Comparison of FPNNs Models Approximation
Capabilities and FPGA Resources Utilization

Martin Krcma, Zdenek Kotasek, Jakub Lojda
Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic
Email: ikrcma@fit.vutbr.cz, kotasek @fit.vutbr.cz, ilojda@fit.vutbr.cz

Abstract—This paper presents the concepts of FPNA and
FPNN, used for the approximation of artificial neural networks
in FPGAs and introduces derived types of these concepts used by
the authors. The process of transformation of a trained artificial
neural network to an FPNN is described. The diagram of the
FPGA implementation is presented. The results of experiments
determining the approximation capabilities of FPNNs are pre-
sented and the FPGA resources utilization are compared.

I. INTRODUCTION

The artificial neural networks [9] are one of the impor-
tant models of sofcomputing and artificial intelligence. Their
structure is inspired by the structure of the human brain and
they dispose of a high capability of learning and memorizing to
solve various types of tasks. Basically, the goal of the artificial
neural network is to learn the relation between two sets of data
vectors, to generalize the relation, to determine its features
and to use it for the determining the relation of the unknown
vectors belonging to the same problem. This capability can
be used for classification tasks, for timeseries and functional
prediction, to control tasks, to image recognition, clustering
and other tasks.

Neural networks are composed of a set of neurons com-
puting the activation function over the weighted sum of their
inputs. The neurons are interconnected with the weighted con-
nections called synapses. The learning of the neural network
is basically a process of setting the weights.

The networks have been implemented in various kinds of
devices starting from analog computers to the most modern
processors, VLSIs, graphical processing units and FPGAs.
This paper deals with one of the possible implementations of
artificial neural networks in FPGAs - FPNA/FPNN.

The concept of Field Programmable Neural
Arrays/Networks (FPNAs/FPNNs) [1], [2] in design is
meant to simplify the implementation of artificial neural
networks in FPGAs by adjusting its properties to be
more suitable for the implementation into their logic. The
simplification originates from its main feature - a highly
customizable structure which makes it possible to establish
resource sharing between the original synaptic connections of
the neural network. This is done by using its customizability
to simplify the interconnection model. The concept were used
for implementing large scale spiking networks [11], [12].

The FPNNSs are not the same structures as neural networks,
although they can be constructed in that way. The FPNNs

represent a different model which can structurally differ from
the implemented neural network. They can also have different
capabilities, which means that they are not only an implemen-
tation of the neural networks, they are an approximation of
neural networks as well. Since the FPNNs can be constructed
in various ways and types, the approximation accuracy can be
different.

The goal of this paper is to describe the types of FPNNs
and compare the approximation capabilities of these types. The
FPGA resources utilization of the FPNNs is compared as well.

The FPNNs were formally defined in [1], [2]. In order to
follow the original definitions, the presented work is based on
these definitions and on definitions derived from them. For our
purposes we modified the original definitions in order to suit
them to our way of using the concept. This step allowed us to
use different level of the approximation accuracy. Our further
definitions specify special derived types of FPNNs. Also, they
allow us to describe easily the algorithms of mapping trained
neural networks to FPNNSs.

In our paper published at NORCAS 2015 conference [7],
we described the concept of Field Programmable Neural Net-
works for artificial neural networks implementation in FPGA.
We also presented a model of fault tolerant FPNNs and various
fault tolerance improving techniques based on the model.
Experimental results were also provided. Now, in this paper
we describe how we continue in our research - the formal
definitions of the FPNA/FPNN concept are presented. The
problem of process of direct transformation of the trained
neural network to FPNN together with the related algorithms
are described. The goal of experiments presented in the paper
is to determine the approximation capabilities of different
FPNNs of the reduced and the full type, the results are
described in the paper. In the earlier paper [6] we dealt with
the mapping of the neural networks to FPNNs of the most
simple type with a number of methods. This paper follows
this work by extending it to other types of FPNN with more
detailed description of the models, methods and algorithms.

The paper is organised as follows - the first section intro-
duces the FPNA/FPNN concept. The second section deals with
the problem of neural networks transformation to FPNNs and
describes our transformation algorithms while the third section
presents the diagrams of FPGA implementation of FPNNs. In
the fourth section experiments and results are described. The
last section summarizes the paper.

II. FPNN

For purposes of our research we developed a new definition
of an FPNN (see Definition II.1, original definition by B. Girau
[1], [2]). According to this definition, an FPNN is a structure
composed of two types of units (together called neural re-
sources). The units of the first type are called activators (the
set V) and represent original neural network neurons. They
perform the same actions as neurons - they iteratively gather
input data into potential, then apply an activation function to
obtain the output. The activation function is represented by
the function operator ”f” and the iteration operator i’ is
responsible for input data processing to provide the input to
the function operator.

The interconnections between activators are realized by the
other unit type called links (the set L). The links perform
approximation of the original synaptic weights (they compute
the weight multiplication) according to the rest of the FPNN
parameters. The actual data interconnection model is presented
by an oriented graph (N, E'), where F is a set of valued edges
interconnecting the activators. Every edge is usually split up
to a sequence of links which allows us to construct various
structures. The more we split the edges into links, the more
flexibility we obtain.

Definition II.1 (FPNN [1]). We say that structure
(N,L,E,¢,w) is an FPNN if the following statements
hold true:

1) N is a set of units called activators that dispose of:
a) An iterative variable ¢,,: Vn € N : 3¢, € R
b) A default value of t,:
Yn € N :Jo, € R;tp, =on
¢) A number of iterations: Vn € N : da,, € N
d) An iterative operator (x,, is an input data):
VneN:Ji, :RxR—R;
tn, = in(tn, 1, Zn);a=1l.a,
e) A function operator: Vn € N : 3f, : R —- R
2) L is a set of units called links that dispose of:
a) A set of link operators ¥l € L : 4A;:
A = {on(@)|an(z) = W, x o; W, €

R;n=1..c}
3) E is a set of valued oriented edges: (m,n) €
E;m,n € N).

The edge value is defined: Ve € F : 3W, € R

4) (N,E) is an oriented graph denoting the intercon-
nection between activators.

5) ¢ is a function E — LT, so that:
Vee E:¢e) = (l1..1p);l1.0p, € Lin >0

6) wis a function E — L7, so that:
Ve € E : ¢(e) = (l1..1p);11..ln € Liyw(e) C
6(€);0 < n < |o(c)]

7) Edge-to-operator functions o; : E — Aj;l € L:
Ve e EAVI € ¢(e) : oi(e) = af;af € A

8) Operator determining v; : ET — A;,l € L:
VieL:yer.en) =a, < a, € AN €w(e) A
ANLew(ey) Nayler) = .. = oi(en) = ag

9) A set of input nodes exists:
AN; = {n € N | deg*(n) =0}
VneN;: i, =0; fulz) =2z

The actual FPNN structure is determined by the (N, E)

graph and the ¢ function. The edges are split up to the
sequences of interconnected links, given by the ¢ functions
which realize the interconnection between activators and the
approximation of the edges weights. The edges weight approx-
imation is determined by the w, o, functions and realized
by the link operators. Link operators are functions which
are applied to the data passing through the links. Every
link disposes of one or more link operators (the A; sets).
To determine a link operator which should be assigned to
the particular edge (to the data which would originally pass
through the edge) the o functions are constructed. All the link
operators in the sequence (realizing an edge) are applied to all
the passing data (according to the o functions). To establish
the weight approximation, it has to be decided which links
in the sequences will be used for the approximation by the
construction of the w function. The actual approximation is
determined by the ¢/ functions which construct link operators
for the assigned edges (by the w,o functions). This will be
further explained in the section III.

To preserve the consistency with the original definition [1]
we add the following: If only the graph (N, E), iteration and
function operators are defined, the structure is called FPNA
(Field Programmable Neural Array) [1] and it defines the
whole class of possible FPNNs. Every FPNN can bee seen
as an instance of some FPNA.

A. Grid FPNN

For our research purposes we developed a special type of
FPNN based on the above provided definitions. Grid FPNN
(definition II1.2) is an FPNN with an enforced limitation of the
structure causing it to form a grid shape. The reason for this is
to make an FPNN suitable for the implementation in FPGAs
due to the similarity of the grid FPNNs structure and FPGAs
interconnection bus and the sharing of resources in links.

Definition II.2 (Grid FPNN). We say that FPNN is the grid
FPNN if the the following statements hold true:

1) The activators are organized into layers.

2) The two sequences of interconnected links exist in
all layers composed of more than one activator. The
number of links in every sequence is one less than
the number of activators in the layer. The output of
every link is connected to the input of the nearest
activator. The sequences go in the opposite ways.

3) The output od every activator is connected only to
a single link which provides the connection to the
next layer. The output of the link is connected to
the nearest activator and to the nearest links of one
or both link sequences in the layer (which realizes
connection to all other activators).

An example of a grid FPNN can be seen in Fig. 1. In the
figure, the circles represent activators, wide arrows represent
links and the thin arrows represent data interconnections. The
orientation of the connection arrows shows the way of the
passing data. The straight wide dashed/dotted arrows represent
the original neural networks synapses. The thin dashed/dotted
arrows represent the sequences of links approximating the
particular synapses. The synapses and the particular sequences
are drawn with the same line and arrow styles. As the picture

illustrates, there is only one link (called initial, Definition I1.4)
on the output of every activator which provides the connection
to the following layer. It is directly connected to one successive
activator in the following layer. The connection to the other
activators goes through the sequence of links within the whole
layer. Two sequences of the links are going the opposite
ways. They are called Interconnection sequence (definitions
IL.3-I1.5). Every layer with more than one activator has an
interconnection sequence within.

Definition IL.3. A sequence of links is generally a sequence
of directly interconnected links.

Definition I1.4. An initial is a link having no link predecessors.
It has only an activator predecessor.

Definition IL.5. An interconnection sequence is a sequence of
links interconnecting activators within a layer. It is composed
of two sequences going the opposite ways. The input of every
link is connected to one or two preceding links, the output is
always connected to the nearest activator and to the succeeding
link in the sequence (if it exists).

B. Different levels of approximation

The approximation capabilities of the FPNN depend on
the number of available link operators present in links and the
number of edges assigned by the w function for approximation
to the links. Respectively, the ratio between the numbers of
operators and assigned approximated edges is the essential
parameter for the FPNN approximation abilities. The numbers
can be equal. In that case, the 1 functions only determine
the value approximating the given edge (the member of the
multiplication sequence as described in the next subsection).
Thus, every edge has its link operator counter part. In this
case, the approximation of the original neural network weights
(suppose that original synapses were directly transferred to
edges, thus (IV, E) graph is isomorphic to the original network)
is accurate. We call the FPNN with these properties as Full
FPNN.

The definition allows us to reduce the number of link
operators. In that case, the ¢ function is surjective and its
purpose is to find a compromise between a number of edges
mapped to one link operator. In this case, the approximation
accuracy suffers from the decrease caused by sharing the
link operators between multiple edges. However, this kind of
sharing reduces the FPGA resources utilization (the main goal
of the FPNN concept) since, the memories containing the link
operators are smaller as well as related logic (multiplexors,
possibly multipliers etc.). And the accuracy decrease does not
have to be necessary critical since the neural networks are
potentially robust against some weights losses. The usage of
this technique of resource utilization reduction is a matter of
preference and depends on concrete situation and a way of
usage.

We distinguish two other types of FPNN. The reduced
FPNN and the light FPNN. The meaning of light FPNN
is simple - every link disposes of only one link operator
(VI € L : |A; = 1). In this case, the link multiplier turns
into a constant multiplier which offers the highest spare of
resources. However, the accuracy suffers the most.

The last type mentioned in this paper is the reduced

FPNN which disposes of the same number of link operators
as it has the number of direct link predecessors in the link
sequences it belongs to. This type approximation capabilities
are determined by an FPNN structure as the number of link
operators is directly dependent on the number of existing link
sequences and their interconnection. The explanation based
on Fig. 1 would be the most appropriate. Consider the third
(the rightmost) link of the lower part of the interconnec-
tion sequence (the sequence heading to the right). This link
approximates three edges originating in the three leftmost
activators. However, it has only two direct link connected
predecessors. So, in the case of reduced FPNN, it would
have two link operators. The first one approximates the edge
originating in the third leftmost activator. Since there is no
sharing of this link operator, the approximation of the edge is
accurate. However, the second link operator is shared between
two edges originating in the first two leftmost activators. An
approximation of these edges would be hence less accurate due
to sharing the link operators. But in case of the full FPNN, the
approximation would be accurate since there would be three
affine operators, one for every edge.

Fig. 1.

Synapses (edges) approximation in a grid FPNN

Definition II.6 (Light FPNN). We say that FPNN is a light
FPNN if the folowing statemet holds true: VI € L : |4;] = 1.

Definition I1.7 (Full FPNN). We say that FPNN is a full FPNN
if the following statement holds true:
Vie LAVe€ E: A = |{ele € w (D)}

Definition IL.8 (Reduced FPNN). We say that FPNN is a
reduced FPNN if the following statements hold true:

1) The edge equivalence is defined:
Vei,eo € Bl € L:e; = ex & dley) = . lpl. 0, A
Plea) =B lyl.dp;ly =1,

2) VI € L the size of A; is equal to the number of the
equivalence classes generated by the =;.

III. MAPPING OF NEURAL NETWORKS TO FPNNS

Mapping is a process of direct transfer of an artificial
neural network into an FPNN without using a training data set
and without the need of learning (other works [3] deal with
training of FPNNs). Mapping uses information obtainable from
an original neural network such as weights, biases, activation
functions and the network structure.

The first phase of mapping would be the construction of
an appropriate FPNN. The first step is construction of (N, E)
graph which should be (but does not have to be) isomorphic

to the original neural network. This step contain the mapping
of neurons to activators - the basis functions are mapped to
the iteration operators, the activation functions to the function
operators and the biases to the o,, parameters. The second step
is the links creation according to the intended shape of the
FPNN. The next step is to assign the edges to the sequence of
links (constructing the ¢ function) which specify the concrete
shape of the FPNN. According to the approximation accuracy
preferences, the A; sets of link operators needed to be con-
structed now.

Since all data between activators will flow through the
sequences of links (given by the ¢ function) interconnecting
them, the data will be modified using link operators of all
links in the sequences. Therefore, the o functions have to be
constructed to determine the relations between edges and the
link operators.

However, not all link operators have to be used for the
edges weights approximations. Some of them (or all but one)
can be used as data passers which can be possibly shared
between edges. For better understanding, consider an edge e,
its weight W, = 3 and ¢(e) = l1l2l3l4. Using o functions we
obtain a sequence of link operators oy asagary assigned to the
edge. If it would be our intention to use all these operators to
approximate the W,, the approximation sequence would then
be most likely composed of three operators with value of 1 and
one operator with value of 3. Therefore, we would need to have
an extra 1-valued operator in all the three links. Which would
be easy to use, but costs more resources. I could be more wise
to use other existing operators (approximating other edges) in
some of links and special operators used for e approximation
in others. In our case, if o functions map the e to the operators
in ly..l3 links with values of 1.5, 2,2, the link operator in Iy
used for approximation of the e would have the value of 0.25
(since 1.5 X 2 x 2 x 0.25 = 3). In this case, only one operator
was used for the e approximation and the others were shared
with other edges without influencing them (they were used
for other edges approximation in the same way). To specify
which link operators are used for approximation of concrete
edges, the w function is constructed. If sharing is not in our
intention (for example for matter of data type accuracy which
could suffer from multiple multiplications), the w(e) = ¢(e)
for all edges.

The last step is to determine the 1) functions. These func-
tions serve for finding a compromise if more then one edges
are mapped to a single link operator for approximation. If all
the edges dispose of exclusive operators of their own (the full
FPNN), no % functions are needed. In other cases (the reduced
and light FPNNs) they have to be constructed. There are
plenty of way of finding the compromises - arithmetic average,
median, weighted average and others. We have described the
results of using different compromises (¢ functions) in our
paper at DDECS 2015 [6].

There are several possible ways how to determine the w and
the 0,1 functions. Using evolution algorithms and optimiza-
tion algorithms could be one of them. In this paper however
we would like to describe a systematic approach of mapping
trained layered feedforward neural network (perceptron like)
to grid FPNNs. We suppose the (N, E) graph to be isomorphic
to the original neural network and the L set and the ¢ function
to be constructed to form a grid FPNN according to the

definition II.2. The w functions is constructed according to
the equation 1. According to it, every edge is approximated
by the link operator of the last link in the sequence given
by the ¢ function. The o functions need to be constructed to
create groups of edges according to the equivalence classes
generated by the = function from the definition II.8. The v
functions were chosen as the arithmetic average (equation 2).
The opSeq. is the sequence of link operators assigned to the
edge e except the last one. The P, is the value of the product
of the link operators in the opSeq set. It denotes the actual
multiplication value in the last link before w(e). According
to the value and the value of the edge weight, the value A,
needed to accurate approximation is computed. In full FPNN,
this value would be directly assigned to the link operator. In
the presented equation, the arithmetic average is applied to all
A, values mapped to the link operator.

Vee E:w(e) =1, < ¢le) =11..1, €))

opSeq. = (af|aj = oi(e) Al € ¢(e) \ w(e))

P, = H (67}

aj€opSeqe
W, 2
P,

A, =

ZemE{el..en} Ae
n

II e 3)

leg(e);af=oi(e)

VielL: wl(el..en) =

YVeec E: A, =

A. Mapping algorithms

On the base of the presented principles we implemented
the following algorithms which perform a mapping of trained
neural network to the grid FPNN. The construction algorithm
of the FPNN will not be described in explicit details in this
paper, however the main idea was presented in the preceding
section. The algorithms use the definitions and equations
presented above as well as the declaration in Table 1.

At first, the auxiliary variables have to be initialized in
the Algorithm 1. Then, the ordered set of link sequences
must be constructed using the Algorithm 2. The set is called
chains and it is constructed for each layer separately using
the ¢ function and ordering the resulting link sequences by
their length (ascending order). The reason why to order the
sequences is that it is suitable to start mapping with the
shortest sequences of the length 1 (initials - always present
in the grid FPNN) and continue with longer sequences in
the next steps, determining one additional operator (member
of the multiplication sequence) in the sequence in the each
subsequent step. This means that the links (their operators)
are mapped one by one creating longer mapped sequences in
each step.

In every step a new link is selected and its operators
determined. In order to compute the values of the operators,
it is needed to construct the groups of edges related to each
link operator. Determining of these groups differs in case of

each type of FPNN. In case of reduced FPNN, the edges are
separated according to the link predecessor they pass trough,
as the definition specifies. The groups are constructed as the
equvalence classes of the =; function from the definition IL.8.
This is done by the Algorithm 3. In case of light FPNN,
the equation on the second line of the Algorithm 3 shall be
replaced by the equation 4 assigning all the edges to the one
group which will be mapped to the single link operator. If a
full FPNN is being mapped, the line should be replaced by the
equation 5 assigning every edge to the separated group.

groups < w (1) 4

groups < {{e}|e € w1 (1)} Q)

After the groups edges are constructed, the values of partial
products P, from the equation 2 as well as the approximation
values A, are computed for every edge in every group in the
Algorithm 4. As the last step, the related link operator is
computed for each group using the ¢ function. The operators
computation is complete and the link is removed from the
chain a algorithm continues with the successive link.

TABLE 1. DECLARATIONS
[Declaration [Description
FPNN = (N,L,E, ¢,w) a grid FPNN

layers € {N*}~*
chains C E*
sortByLength : E™ — E

The set of FPNN activators layers.
An ordered collection of link sequences.
Sorting by path length.

1: procedure DETERMINEGROUS(! € L)
2 groups < [e]=,Ve € w™1(l)
3: return groups
4: end procedure
Algorithm 3. Initialization algorithm
1: procedure MAPFPNN(NN, FPNN)
2: INITIALIZE(N N, FPNN)
3: for all layer € layers do
4: chains < DETERMINECHAINS(layer)
/* Mapping path by path: */
5: for all r € chains do
6: l < firstLinkOf(r)
/* Multiplicands comput.: %/
7: for all ¢ € DETERMINEGROUPS(!) do
8: for all e € g do
9: Pe = l_[oqupSeqc Qg
10: A, i
11: end for
/x Computing the link
operators: */
12: Qg(ecg) = P(9) = Lefg“'\ =
13: end for
/% Shortening the chain: */
14: r«r\{l}
15: chains < {p|p € chains Ap # 0}
16: end for
17: end for
18: end procedure

firstNodeOf : E™ — E
Veec E:dP. € R
Ve € E:3JdA. €R

Chain’s first node.

Partial product of the operators sequence.
Approximation value for the operator computa-
tion.

1: procedure INITIALIZE(NN, FPNN)

/* Init of the variables: */
2 for all Ve € E do
3: P.+ 1.0
4: A, +— 1.0
5 end for
6: end procedure

Algorithm 1. Initialization algorithm

The presented algorithms represent the very basic mapping
method. In our previous research [6] we developed a set of
additional methods for mapping the light FPNNs which can be
used to map the reduced FPNNs as well. The algorithms differ
in the way of computing the 1) function. They are based on
different usage of weighted algorithms with different weights

1: function DETERMINECHAINS(Ir = {nl..n,} € N™)
2 chains < ()

3 for all n € ilr A s € N do

4 for all (n,s) € E do

5: chains < chains U ¢((n, s))

6 end for

7 end for

8 sortByLength(chains)

9: return chains

10: end function

Algorithm 2. Chain determination algorithm

Algorithm 4. Reduced FPNN mapping algorithm

determination as well as on more advanced principles. They
also use different ways of results optimization. However, in
order to explain the problem we used the basic method only
since the other methods are more complicated and their results
could depend more on the concrete network.

We implemented these algorithms into our framework [5]
dealing with the FPNNs. The framework allow us to construct
FPNNs and map the neural networks to FPNNs as well as
simulating the computation of the FPNN and generating the
VHDL design for every FPNN. Using the framework, the
mapping is very fast, depending on the methods, FPNN size
and used optimizations it takes seconds to minutes to be
executed.

IV. IMPLEMENTATION OF FPNNS INTO FPGAS

The VHDL implementation of both types was created
according to the original design and schematic [1]. Another
implementation was proposed in [10]. Both, activators and
links were designed as separated units communicating with
signals. The communication is based on the asynchronous
request - acknowledgement model. Every neural resource gen-
erates requests for all units directly connected to its output
(successors) when its computation is done. Once a successor
starts to process the request, it sends the acknowledgement
back to the original resource. When the original resource
receives acknowledgements from all successors, it selects a
new input request to process, sends the acknowledgement and
begins the computation. The activators also send a flag together

with the requests. The flag is a constant number and it is
used by links to select the proper weight to multiply width the
input data. The links then propagate the flag to all connected
links. Only the full FPNNs use flags. The reduced and light
FPNNs implementation do not contain the logic related to flags
processing and transition.

The implementations of both types of neural resources are
similar, however they differ in used computational units. The
diagram of standard link implementation is illustrated in Fig.
2 and the diagram of the activator in Fig. 3. Both types are
composed of a multiplexor, demultiplexor, register, computa-
tion units and units for processing requests. The meaning of
common units is described bellow:

e SELECT selects one of the active requests for pro-
cessing using the Round&Robin algorithm. The re-
quests from preceding neural resources are indicated
by the set bits on its input. When the request is
selected, it sets the start signal up.

e MUX is an input data vectors multiplexer. It is con-
trolled by the SELECT unit.

o REG is a register storing the selected data vector.

e ACK_DEMUX delivers an acknowledgement (gener-
ated by the start signal) to the proper predecessor. It
is controlled by the SELECT unit.

These units are present in both links and activators. They serve
for input requests processing and delivery of the input data to
the computation part of the unit. Computation part of links and
activators is composed of different units:

e MULT_ADD applies the weights to the data. The key
to select the proper weight is the flag associated with
the request. The flag is selected from all of the flags
at the input FLAG_IN by the value at the input s.
The weights are stored in the memory inside this unit.
Full FPNNs contain significantly more weights than
reduced or light FPNNs.

o ITER iteratively computes the sum of all input data
(simulates the neuron basis function). After a prede-
fined number of iterations, it transmits the result to
the TRANS unit and activates it using the fin signal.
After every iteration it activates the next signal which
starts the processing of another request.

e TRANS computes the activation function (the output
of the activator). The input is gained from the ITER
unit. The activation function were sigmoid like func-
tion suitable for hardware implementation [13].

All computation units take the input data from the register
REG, perform the computation of the result and transmit it to
the neural resource output. They also activate the signal ready
which is an input of the output requests generators:

e LINK_REQ_GEN generates the requests to the con-
nected successors when the ready signal is set. It also
receives the acknowledgements from the successors.
Using the free signal it controls the SELECT unit -
it enables (when all acknowledgements are received)

or disables (new request was selected - start signal
is up) its function.

e ACT_REQ_GEN is similar to the LINK_REQ_GEN,
but it allows to activate the free signal using the
next_req signal without the requests generation.

These units are responsible for the control of the neural re-
source. When the processing of the selected request is started,
they block the SELECT unit preventing it from selecting
another request before the actual one is processed. After
the computation is done, they generate output requests and
hold the entire neural resource inactive until all requests are
successfully received by the successors.

ack_out0) o
ack_out] *=—
ACK ack
+ |DEMUX

ack_outN =

~— free

[
req_in0 = req.in0 "
req_inl m—rea.inl sel start req_out0
. SELECT req_outl
req_inN req.inN req.num o
req_out req_outS
+ ' LINK_REQ_GEN ! ack_in0
ac = ack_in1
ready
ready ack_inS
X0 m—
X1 S —
‘ R s MULT_ADD
. MUX E x fin [~
. —
. ‘GJ 4 L> r y Y
Le FLAG_IN
XN —
reset
c

Fig. 2. Diagram of a link implementation - the interconnection of the inner
units

ack_outl o

ack_out] —j
. ACK ack

DEMUX|

free

ack_outN k/r’

req_in0 me—{reqino © ‘Eﬂj
req_int start o

req.inl m—| el
H SELECT

req_inN me——freq_inN req_num 4

[FLAG_REG FLAG_OUT

Tree outo|—mm req_outO

= req_outl

| req outs
- ack_in0
1 |—em ack_inl

ack_ins

]

ACT_REQ_GEN "

ready] ¢ nextreg

T
N in in

MUX E X ITER yH——x TRANS y
G

. T S~

N o— et next_req

reset ‘L [
clk

[y

X1 mp—

Fig. 3. Diagram of an activator implementation - the interconnection of the
inner units

V. EXPERIMENTAL RESULTS

We experimented with the presented models and algo-
rithms, the experiments and results will be now described and
summarized. The experiments were focused on the approx-
imation capabilities of the reduced and full FPNNs model,
and on their FPGA resource consumption. The goals of the
experiments were to show and compare the capabilities of both
models and their space complexity. To perform the experiments
we used our framework to simulate the FPNNs in order to get

the approximation accuracy. The VHDL design of every FPNN
was generated using the framework as well.

The core of the experiments was a set of neural networks,
and a set of structurally corresponding FPNNs of both types.
Each trained neural network and the particular FPNN were
both tested on a set of testing input vectors and their outputs
were compared to each other to determine how the FPNN
output differs from the reference neural network output. Since
the FPNN serves as an approximation of the network, the
match between their outputs is the essential information.

We worked with 15 neural networks of different structures
trained for 3 classification tasks originating in the Probenl
neural networks set of benchmarks [4]. The selected tasks
were Diabetes, Thyroid and Two Spiral. The referential neural
networks were constructed with respect to obtaining the set
of networks with different structures not too big for the
implementation in the selected FPGA, with no respect to their
classification capabilities irrelevant for the FPNNs approxima-
tion quality determination.

Table II contains the information about reference neural
networks. The Name column contains the network name
(which is derived from the particular network task), the Struc-
ture column describes the network structure as numbers of
neurons in each layer separated by the dashes. The Neurons
and Weights columns summarize the numbers of neurons and
weights of the network. The last column contains the number
of links of the particular FPNN. The number of activators is
equal to the numbers of neurons.

The experiments were run ten times and the best and the
worst results of the approximation are presented in table III.
Table III contains the approximation accuracy test results. The
Name column refers to the particular FPNN (and the reference
network), the Reduced best column contains the approximation
accuracy of the reduced type FPNN output. The best case
results are evident from this column. The Reduced worst
column contains the approximation accuracy of the worst case
results. It is the rate of the identically classified input vectors
by both the network and the FPNN. The the rate of match of
the Full FPNNs is 100%.

The created FPNNs were implemented using VHDL and
were synthesized using the Xilinx ISE 14.4 tool. The target
FPGA was the Xilinx Virtex-7 device xc7v2000t-2fig1925. All
computations were implemented in fixed point form with 8
bits of the integer part and 8 bits of the fractional part [8]. The
utilization of slice registers, slice LUTs, DSPs and minimum
recommended clock period after synthesis were measured. The
result are summarized in tables IV and V. The columns contain
the utilization of the particular FPGA resources in the form
of the total number and the percentual usage of the total
available resources. The last column contains the minimum
recommended clock period.

As the table III shows, the reduced FPNNs reached dif-
ferent levels of the approximation capabilities. Five of the
reduced FPNNs were approximating the original network with
the accuracy higher than 90 %. Three other FPNNs outreached
the level of 70 % accuracy. However, some FPNNs did not
cross the level of 50 % accuracy. The worst case results, which
were in most cases very different from the best case results,
were few times close to the 0% accuracy. These particular

TABLE II

THE LIST OF NEURAL NETWORKS AND THEIR

PROPERTIES
[Network name | Structure [Neurons | Weights | Links |
diabetes1 8-16-8-2 34 272 78
diabetes2 8-64-2 74 640 200
diabetes3 8-64-32-2 106 2624 294
diabetes4 8-32-32-2 74 1344 198
diabetes5 8-32-32-32-2 106 2368 292
diabetes6 8-96-2 106 960 296
diabetes7 8-16-32-16-2 74 1184 196
diabetes8 8-16-32-64-2 122 2816 340
diabetes9 8-16-32-16-32-16-2 122 2208 336
thyroid1 21-21-3 45 504 86
thyroid2 21-42-3 66 1008 149
thyroid3 21-63-3 87 1512 212
thyroid4 21-84-3 108 2016 275
thyroid5 21-21-42-21-3 108 2268 271
thyroid6 21-63-21-3 108 2709 273
twoSpiral 1 2-32-1 35 96 96
twoSpiral2 2-64-1 67 192 192
twoSpiral3 2-96-1 99 288 288
twoSpiral4 2-128-1 131 384 384
twoSpiral5 2-16-32-16-1 67 1072 188
twoSpiral6 2-16-32-48-1 99 2128 284
TABLE III. THE REDUCED FPNNS APPROXIMATION ACCURACY
[FPNN name | Reduced best [%] | Reduced worst [%] |
diabetes1 69.712 60.052
diabetes2 72.062 67.885
diabetes3 72.584 67.624
diabetes4 69.451 34.203
diabetesS 71.279 31.331
diabetes6 70.496 33.942
diabetes? 73.107 31.592
diabetes8 60.835 26.370
diabetes9 56.919 26.631
thyroid1 93.498 6.640
thyroid2 93.498 18.644
thyroid3 93.414 2.222
thyroid4 93.136 47.513
thyroid5 73.214 3.111
thyroid6 91.386 2472
twoSpirall 56.770 52.604
twoSpiral2 54.166 51.562
twoSpiral3 49.479 46.875
twoSpiral4 53.645 53.645
twoSpiral5 52.604 48.437
twoSpiral6 74.479 63.541

networks are unable to be approximated using the reduced
FPNN and the full FPNN is the only choice. These findings
show, how the mapping process is dependent on the concrete
situation, the concrete neural network and the set of its weights.
It shows that in some cases the mapping can be successful
and the particular neural network can be approximated with
the reduced FPNN, in other cases it is not possible. However,
only the basic mapping method was used in these experiments.
We developed a set of additional mapping methods which
could provide better results. We presented and compared these
methods and their optimizations in [6].

As the tables IV and V show, the results of the FPGA
resources utilization experiments differ in case of both FPNN
types. The slice registers consumption does not differ much,
other results however differ significantly. As expected, the
full FPNNs consume more resources than reduced FPNNs.
Considering the number of consumed LUTs, the difference is
in some cases only a few percent (diabetesl, twoSpirall). In
some other cases, the full FPNNs consume multiple number of
resources than their reduced equivalents (diabetes4, diabetes5,
thyroid2 and others). Also, full FPNNs consume multiple times
more DSPs than the reduced FPNNs. This was expected since
the multipliers are supposed to be more complex due to higher

TABLE IV. THE RESULTS OF THE SYNTHESIS OF THE REDUCED

FPNNs
[Name | Regs(%) | LUTs (%) [DSPs (%) | MinPer [ns] |
dabetes] | 4726 (0%) | 18235 (1%) | 182 (3%) 12.725
diabetes2 11165 (0%) 45604 (3%) 464 (21%) 12.725
diabetes3 16252 (0%) 67049 (5%) 686 (31%) 12.725
diabetes4 11229 (0%) 45908 (3%) 462 (21%) 12.725
diabetes5 17270 (0%) 69225 (5%) 684 (31%) 12.719
diabetes6 16254 (0%) 67405 (5%) 688 (31%) 12.725
diabetes7 6028 (0%) 23996 (1%) 238 (11%) 12.725
diabetes8 | 18865 (0%) | 77224 (6%) | 796 (36%) 12.725
diabetes9 | 18699 (0%) | 76614 (6%) | 792 (36%) 12.725
thyroid1 5738 (0%) 20059 (1%) 182 (8%) 12.725
thyroid2 9164 (0%) 33763 (2%) 329 (15%) 13.629
thyroid3 12538 (0%) 48346 (3%) 476 (22%) 12.725
thyroid4 15898 (0%) 62788 (5%) 623 (28%) 12.725
thyroid5 15763 (0%) 62679 (5%) 619 (28%) 12.738
thyroid6 15906 (0%) 61993 (5%) 621 (28%) 12.733
twoSpirall | 5217 (0%) | 21713 (1%) | 228 (10%) 12.725
twoSpiral2 | 10209 (0%) | 43543 (3%) | 452 (20%) 12.733
twoSpiral3 15201 (0%) 64994 (5%) 676 (31%) 12.745
twoSpiral4 20193 (0%) 85449 (6%) 900 (41%) 12.874
twoSpiral5 10329 (0%) 42877 (3%) 448 (20%) 12.725
twoSpiral6 15413 (0%) 63528 (5%) 672 (31%) 12.725
TABLE V. THE RESULTS OF THE SYNTHESIS OF THE FULL FPNNS
[Name | Regs (%) | LUTs (%) [DSPs (%) [MinPer [ns] |
diabetes| 5108 (0%) 29564 (2%) 376 (17%) 11.519
diabetes2 11530 (0%) 69785 (5%) 904 (41%) 20.312
diabetes3 18078 (0%) 392493 (32%) 2160 (100%) 37.806
diabetesd | 11536 (0%) | 111830 (9%) | 1608 (74%) 18.685
diabetes5 | 18630 (0%) | 325759 (26%) | 2159 (99%) 21.049
diabetes6 16618 (0%) 103702 (8%) 1352 (62%) 30.555
diabetes7 11460 (0%) 103727 (8%) 1448 (67%) 14.937
diabetes8 22166 (0%) 460280 (37%) 2159 (99%) 20.416
diabetes9 21418 (0%) 284021 (23%) 2159 (99%) 18.780
thyroid1 6780 (0%) 47190 (3%) 600 (27%) 11.519
thyroid2 13546 (0%) 132290 (10%) 1776 (82%) 13.402
thyroid3 | 13546 (0%) | 132290 (10%) | 1776 (82%) 13.400
thyroidd | 17594 (0%) | 215282 (17%) | 2159 (99%) 34575
thyroid5 18027 (0%) 286474 (23%) 2160 (100%) 16.469
thyroid6 18151 (0%) 391568 (32%) 2159 (99%) 17.423
twoSpirall 5311 (0%) 17672 (1%) 228 (10%) 11.519
twoSpiral2 10303 (0%) 35684 (2%) 452 (20%) 11.406
twoSpiral3 15295 (0%) 53188 (4%) 676 (31%) 19.025
twoSpirald | 20287 (0%) | 70903 (5%) 900 (41%) 25345
twoSpirals | 10393 (0%) | 93953 (1%) 1332 (61%) 14.937
twoSpiral6 17051 (0%) 223580 (18%) 2160 (100%) 18.481

number of weights in the full FPNNs. While links in the
reduced FPNNs contain usually up to three weights, the links
in full FPNNs can dispose of tens of weights. Reduced FPNNs
also can generally operate on higher clock frequencies.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the formal definitions of the FPNA/FPNN
concept were presented. The definitions of the new derived
types were introduced. The process of direct transformation of
the trained neural network to FPNN and the related algorithms
were described. The diagrams of the FPGA implementation
were presented. The experiments determining the approxima-
tion capabilities of different FPNNs of the reduced and the full
type were run and their results were presented in this paper.
The results show that in some cases, the reduced FPNN type
is capable of good approximation performance. However, this
depends on the concrete neural network and its weight values
and their combinations. Therefore, the reduced FPNN are not
suitable for all neural network implementations.

One of the main ideas of this paper was to show the
possible trade-off between neural network approximation ac-

curacy and the FPGA resources consumption. The experiments
showed that reduced FPNNs consume significantly less re-
sources than full FPNNs and that they are faster as well. On
the other hand, the reduced FPNNs offer limited approximation
accuracy compared to the accurate full FPNNs.

During the future research, we are going to perform ex-
periments using our more advanced mapping techniques to
increase the usability of reduced FPNNs as well as develop
new methods and optimizations. Also we are going to include
more types of neural networks into our research.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602, ARTEMIS JU under grant agreement no 641439
(ALMARVI) and BUT project FIT-S-14-2297.

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations
of Neural Networks, A. R. Omondi; J. C. Rajapakse, Springer US,
2006, ISBN 978-0-387-28487-3, pp. 71-123, http://dx.doi.org/10.1007/
0-387-28487-7-3

[2] Girau, B.: Digital hardware implementation of 2D compatible neural
networks. In Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IICNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, 2000, ISSN 1098-
7576, pp. 506-511 vol.3

[3] Girau, B.: On-chip learning of FPGA-inspired neural nets. In Neural
Networks, 2001. Proceedings. IJCNN ’01. International Joint Conference
on, 2001, ISSN 1098-7576, pp. 222-227 vol.1

[4] Prechelt, L. P.; Informatik, F. F.: — A Set of Neural Network Bench-
mark Problems and Benchmarking Rules. Technical report, Universitat
Karlsruhe; 76128 Karlsruhe, Germany, 1994.

[5] Krcma, M.: The neural networks acceleration in FPGA. Master’s thesis,
Faculty of Information Technology, Brno University of Technology;
Brno, 2014. https://wis.fit.vutbr.cz/FIT/st/rp.php/rp/2013/DP/15754.pdf

[6] KRCMA Martin, KASTIL Jan a KOTASEK Zdenek: Mapping trained
neural networks to FPNNs. In: IEEE 18th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems. Belgrade:
IEEE Computer Society, 2015, pp. 157-160. ISBN 978-1-4799-6779-7.

[71 Krema, M.; Kotasek, Z.; Kastil, J.: Fault tolerant Field Programmable
Neural Networks. In Nordic Circuits and Systems Conference (NORCAS):
NORCHIP International Symposium on System-on-Chip (SoC), 2015, Oct
2015, pp. 1-4, 10.1109/NORCHIP.2015.7364381.

[8] Holt, J.; Baker, T.: Back propagation simulations using limited precision
calculations. In Neural Networks, 1991., IICNN-91-Seattle International
Joint Conference on, volume II, July 1991, pp. 121 —126 vol.2.

[9]1 Munakata, T.: Neural Networks: Fundamentals and the Backpropagation
Model. In Fundamentals of the New Artificial Intelligence, editace T. Mu-
nakata, Texts in Computer Science, Springer London, 2007, ISBN 978-1-
84628-839-5, pp. 7-36, http://dx.doi.org/10.1007/978-1-84628-839-5--2

[10] Bohrn, M.; Fujcik, L.; Vrba, R.: Field Programmable Neural Array for
feed-forward neural networks. In 2013 36th International Conference on
Telecommunications and Signal Processing (TSP), 2013, pp. 727-731

[11] Harkin, J.; McDaid, L.; Hall, S.: Programmable architectures for large-
scale implementations of Spiking Neural Networks. In IET Irish Signals
and Systems Conference (ISSC 2008), June 2008, ISSN 0537-9989, pp.
374-379

[12] Harkin, J.; Morgan, F.; Hall, S.: Reconfigurable platforms and the
challenges for large-scale implementations of spiking neural networks.
In 2008 International Conference on Field Programmable Logic and
Applications, Sept 2008, ISSN 1946-147X, pp. 483-486

[13] Kwan, H.: Simple sigmoid-like activation function suitable for digital

hardware implementation. Electronics Letters, 1992: pp. 1379-1380.
http://link.aip.org/link/?ELL/28/1379/1

