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Abstract

This paper presents the concepts of FPNA and
FPNN, used for the approximation of artificial neural
networks in FPGAs and discusses the usage of TMR
technique in order to reach a fault tolerance. The dia-
grams of the FPGA implementation are presented. The
results of experiments determining the FPGA resources
utilization with different usage of the TMR technique
are provided.

1 Introduction

The artificial neural networks [14] are one of the
important models of softcomputing and artificial in-
telligence. They are structure inspired by the human
brain with high capability of learning and memorizing
to solve various types of tasks. Basically, the goal of the
artificial neural network is to learn the relation between
two sets of data vectors, to generalize the relation, to
determine its features and use it for the determining
the relation of the unknown vectors belonging to the
same problem. This capability can be used for classi-
fication tasks, for timeseries and functional prediction,
to control tasks, to image recognition, clustering and
other tasks.

Neural networks are composed of a set of neurons
computing the activation function over the basis func-
tion (often the weighted sum) of their inputs. The neu-
rons are interconnected with the weighted connections
called synapses. The learning of the neural network is
basically a process of setting the weights.

The networks have been implemented in various
kinds of devices starting from analog computers to
the most modern processors, VLSIs, graphical process-
ing units and FPGAs. This paper deals with one of
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the possible implementations of artificial neural net-
works in FPGAs - Field Programmable Neural Ar-
rays/Networks (FPNAs/FPNNs).

In our paper published at NORCAS 2015 conference
[12], we described the concept of Field Programmable
Neural Networks for artificial neural networks imple-
mentation in FPGA. We also presented a model of fault
tolerant FPNNs and various fault tolerance improving
techniques based on the model. Experimental results
were also provided.

This paper is organised as follows - the first section
introduces the FPNA /FPNN concept. The second sec-
tion describes the implementation of FPNNs into FP-
GAs. The third section deals with fault tolerance tech-
niques. The fourth section presents the experimental
results and the last section summarizes the whole pa-
per.

2 Field Programmable Neural Net-
works

The concept of FPNNs [4] is meant to simplify the
implementation of artificial neural networks in FPGAs
by adjusting their properties to be more suitable for im-
plementation into them. The simplification originates
from its main feature - a highly customizable structure
which makes it possible to establish resource sharing
between the original synaptic connections of the neu-
ral network and to simplify the interconnection model.
The FPNNs are composed of dedicated interconnected
units called neural resources which approximate the
original neurons and synaptic interconnections. The
units of the first type are called activators and repre-
sent the original neural network neurons. The other
units are called links and serve as an approximation of
the original synaptic interconnection. Every link dis-
poses of a set of weights serving as an approximation



of the original synaptic weights.

An example of a grid FPNN can be seen in Fig.
1. The circles in the figure represent activators, wide
arrows represent links and the thin arrows represent
data interconnections. The orientation of the connec-
tion arrows shows the way of the passing data. The
straight wide dashed/dotted arrows represent the orig-
inal neural networks synapses. The thin dashed/dotted
arrows represent the sequences of links approximating
the particular synapses. The synapses and the partic-
ular sequences are drawn with the same line and arrow
styles.

The FPNNs are not the same structures as neural
networks, although they can be constructed in that
way. The FPNNs represent a different model which can
structurally differ from the implemented neural net-
work. They can also have different capabilities which
means that they are not only an implementation of the
neural networks, they are an approximation of neural
networks as well - with different structure and proper-
ties, they can provide similar results as the networks.
The accuracy is the main problem here. Since the
FPNNs can be constructed in various ways and types,
the approximation accuracy can be different. We dealt
with the approximation accuracy in [11].

Figure 1. Synapses approximation in a grid
FPNN

2.1 Implementation of FPNNs into FPGAs

The VHDL implementation of both types was cre-
ated according to the original design and schematic
[4]. Both, activators and links were designed as sep-
arated units communicating with signals. The com-
munication is based on the asynchronous request - ac-
knowledgement model. Every neural resource gener-
ates requests for all units directly connected to its out-
put (successors) when its computation is done. Once
a successor starts to process the request, it sends the

acknowledgement back to the original resource. When
the original resource receives acknowledgements from
all successors, it selects a new input request to process,
sends the acknowledgement and begins the computa-
tion. The activators also send a flag together with the
requests. The flag is a constant activator number and
it is used in links to select the proper weight to mul-
tiply the input data width. The links then propagate
the flag to all connected links.

The implementations of both types of neural re-
sources are similar, however they differ in used com-
putational units. The diagram of standard link im-
plementation is illustrated in Fig. 2 and the diagram
of the activator in Fig. 3. Both types are composed
of a multiplexor, demultiplexor, register, computation
units and units for processing requests. The meaning
of common units is described bellow:

e SELECT selects one of the active requests for
processing using the RoundéRobin algorithm.
The requests from preceding neural resources are
indicated by the set bits on its input. When the
request is selected, it sets the start signal up.

¢ MUX is an input data vectors multiplexer. It is
controlled by the SEL unit.

e REG is a register storing the selected data vector.

¢ ACK_.DEMUX delivers an acknowledgement
(generated by the start signal) to the proper pre-
decessor. It is controlled by the SEL unit.

These units are present in both links and activators.
They serve for input requests processing and delivery
of the input data to the computation part of the unit.
Computation part of links and activators is composed
of different units:

e MULT_ADD applies the weights to the data.
The key to select the proper weight is the flag asso-
ciated with the request. The flag is selected from
all of the flags at the input FFLAG_IN by the value
at the input s.

e ITER iteratively computes the sum of all input
data (simulates the neuron basis function). After
a predefined number of iterations, it transmits the
result to the TRANS unit and activates it using
the fin signal. After every iteration it activates
the next signal which starts the processing of an-
other request.

e TRANS computes the activation function (the
output of the activator). The input is gained from



the ITER unit. The activation function were sig-
moid like function suitable for hardware imple-
mentation [13].

All computation units take the input data from the
register REG, perform the computation of the result
and transmit it to the neural resource output. They
also activate the signal ready which is an input of the
output requests generators:

¢ LINK_REQ_GEN generates the requests to the
connected successors when the ready signal is set.
It also receives the acknowledgements from the
successors. Using the free signal it controls the
SEL block - it enables (when all acknowledgements
are received) or disables (new request was selected
- start signal is up) its function.

e ACT_REQ_GEN is similar to the
LINK_ REQ_GEN, but it allows to activate
the free signal using the next_req signal without
the requests generation.

These units are responsible for the control of the neural
resource. When the processing of the selected request
is started, they block the SEL unit preventing it from
selecting another request before the actual one is pro-
cessed. After the computation is done, they generate
output requests and hold the entire neural resource in-
active until all requests are successfully received by the
SUCCESSOTs.
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Figure 2. Diagram of a link implementation -
the interconnection of the inner units

3 Fault tolerant FPNN using TMR

The neural networks are parallel structures with lot
of redundancy performing an approximate (soft) com-
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Figure 3. Diagram of an activator implemen-
tation - the interconnection of the inner units

puting. Therefore they dispose of inherent fault toler-
ant properties which differ with every network though.
There are a number of techniques designed to increase
the fault tolerant properties. Some do it using an addi-
tional redundancy on different levels (for example TMR
on the level of the whole network [18], or adding redun-
dant neurons [1]) in order to build the network to be
fault tolerant. Others modify the process of training [2]
in order to train the network to be fault tolerant (for
example [16, 5, 6, 9] uses weight minimization during
the training, [8] describes a usage of fault injection dur-
ing the training) or use retraining after a fault occurs
[3]. Others modify the basis function [15] or activation
function [17, 10]. All approaches are combined as well.

Our approach based on extension of the imple-
mented neural network fault tolerance (or substitution
if no fault tolerant technique was used on the network).
Different approaches can be used to make an FPNN
fault tolerant. The approaches can utilize replication
or can use other principles. We introduced a fault toler-
ance technique which does not use replication in [12].
The homogeneous structure of FPNNs is suitable for
using replication based techniques as well as for the
recovery using the online reconfiguration. The asyn-
chronous model of communication is suitable for this
type of recovery as well since the FPNN can be simply
put on hold until the recovery is finished and then re-
sume its function without a need of resetting the whole
FPNN.

TMR is a well known fault tolerant technique based
on triple replication of the secured unit and comparison
of the triplet output data in order to determine the
major result which is then used as the output of the
whole triplet. This technique can be used on different
levels with FPNNs. In this paper we focus on two levels
- the level of inner units (we will refer to this type as
type A) and the level of the whole neural resources (type



B).
On the level of inner units (type A), there are six
(link) or seven (activator) main units which can be se-
cured using the TMR technique. Using the technique
on this level has several advantages. It allows us to
choose which units (if not all) will be secured. There-
fore it allows us to adjust the security /overhead ratio.
Also, if we focus on the smaller inner units, the recov-
ery from fault using the dynamic reconfiguration will
be easier and faster than in the case of reconfiguration
of the whole neural resources. However, on this level
the interconnection between units will not be secured.
This will occur on the level of the whole neural re-
sources (type B). On this level, the fault tolerance will
be generally higher because of duplication the whole
resources but overhead will be higher as well. Also, re-
covery from fault using dynamic reconfiguration will be
more complicated and slower due to larger reconfigured
area.

We decided to compare these two levels in the mean-
ing of area utilization in order to have a base for deci-
sion which level of TMR will be used. There are other
criteria to evaluate the fault tolerant techniques. The
power consumption, maximum clock frequency and la-
tency belong to the most important. However, in this
paper we deal with area (resource utilization) only,
with other criteria we shall deal with in our future re-
search.

4 Experimental results

In order to determine the area usage (in the number
of slice registers and LUTSs) of the neural resources and
their inner units in both the unsecured and the TMR
versions, we implemented them in VHDL and synthe-
sized them using the Xilinx ISE 14.7 tool. The tar-
get FPGA was the Xilinx Virtex-6 device zc6vlx20t-
1-ff1156. All computations were implemented in fixed
point form with 8 bits of the integer part and 8 bits
of the fractional part [7]. The voters were imple-
mented using bit operations, therefore the voting was
performed on the level of bits. All neural resources
were implemented to be connected with three prede-
cessors and two successors. The number of connected
neural resources affects the size of the communication
units. The link has three weights with real values. The
use of DSP blocks was switched off. The optimization
level was left on default but the FEquivalent registers
removal option was switched off to avoid the drop of
the duplicated units. All results were provided by the
synthesis only.

The resources utilization of the unsecured units are
shown in Table 1. In the table, the Unit column iden-

tifies the units by their name. The columns Slice Regs.
and Slice-LUTs contain the resources utilization. The
columns LUTs of act. and LUTs of link compare the
LUTs utilization of the unit with the utilization of the
whole neural resources in order to illustrate the area
portion of the inner units.

Table 1. Utilization of unsecured blocks

Unit Slice Slice- LUTSs LUTs
Regs. LUTs of act. | of link
SELECT 8 17 1% 1%
ITER 49 104 6% 0%
TRANS 1 1478 86% 0%
MULT-
"ADD 0 1389 0% 883%
REQ-
GEN 2 5 0.3% 0.3%
ACTI-
VATOR 126 1723 100% 0%
LINK 57 1582 0% 100%

As the table illustrates the most significant por-
tion of FPGA resources are utilized in the computa-
tion units MULT_ADD and TRANS. The communica-
tion and control units utilize around one percent of re-
sources and around 5%-10% of resources are utilized by
the units interconnection. This shows that the compu-
tation units are the best candidates for using the TMR
technique as the probability of failure is the highest
with them. On the other hand, the communication
and control units are essential for the data flow, there-
fore for the functionality of the whole FPNN and the
failure in these units could stop the operation of the
whole FPNN, while the failure in the computing unit
could only cause the degraded precision. Moreover ac-
cording to their low resources utilization, it could be
suitable to apply the TMR technique to secure them.

Table 2 summarizes the resource utilization of the
building blocks secured using the TMR technique. The
columns Regs. and LUTs have the same meaning as in
Table 1, the other columns contain the percent increase
of the resources utilization. As expected, the resource
utilization has increased approximately three times or
less in most of the units. The neural resources are
marked by the used TMR type. The utilization of the
type A activator (all units were TMR secured although
not all of them are listed in the table) has increased
around 2.7 times and the utilization of the type A link
around 2.9 times (registers) and 2.3 times (LUTs). The
type B resources LUTs utilization has increased even
more but their registers utilization has increased less
than in case of type A resources.



Table 2. Utilization of TMR-secured blocks

Secured| Regs. LUTs Increase Increase
unit of of
Regs. LUTs

SELECT 28 40 250% 135%
ITER 179 331 265% 218%
TRANS 83 4291 83 190%
MULT-

"ADD 83 3641 83 162%

REQ-

GEN 6 6 200% 20%
ACTIV-

ATOR .- 346 4699 174% 173%
TYPE_A

LINK -
TYPE.A| 166 3737 191% 136%
ACTIV-

ATOR - 311 5611 147% 226%
TYPE_B

ACTIV-

ATOR - 163 4299 185% 172%
TYPE_B

Table 3. Comparison of different TMR levels

Neural re- | Increase of | Increase
source (se- | registers of LUTs
cured using | utilization utilization
type B) vs. type A | vs. type A
Link -2% 15%
Activator -11% 19%

Table 3 compares the utilization of neural resources
secured by the both TMR types. As the table illus-
trates, the type B neural resources consumes less reg-
isters than neural resources of type A. This is due to
the number of voters consuming the registers in the
type A resources. However, the type B neural resources
consume more LUTs. This is due to interconnection in-
cluded into the duplicates. It is needed to consider that
there is around twice more registers than LUTSs avail-
able in the FPGA. From this point of view the type A
neural resources seems to be more resource and area
efficient than type B resources. However, the type B
resources are secured including the interconnection be-
tween inner units, therefore their fault tolerance should
be higher.

5 Conclusions and future research

In this paper we briefly described the concept of
FPNN serving for the implementation of artificial neu-
ral networks in FPGAs. We also described the imple-
mentation using the schematics and explained the con-
struction of neural resources and the communication
model. The fault tolerance techniques were considered
and two levels of application of the TMR technique on
the neural resources were discussed.

The application of the TMR technique on the inner
units of the neural resources (type A) has proven to be
less consuming in the meaning of the number of con-
sumed LUTs, although this type consumed more reg-
isters. However, the registers are more available than
LUTs, so this type seems to be more resource efficient.
Due to smaller areas secured using TMR it might be
more effective to use the dynamic reconfiguration in
order to recover from fault.

The type of the TMR that secures the whole neu-
ral resources (type B) consumes less registers but more
LUTs. In the meaning of the available resources, this
type is less resource effective. Also, using the dynamic
reconfiguration to recover from fault might be less ef-
fective and slower due to larger area needed to be re-
configured.

In our future research we will deal with other fault
tolerance techniques. Especially with techniques which
do not use the replication but they are based on a
change of parameters and on the robustness of the
FPNN which we designed. We shall also perform ex-
periments with fault injection. We shall measure how
the techniques affect the consumption and the value of
the frequency on which the system works as well.
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