results that have been achieved

in the area of evolutionary design of digital circuits for the whole existence of EHW.

Then, challenges identified in recent years and that should be addressed in near future

are mentioned in Sect. 3. Concluding remarks are given in Sect. 4.

2 Evolutionary Design of Digital Circuits

2.1 First Generation EHW

Gate-level evolution was addressed only rarely before 2000. The first results in the

area of digital circuit synthesis were reported by Koza [15], who investigated the

evolutionary design of the even-parity problem in his extensive discussions of the

standard genetic programming (GP) paradigm. Although the construction of an opti-

mal parity circuit is a straightforward process, parity circuits are considered to be an

appropriate benchmark problem within the evolutionary computation community

when a small set of gates (AND, OR, NOT) is used.

Thompson [30] used a form of direct encoding loosely based on the structure of

an FPGA in his experiment with evolution of a square wave oscillator. A genetic

algorithm was employed by Coello et al. [4], to evolve various 2-bit adders and mul-
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tipliers. Miller demonstrated that evolutionary design systems are not only able to

rediscover standard designs, but they can, in some cases, improve them [18, 22]; he

was interested in the evolutionary design of arithmetic circuits and digital filters.

A new evolutionary algorithm, Cartesian genetic programming (CGP), was intro-

duced by Julian F. Miller in 2000.
1

Miller designed this approach to address two

issues related to the efficiency of common genetic programming: poor ability to rep-

resent digital circuits, and the presence of bloat. This variant of GP is called ‘Carte-

sian’ because it represents a program using a two-dimensional grid of nodes. The

genotypes are encoded as lists of integers of fixed length that are mapped to directed

acyclic graphs (DAGs) rather than the usual trees. For more details about CGP and

its applications, we refer the reader to the collection edited by Julian F. Miller [20].

CGP has been used to demonstrate that evolutionary computing can improve

results of conventional circuit synthesis and optimization algorithms. As a proof

of concept, small arithmetic circuits were considered originally. A 4-bit multiplier

is the most complex circuit evolved in this category [38]. However, the problems

addressed by the EHW community have remained nearly of the same complexity

since then. The most complex combinational circuit directly evolved during the first

two decades of EHW consists of tens of gates and has around 20 inputs [29]. It is

clear that those results could barely compete with conventional circuit design tools

producing circuits counting thousands of gates and hundreds of inputs.

One of the goals of the early pioneers of EHW was to evolve complex circuits,

overcome the limits of traditional design, and find ways how to exploit the vast

computational resources available in today’s computation platforms. Unfortunately,

nobody has been able to approach this goal, except Koza [16], who reports tens

of human-competitive analogue circuits obtained automatically using genetic pro-

gramming. Since 2000, many researchers have invested enormous effort in propos-

ing new ways to simplify the problem for evolution in terms of finding more effec-

tive approaches to explore the search space for more complex applications. Many

novel techniques, including decomposition, development, modularisation and even

new representations, have been proposed [20, 27, 29, 40]. Despite this, only a lit-

tle progress has been achieved and the gap between the complexity of problems

addressed in industry and EHW continues to widen as the advancements in technol-

ogy develop. This further supports the belief that evolutionary search works better

for analogue circuits than for digital circuits, possibly due to the fact that analogue

behaviours provide relatively smoother search spaces [28].

In order to address the increasing complexity of real-world designs, some authors

escape from the gate-level representation and use function-level evolution. Instead

of simple gates, larger building blocks such as adders and multipliers are employed.

Many and even patentable digital circuits have been discovered, especially in the area

of digital signal processing [20, 25, 37]. One of the most complex circuits evolved

by means of the function-level approach is a random shot noise image filter with

1
Cartesian genetic programming grew from a method of evolving digital circuits developed by

[22]. However the term Cartesian genetic programming first appeared in [19], and was proposed as

a general form of genetic programming in [21].
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25 inputs consisting of more than 1,500 two-input gates when synthesised as 8-bit

circuit [37]. Despite this work, EHW found itself in a critical stage around the year

2010, and it was not then clear whether there existed a path forward that would allow

the field to progress [8]. The scalability problem has been identified as one of the

most difficult problems that researchers are faced with in the EHW field and one that

should be, among others, addressed by the second generation of EHW.

2.2 Scalability Issues

Poor scalability typically means that evolutionary algorithms are able to provide

solutions to small problem instances only, and a partially working solution is usually

returned in other cases. The scalability problem can primarily be seen from two per-

spectives: scalability of representation and scalability of fitness evaluation. From the

viewpoint of the scalability of representation, the problem is that long chromosomes

are usually required to represent complex solutions. Long chromosomes, however,

imply large search spaces that are typically difficult to search. The scalability of fit-

ness evaluation represents another big challenge. The problem is that complex can-

didate solutions might require a lot of time to be evaluated. As a consequence, only

a small fraction of the search space may be explored in a reasonable time. This prob-

lem is especially noticeable in the case of the evolutionary design of digital circuits

where the time required to evaluate a candidate circuit grows exponentially with

the increasing number of inputs. One possibility how to overcome this issue is to

reduce the number of test cases utilised to determine the fitness value. However, this

approach is not applicable in the case of gate-level evolution [14]. There is a high

chance that a completely different circuit violating the specification is evolved even

if only a single test case is omitted.

Both mentioned scalability issues have independent effects that are hard to predict

in practice. Consider, for example, the evolutionary design of gate-level multipliers

from scratch. It is relatively easy to evolve a 4-bit (i.e. 8-input) multiplier, yet a huge

computational effort is required to discover a 5-bit multiplier, even though the time

required to evaluate a candidate solution increases only 4-fold and the number of

gates is approximately doubled. Experiments with various accelerators have revealed

that the number of evaluations has to be increased more than 170-fold to discover a

valid 5-bit multiplier [13].

It is believed that the scalability of representation is the root cause that prevents

evolutionary algorithms from handling complex instances. This hypothesis is sup-

ported mainly by the fact that the number of evaluations needed to discover a digital

circuit is significantly higher compared to Koza’s experiments with analogue circuits.

In addition, the community has been unable to substantially improve the scalability

of gate-level evolutionary design, even when various FPGA-based, GPU-based and

CPU-based accelerators have been employed [13, 20, 36]. There is no doubt that the

size of the search space grows enormously as the complexity of problem instances

increases. On the other hand, only little is known about the phenotypic search space
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of digital circuits. It may be possible, for example, that the number of valid solutions

proportionally increases with the increasing size of search space.

In addition to the previously discussed scalability issues, scalability of specifi-
cation is sometimes mentioned [35]. Let us assume that the previously mentioned

problems do not exist. Even then, we will not be able to design complex circuits in

reasonable time. The problem is that the frequently used specification in the form of

truth table does not itself scale. The amount of memory required to store the whole

truth table grows exponentially with the increasing number of variables.

2.3 Second Generation EHW

Despite pessimism of the EHW community, its researchers have continued to investi-

gate how to overcome the scalability issues. Vasicek and Sekanina [34] demonstrate

that it is feasible to optimize complex digital circuits when the common truth-table-

based fitness evaluation procedure is replaced with formal verification. The method

exploits the fact that efficient algorithms have been developed in the field of for-

mal verification that enable us to relatively quickly decide whether two circuits are

functionally equivalent. Compared to the state-of-the-art synthesis tools, the authors

reported a 37.8% reduction in the number of gates (on average) across various bench-

mark circuits having 67–1408 gates and 22–128 inputs.

An interesting feature of the approach is that it focuses solely on the improvement

of fitness evaluation efficiency. In order to reduce the time needed to determine the

fitness value, a method routinely used in the area of logic synthesis known as com-

binational equivalence checking is employed. But it is not the equivalence checking

alone that enables speedups of several orders of magnitude. The approach bene-

fits from a tight connection between the evolutionary algorithm and combinational

equivalence checking. Since every fitness evaluation is preceded by a mutation, a list

of nodes that are different for the parent and its offspring can be calculated. This list

can be used to determine a cone of influence (COI)—the set of outputs and gates that

have to be compared with the reference circuit—and only these outputs and gates are

checked. In addition to that, a parental circuit serves simultaneously as a reference.

The efficiency of the proposed method has been further improved by Vasicek

[33], who combines a circuit simulator with formal verification in order to detect the

functional non-equivalence of the parent and its offspring. In contrast with previously

published work, an extensive set of 100 real-world benchmarks circuits is used to

evaluate the performance of the method. The least complex circuit has 106 gates, 15

primary inputs, and 38 outputs. The most complex circuit, an audio codec controller,

has 16,158 gates, 2,176 inputs, and 2,136 outputs. Half of the benchmark circuits

have more than 50 primary inputs and more than a thousand gates. On average, the

method enables a 34% reduction in gate count, and the evolution is executed for only

15 min.

A very pessimistic future for EHW-based digital circuit synthesis was predicted

by Greenwood and Tyrrell [7]. Despite that, five years later and after little more than
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15 years of EHW, Vasicek and Sekanina [34] proposed an approach easily overcom-

ing the previous empirical limitation of evolutionary design represented by a digital

circuit having about twenty inputs and up to hundred gates. At the same time, sev-

eral doubts and questions emerged. Since only the scalability of fitness evaluation

was addressed, it is questionable whether the scalability of representation is really

the key issue preventing the handling of complex instances. We believe that this

is not the case for at least the evolutionary optimization of digital circuits. Hence,

addressing the problem of scalability of representation in the context of evolutionary

optimization of digital circuits seems not to be urgent. The extensive experimental

evaluation presented by Vasicek [33] has revealed another and probably more severe

issue of evolutionary optimization of digital circuits: the enormous inefficiency of

the evolutionary algorithm itself. The ratio between the number of acceptable can-

didate solutions and invalid candidate solutions is worse than 1:180 in average. A

candidate solution is invalid if it is functionally incorrect, i.e. violates the require-

ments given by the specification. So approximately 99.5% of the runtime is wasted

by generating and evaluating invalid candidate circuits that lie beyond the desired

space of potential solutions.

If we want to keep the EHW field progressing, it seems that the researchers should

firstly turn their attention away from tweaking the parameters of various evolution-

ary algorithms, and begin to combine evolutionary approaches with state-of-the-art

methods routinely used in the field that is addressed with evolution. This claim is

based mainly on the fact that the results reported by Vasicek [33] were obtained by

means of the standard variant of genetic programming and standard settings recom-

mended in the literature. Although CGP is considered as one of the most efficient

methods for evolutionary design and optimization of digital circuits [20], there is no

guarantee that it offers the best possible convergence. It is not even clear whether

the poor efficiency discussed in the previous paragraph is caused by CGP, or if it is

a common problem of all evolutionary approaches. It is unfortunately nontrivial to

point out the algorithm that achieves the best performance. Firstly, many authors are

evaluating algorithms using artificial problems such as simple parity circuits instead

of real benchmark circuits. Secondly, only evolutionary design of simple circuits has

been addressed. Hence, the efficiency of the evolutionary algorithm and its improve-

ment represents an open question for future investigations.

The approach of [34] has sometimes been criticised that it has to be seeded with

an already working circuit. and thet it cannot be used to evolve digital circuits from

scratch. At first sight, this objection seems to be legitimate. However, it is impor-

tant to realise and accept how circuits are specified in conventional tools. Conven-

tional circuit synthesis and optimization usually starts from an unoptimized fully

functional circuit supplied by a designer. Such a circuit is specified in the form of

a netlist, typically using low-level (e.g. BLIF specification) or high-level (e.g. Ver-

ilog or VHDL language) hierarchical description. In some cases, truth tables are

directly used, but to specify only simple circuits. So the seed required by evolution

can easily be obtained from the specification, for example by transforming the Sum-

of-Products representation into a logic network or synthesizing Verilog description

to a gate-level netlist.
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An interesting question, at least from the theoretical point of view, is whether

complex digital circuits can be evolved from randomly seeded initial populations, i.e.

whether a truly evolutionary circuit design is possible for complex circuits. Firstly,

it is necessary to accept the fact that this approach can hardly compete with conven-

tional state-of-the-art synthesis tools if the time of synthesis is considered. Obtaining

a fully functional solution from a randomly seeded population consumes a consider-

able time because the approach exploits the generate-and-test principle, and no addi-

tional knowledge about the problem is available. However, there are reasons why it

makes sense to develop the aforementioned evolutionary approach. Firstly, the cir-

cuit design problem can serve as a useful test problem for the performance evaluation

and comparison of genetic programming systems. Secondly, the approach seems to

be suitable for adaptive embedded systems, because running standard circuit design

packages is usually infeasible on such systems.

In order to address the evolution of complex circuits from scratch, Vasicek and

Sekanina [35] propose a method that exploits the fact that the specification can be

given in the form of binary decision diagram (BDD). Although there are some patho-

logical cases of circuits for which BDDs do not scale well, BDDs are known to be an

efficient tool for representation and manipulation with digital circuits. Vasicek and

Sekanina [35] use BDDs to determine Hamming distance between a candidate cir-

cuit and specification. This requires only a few milliseconds, even for circuits having

more than 40 inputs. Compared to the well-optimized common CGP, the proposed

method achieves a speedup of four to seven orders of magnitude when circuits hav-

ing from 23 to 41 inputs are considered. As a proof of concept, 16 nontrivial cir-

cuits outside of the scope of well-optimized standard CGP are considered. Correctly

evolved circuits are reported in twelve cases. In addition, evolution is able to improve

the results of conventional synthesis tools. For example, evolution discovered a 28-

input circuit having 57% fewer gates than the result obtained from the state-of-the-art

synthesis tool. An average gate reduction of 48.7% is reported for all evolved circuits.

We can conclude that it has been experimentally confirmed that it is beneficial

to employ EAs even in the evolution of digital circuits from scratch. In many cases,

more compact solutions may be obtained, because the EA is not biased to the initial

circuits that must be provided in the case of conventional synthesis. However, we

have to accept and tolerate the overhead of evolution manifesting itself in the higher

demand for computational resources. For example, at most three hours are required to

evolve the circuits investigated by Vasicek and Sekanina [35]. On the other hand, this

represents an unimportant problem when a theoretical point of view is considered.

There are more fundamental questions that we should deal with.

Firstly, how is it possible that evolution successfully discovered a 28-input circuit

(frg1), yet no solution was provided for 23-input circuit (cordic)? Since the 23-input

circuit consists of fewer gates than the 28-input circuit, this issue is evidently not

connected with poor scalability of representation. We can exclude even the problem

of scalability of fitness evaluation, because the time required to evaluate the can-

didate solutions is nearly the same in both cases. Hence, there must be some other

issue that prevents the discovery of some circuits. Secondly, the notion of circuit

complexity remains an open question. Computation effort (derived from the num-
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ber of input combinations and the number of gates) is used to measure the circuit

complexity. Some of the circuits that are not evolved, however, exhibit a lower com-

plexity value compared to the successfully evolved circuit. Thirdly, the paper does

not offer an answer to the question related to the most complex circuit that could

be directly evolved. The work was intended as a proof-of-concept only. Finally, it is

worth noting that only the scalability of fitness evaluation is targeted. Does it mean

that the scalability of representation is an unimportant problem, at least to some

circuit size? [9] state that it is becoming generally accepted that there needs to be

a move away from a direct, or one-to-one, genotype-phenotype mapping to enable

evolution of large complex circuits. This conjecture seems to be wrong at least for

the evolutionary optimisation of existing gate-level circuits, because large genotypes

encoding circuits with thousands of gates can be directly optimised using CGP [33].

3 Open Challenges

Significant progress has been made in the area of evolutionary synthesis of digital

circuits in recent years. Despite that, we are still facing many challenges that need

to be properly addressed in order to enable evolutionary circuit design to become a

competitive and respected synthesis method.

3.1 Evolutionary Synthesis and Hardware Community

One of the problems with the EHW community is that the practical point of view

is usually in second place. The typical goal is to evolve some circuit and nobody

questions whether there is a real need to do so. Although there is no doubt that much

work has been done in the last more than two decades of EHW, there is a barrier

preventing EHW being fully accepted by hardware community. Let us mention the

main aspects that are usually criticised by the “traditional” circuit design community.

The evolutionary design of digital circuits is sometimes criticised due to its inher-

ently non-deterministic nature. To understand this, it is necessary to realize how the

conventional synthesis tools are implemented. The tools typically start with a netlist

represented using a network, for example in the form of and-inverter graph (AIG).

Then, deterministic transformations are performed over the AIG. Since the transfor-

mations are local in nature, the network may be refined by their repeated application.

The solution quality can be improved in this way at the expense of run-time. Design-

ers have a guarantee that the optimisation process ends. In addition, they have a

certain degree of guarantee that a circuit of some quality will be obtained when, say,

one hundred iterations are employed.

Another handicap of the evolutionary approaches is that they are time consuming

and generally not scalable when compared with methods of logic synthesis. While

the problem of scalability of evaluation has been partly eliminated, the method still
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suffers from long execution times due to the inefficiency of the generate-and-test

approach. Even though the recent results indicate that more complex circuits may be

evolved, it will probably be necessary to accompany the proposed methods with a

suitable partitioning in order to reduce the problem complexity. It makes no sense to

optimize complex netlists describing the whole processors or other complex circuits

at the gate-level. The conventional tools usually benefit from a hierarchical descrip-

tion of a given digital circuit.

Another issue is the relevance of the chosen optimisation criteria for industrial

practice. Originally, the number of gates was the only criterion that was optimized

within the evolutionary community. In many cases, not only the number of gates, but

also delay and area on a chip, play an important role. In addition, power efficiency

has emerged as one of the most critical goals of hardware design in recent years [10].

Logic synthesis is a complex process that has to consider several aspects that are in

principle mutually dependent. Two basic scenarios are typically conducted in prac-

tice: optimizing the power and/or area under some delay constraints, or optimizing

the delay possibly under some power and/or area constraints. In order to efficiently

determine the delay, area and power dissipation of a given circuit, so as to avoid

running of time-consuming SPICE simulator and yet obtain results exhibiting a rea-

sonable accuracy, several algorithms have been developed to estimate the delay as

well as power dissipation of digital circuits [10]. The evolutionary community should

adopt them and combine them with evolution.

Although the attitude of hardware community to evolutionary techniques seems

to be a rather sceptical, it does not mean that evolutionary synthesis has no chance to

be accepted at hardware conferences. Interestingly, there is a new research area—

approximate computing—in which evolutionary approaches seem to be accepted

[26]. Conventional synthesis tools are not constructed to perform the synthesis of

approximate circuits, and no golden design exists for an approximate circuit. In the

case of approximate synthesis, it is sufficient to design a circuit that responds cor-

rectly for a reasonable subset of input vectors, provided that the worst-case (or aver-

age) error is under control. Because of the nature of approximate circuits (in fact,

partially working circuits are sought) and principles of evolutionary circuit design

(evolutionary-based improving of partially working circuits), evolutionary comput-

ing seems to be the approach of the first choice.

3.2 Efficiency of Cartesian Genetic Programming

Some problems, such as adopting relevant optimisation criteria, are a matter of time,

but there are fundamental issues that need to be addressed. Since its introduction,

CGP has been considered to be one of the most efficient methods for evolution-

ary design and optimization of digital circuits. However, the experiments with com-

plex Boolean problems revealed that the evolutionary mechanisms of CGP should

be revised, because there are cases for which CGP performs poorly.
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It seems that the evolutionary optimization of digital circuits exhibits a completely

different behaviour when compared to the evolutionary design of digital circuits.

Let us give one example supporting this claim. Redundancy is believed to play an

important role in evolutionary computation, as it represents a powerful mechanism

for searching the fitness landscape. Two forms of redundancy have been identified

in CGP [32]. Firstly, CGP employs a genotype-phenotype mapping that removes the

genes coding the nodes that are inactive, i.e. the nodes that do not participate in cre-

ating the output values. This form of redundancy is referred to as explicit genetic
redundancy. Secondly, there is implicit genetic redundancy. This refers to the sit-

uation when there active genes, ones that are decoded into the phenotype, that do

not contribute to the behavior of the phenotype under common fitness functions that

measure the distance between a candidate circuit and its specification. Both forms

of genetic redundancy, together with the replacement strategy, encourages genetic

drift, as individuals can be mutated without affecting their fitness. The replacement

strategy in CGP enables these individuals to replace the old parent. It is believed that

genetic drift strongly aids the escape from local optima. Recently, the theory that the

effectiveness of evolutionary search is correlated with the number of available nodes

has been disproved [32]. Despite that, it has been shown that explicit genetic redun-

dancy offers a significant advantage. Vasicek [33] reports extensive experimental

evaluation that reveals, however, that neutral mutations and redundancy surprisingly

offer no advantage when using CGP to optimise complex digital circuits. This result

does not mean that neutral mutations are of no significance generally, but they are

less important in the case of circuit optimisation. Hence, the role of neutrality and

redundancy in CGP represents still an open problem that it is not well understood,

especially in the context of evolutionary synthesis of complex circuits.

CGP was originally designed to evolve digital circuits represented using a two-

dimensional array of nodes. An open question is whether there is an evidence that this

representation improves the efficiency of the evolutionary algorithm. Nowadays, this

limitation seems to be an unnecessary constraint [32] and many researchers prefer to

represent the circuits by means of a linear array of nodes. While both arrangements

have the ability to represent any DAG, the main advantage of the linear encoding

is that it substantially reduces the number of nodes required to encode a circuit,

because the number of columns and rows of the two-dimensional array must respect

circuit parameters such as the circuit depth and width. On the other hand, the two-

dimensional array of nodes has the ability to explicitly limit the circuit depth. DAGs

are encoded in a linear genome of integer values in CGP. Each node in the DAG

is represented by a tuple of genes. One gene specifies the function that the node

applies to its inputs, and the remaining genes encode where the node takes inputs

from. Nodes can take input from primary circuit inputs or any node preceding them

in the linear genome. This restriction prevents the creation of cycles and offers sev-

eral advantages compared to the genetic programming (e.g. it allows CGP to reuse

sub-circuits), but it introduces a positional bias that has a negative impact on CGP’s

ability to evolve certain DAGs [5]. Nodes that could be connected without creating

a cycle may still be prevented from forming that connection because of the given

genome ordering. This effect has been investigated only on the evolutionary design
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of few small circuits, and it will be necessary to perform an additional study focused

on the evolutionary optimization. Vasicek [33] did not register any significant degra-

dation in performance of the evolutionary optimisation process related to the posi-

tional bias during the experiments with complex circuits. The manifestation of CGP’s

positional bias thus remains in this context an open question. Goldman and Punch [5]

show that this bias is connected with an inherent pressure in CGP that makes it very

difficult to evolve individuals with a higher number of active nodes. Such a situation,

called the length bias, is prevalent as the length of an individual increases. We have

not explicitly investigated this problem in the context of evolutionary design of com-

plex circuits, however, this conclusion seems to be valid. The most complex circuit

that has been evolved using BDDs consists of around 155 gates [35]. Fortunately, the

length bias is related to evolutionary design only, and does not affect evolutionary

optimization.

It is natural to expect that the previously mentioned issues can degrade the per-

formance of CGP in some way. We are convinced, however, that the most critical

part of CGP is the process of generating candidate solutions. In order to generate a

new population, CGP utilizes a single genetic operator, point mutation. This oper-

ator modifies a certain number of randomly chosen genes in such a way that the

value of a selected gene is replaced with a randomly generated, yet valid, new one.

The range of valid values depends on the gene position and can be determined in

advance. This scheme seems to be extremely inefficient. Let us give two facts sup-

porting our claim. Firstly, a population containing only two individuals (i.e. parent

and a candidate solution) provides the best convergence when a fixed number of eval-

uations is considered [34]. Secondly, Vasicek [33] observes that approximately 180

candidate solutions need to be generated to obtain a single valid candidate solution,

i.e. an individual with the same or better fitness. Both observations suggest that the

evolutionary-based approach requires the generation of a large number of candidate

solutions to compensate the poor performance of the mutation operator. The poor

ability to generate an acceptable candidate circuit is emphasised by the fact that the

smallest possible population size exhibits the best performance. Assuming that our

claims are correct, we could also explain why we have pushed forward the limits of

evolution when we focus only on the improvement of the scalability of fitness eval-

uation. The reason is that formal methods such as BDD and SAT achieve speedup

of a few orders of magnitude compared to standard CGP. We believe that this part

of CGP offers a great potential to significantly improve not only the convergence but

also scalability of evolutionary synthesis. It is clear that a form of informed muta-

tions benefiting from problem domain knowledge should be employed, instead of

blind random changes. The question is how we should accomplish that.

3.3 Deceptive Fitness Landscape

The notion of a fitness landscape has become an important concept in evolution-

ary computation. It is well known that the nature of a fitness landscape has a strong
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relationship with the effectiveness of the evolutionary search. There are three aspects

forming the structure of the fitness landscape: the encoding scheme, the fitness func-

tion, and the connectivity determined by the genetic operators. The structure can be

specified in terms of two characteristics: ruggedness and neutrality of landscapes.

Ideally, small gene changes should lead to small changes in the phenotype and, con-

sequently, a small change in fitness value. A landscape exhibiting such a behaviour is

said to be smooth. In contrast, if small movements result in large changes in fitness,

then the landscape is considered rugged.

[39] study the structure of the fitness landscape by evolving 2-bit multipliers rep-

resented at the gate level. The landscape is modelled as a composition of three sub-

landscapes as discussed above. The experiments reveal not only that the landscapes

are irregular but also that their ruggedness is very different. The conclusion is that

the fitness landscapes of digital circuits are quite challenging for evolutionary search.

Unfortunately, only a little is known about the phenotypic search space of digital

circuits, despite the fact that every search algorithm provides implicit assumptions

about the search space [8].

If we ignore the problematic scalability issue, it is fair to say that CGP performs

very well in general. However, our experiments with evolution of circuits having

more than 15 inputs reveals that there are instances that are extremely hard to evolve.

What is even worse, there are trivial problems for which the evolutionary search com-

pletely fails. One of them is the well-known and well-studied evolutionary design of

parity circuits. In the case of the 30-input parity circuit, for example, the evolution-

ary search is stuck, and no correct circuit is evolved, provided that a complete set of

gates (including XOR gate) is employed. To understand this phenomenon, the fitness

landscape needs to be investigated. Under common conditions, there is nearly 100%

probability that a randomly generated individual receives a high fitness score whose

value equals HD(F) = 229 (i.e. 50% of the worst-case Hamming distance between

the correct solution and individual capturing a Boolean function F). Among many

others, constant value (i.e. F = 0), identities (i.e. F = xi), or XOR of two input vari-

ables (i.e. F = xi ⊕ xj) represent Boolean functions exhibiting HD(F) = 229. Even

XOR over 29 input variables (i.e. F = x1 ⊕…⊕ x29) has the same Hamming dis-

tance. In fact, every Boolean functionF implemented as k-input XOR (k = 2,… , 29)

exhibits HD(F) = 229. Considering phenotypic space, there is a huge disproportion

between the number of Boolean functions with Hamming distance equal to 229 and

the rest. Hence there is a high chance that such a candidate solution is produced by

mutation. In addition to that, it is necessary to consider also the complexity of the

correct and a partially working solution. While the correct parity circuit consists of

29 XOR gates, a circuit with Hamming distance equal to 1, for example, consists of

a significantly larger number of gates.
2

It is then no surprise that it is extremely hard

to generate a Boolean function consisting of more gates yet having better fitness. It

2
Such a circuit can be implemented using a 2-input multiplexer that provides the correct output

value for all input combinations except of a single combination for which the inverse output value

is given. The implementation consisting of two-input gates evidently requires more gates than com-

mon parity circuit.
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can be argued that evolution is an incremental process utilising neutral genetic drift

that can help build a circuit consisting of more gates. Of course, but there is no pres-

sure that helps to escape from this trap. If we analyse the number of gates during

evolution, it oscillates around a few gates only.

One of the possibilities for how to eliminate this problem is to disable XOR gates.

The presence of XOR gates in the function set, however, represents the main benefit

for the evolutionary approach. While the conventional circuit synthesis approaches

are not fully capable to perform the XOR decomposition, evolution is surprisingly

able to do that very well. This is typically the main reason why such a huge reduction

in the gate count is achieved in comparison with state-of-the-art synthesis tools [34].

Hence, it seems to be more beneficial to combine the Hamming distance with some

additional metric (e.g. the number of used variables) to encourage the selection pres-

sure and smooth the fitness landscape.

Evidently, a fitness function based solely on the Hamming distance produces a

really deceptive fitness landscape. The question is whether parity represents a sin-

gularity or whether there exist a whole class of problems with similar behaviour.

It is known that parity is a typical example of symmetric Boolean functions. The

symmetric functions are Boolean functions whose output value does not depend on

the permutation of the input variables. It means that the output depends only on the

number of ones in the input. A unique feature of this class of Boolean functions is

that a more compact representation can be utilized instead of the truth table having

2n rows. Each symmetric Boolean function with n inputs can be represented using

the (n + 1)-tuple, whose i-th entry (i = 0,… , n) is the value of the function on an

input vector with i ones.

4 Final Remarks

When Julian F. Miller, the (co)inventor of Cartesian genetic programming, pub-

lished his paper devoted to the evolutionary design of various gate-level circuits

such as adders and multipliers where he demonstrated the strength of evolution-

ary approach [23]
3
, he not only motivated researchers around the world to fur-

ther develop their investigations of evolutionary design of digital circuits, but also

inspired many others to engage in a relative young and promising research area:

evolvable hardware. Julian brought the evolvable hardware community an efficient

method for modelling and evolution of digital circuits. Despite the fact that CGP

has been evaluated on small problem instances only and there is no guarantee that

it will work on different problems, CGP has become very popular in EHW. Since

its introduction, CGP is still considered to be one of the most efficient methods for

evolutionary design and optimization of digital circuits.

3
This paper is currently the most cited paper in the journal of Genetic Programming and Evolvable

Machines.
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We can say without any exaggeration that Julian gave rise to a problem that seems

to be an endless source of research opportunities, challenges and questions. After

little more than 15 years of CGP’s existence, there exist many open questions that

are still waiting to be addressed. While there are questions, such as the role of neu-

trality and importance of redundancy, that accompany CGP since its introduction,

progress in various areas, such as evolutionary synthesis of logic circuits, has grad-

ually revealed further questions that were not properly addressed in the past. Many

problems have emerged within the last five years, during the experiments with evo-

lutionary synthesis of complex gate-level circuits. The primary reason is that many

researchers dealt only with small circuit instances in the past. Also, circuit opti-

mization was originally out of the main focus of EHW community, because the

researchers addressed the problem of circuit design.

Cartesian genetic programming, and its variants, is not the only contribution of

Julian F. Miller. He is also a pioneer of an unconventional computing paradigm

known as evolution-in-materio [24]. Julian is still providing us with revolutionary

and inspiring ideas.
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