
Summary report of Avast Scholar program

Marek Milkovič

February 1, 2018

1 Introduction

This paper summarizes the work and progress
in Avast Scholar program lead by Avast Soft-
ware at Faculty of Information Technology,
Brno University of Technology during the
year 2017.

Since Avast Scholar program started, one
paper with title Extraction of Information
from .NET Executables Files [7] was pub-
lished at International Masaryk Conference
2017 [3]. This summary report shortly de-
scribes what was the paper about and where
is the further research heading.

2 Research

Research in Avast Scholar program and my
PhD thesis is focused on extraction of infor-
mation from binary files and creation of de-
tection patterns our of the extracted features.
After the initial research and the consultation
with the supervisor we have diceded to start
with the extraction of information from .NET
executable files.

3 .NET

In the chapter, we briefly describe the paper
Extraction of Information from .NET Exe-
cutables Files that we published.

3.1 Motivation

The occurrence of malicious software writ-
ten in .NET languages is rapidly increasing.
Extracting the information out of .NET exe-
cutable file is therefore necessary step in or-
der to fight against this kind of malware [7].
We can do various things with the extracted
information like clustering, creation of detec-
tion patterns and many more.

There are currently multiple sources that
deals with how data types are encoded in
.NET executable files such as official doc-
umentation of CIL (Common Intermediate
Language) [2] or unofficial documentation in
form of book .NET IL Assembler [5]. How-
ever, there are no sources which deal with
type reconstruction.

From the analytical software point of view,
there are many .NET disassembler which per-
form type reconstruction such as dnlib [1],
monodis [8] and ikdasm [4]. Their problem

1



mostly lies in their unreliability when deal-
ing with obfuscated and packed executable
files because they tend to crash on such files.
They are also written in C# and therefore
require .NET runtime to be present on the
system so they cannot be integrated into
C/C++ toolset. Another problem is that we
cannot be sure how these third party tools
load executable files into memory. If they are
not loaded in reflection-only mode then ac-
cidental execution of the potentially harmful
code may happen.

In the paper, we present methods which
address all these problems and solve them.

3.2 File format

Despite that .NET executable files are stored
in PE (Portable Executable) [6] file format
which is also used for the native applications,
we need to approach it different way. Some of
the properties which are prevalent for native
application can be neglected in case of .NET
executables such as import table. Basic lay-
out of PE format is shown in Figure 1.

...

Section 1

Section Table

PE Header

DOS (MZ) Header

Section N

Figure 1: Structure of executable file in PE
format [7].

PE header contains pointer to the struc-
ture which is called CLR (Common Language
Runtime) data directory that further points
to the so called streams. Every single stream
contains different kinds of data based on its
name. The most interesting stream for us is
metadata stream, denoted by name #~, which
contains various tables. These tables describe
.NET data types such as classes, methods, at-
tributes, properties and many others. Hierar-
chy of these structures is depicted in Figure 2.

CLR

header

Metadata

header

Blob

stream

GUID

stream

Metadata

stream

String

stream

US

stream

TypeDef

table

TypeRef

table
...

Figure 2: Hierarchy of structures for .NET
executable file [7].

3.3 Extracted features

We propose methods to extract various kinds
of types out of .NET executable files:

• Classes

• Methods

2



• Properties

• Fields

• TypeLib identifier

• Module Version identifier

Because of their complexity, methods to
extract all of these features is not going to
be mentioned in the summary report. You
can look them up in the published paper.

3.4 Results

We implemented proposed methods in C++
as part of tool fileinfo, which is developed
by Avast Software as part of open-source
project RetDec [9].

We then compared out implementation
with other .NET disassemblers. The interest-
ing for us was robustness when dealing with
corrupted, packed or obfuscated binaries. We
have downloaded 100 000 appropriate sam-
ples from VirusTotal [10] and evaluated the
results on this set. Results can be seen in
Table 1.

Table 1: Success rate results.

Errors Crashes Timeouts

fileinfo 0 0 1

monodis 905 47042 6

ikdasm 9342 149 192

We have also focused on the performance
and therefore compared the running time
of fileinfo with different implementations.
Running time means how long were tests ac-
tually running on all 100,000 samples. Total

time is sum of all durations of every single
instance of tested program.

Table 2: Performance results.

Running

time

Total

time

fileinfo 6m 45s 9h 45m 56s

monodis 1m 47s 1h 47m 12s

ikdasm 26m 36s 1d 13h 46m 26s

4 Conclusion

In our research of .NET executable files, we
have proposed robust methods to extract dif-
ferent kinds of information. We have imple-
mented them, compared with the existing so-
lutions, achieving better results than them.
The paper was accepted and published at In-
ternational Masaryk Conference 2017. We
are still continuing with the research, trying
to find new features that can be extracted
and could be used for malware detection. We
are also researching methods to build detec-
tion patterns out of extracted features.

References

[1] 0xd4d/dnlib: dnlib is a library that can
read, write and create .NET
assemblies and modules.
https://github.com/0xd4d/dnlib.
[online; 01-02-2018].

3



[2] ECMA International.
Standard ECMA-335 - Common
Language Infrastructure (CLI).
https://www.ecma-international.

org/publications/files/ECMA-

ST/ECMA-335.pdf.
[online; 01-02-2018]. June 2012.

[3] International Masaryk Conference for
Ph.D. Students and Young
Researchers. http:
//www.masarykovakonference.cz/.
[online; 01-02-2018].

[4] jfrijters/ikdasm: Managed.Reflection
based ildasm clone. https:
//github.com/jfrijters/ikdasm.
[online; 01-02-2018].

[5] S. Lidin. .NET IL Assembler.
Apress, 2014.

[6] Microsoft. PE Format.
https://msdn.microsoft.com/en-

us/library/windows/desktop/

ms680547(v=vs.85).aspx.
[online; 01-02-2018].

[7] M. Milkovič.
Extraction of Information from .NET
Executable Files. Sborńık př́ıspěvk̊u
Mezinárodńı Masarykovy konference
pro doktorandy a mladé vědecké
pracovńıky 2017. Dec. 2017.

[8] mono/mono: Mono open source
ECMA CLI, C# and .NET
implementation.
https://github.com/mono/mono.
[online; 01-02-2018].

[9] Retargetable Decompiler.
https://retdec.com/.
[online; 01-02-2018].

[10] VirusTotal - Free Online Virus,
Malware and URL Scanner.
https://www.virustotal.com/en/.
[online; 01-02-2018].

4


