
572168-2356/17 © 2017 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2018

Predictability Analysis
of Interruptible Systems
by Statistical Model
Checking

 Predictability is one of the most important
attributes of many systems. The problem is that a
designer of a predictable system must face many
sources of unpredictability. Among others, they
result from detecting an event through interrupts.
The main advantage of such a detection is that no
CPU time is consumed regarding an event until the
corresponding interrupt is triggered. Although this
may not be so, the effects of interrupts may look like
random variables, elimination of which is not pos-
sible in practice. However, if we analyze a system
carefully then we can bound the effects.

To facilitate the analysis at a higher level of abstrac-
tion, we need sufficiently precise and credible infor-
mation from lower levels. In particular, the analysis
of real-time (RT) systems is simplified if the values
of parameters such as the best-case execution time

(BCET), worst-case exe-
cution time (WCET) or
worst-case response time
(WCRT) are available. In
the area of RT systems,
many techniques exist for
evaluating the parameters
analytically. Typically, the
techniques restrict them-
selves to systems with

periodic behaviors. However, perfect periodicity does
not exist in practice, which results in two way-outs.
The first one extends the periodic perspective by con-
cepts such as sporadic servers, allowing us to analyze
the parameters statically by analytical instruments. The
second wayout lies in using a real platform, its credible
simulator, emulator, etc., for analyzing the parameters
dynamically.

Due to the complexity of the predictability analysis
problem, this manuscript restricts itself only to issues
in the digital CPU-based systems that are driven by
events initiated by interrupts. Predictability of these
systems is difficult to analyze, especially when inter-
rupts are prioritizable, may be nested or unmasked
at runtime. Moreover, an interrupt may occur at an
arbitrary time, asynchronously to a program that the
CPU executes. The facts lead to an explosion of situa-
tions entering the analysis process. If the analysis rests
on the simulation over a credible model of a system,
then the number of states needed to represent and

Digital Object Identifier 10.1109/MDAT.2017.2766568

Date of publication: 25 October 2017; date of current version:

23 March 2018.

Josef Strnadel
Faculty of Information Technology, Centre of
Excellence IT4Innovations, Brno University of
Technology

Editor’s note:
This article proposes a model comprising of a network of stochastic timed
automata for predictability analysis of interruptible systems via statistical
model checking.

—Tulika Mitra, National University of Singapore
—Jürgen Teich, Friedrich-Alexander-Universität Erlangen-Nürnberg

—Lothar Thiele, ETH Zurich

58 IEEE Design&Test

Time-Critical Systems Design

analyze the system accurately may easily exceed the
amount of available computational resources [1].

This manuscript addresses some challenges of
both creating such a model and its application for
predictability analysis purposes. To the best of my
knowledge, this manuscript is the first one that
addresses the challenges in such a complex form.

Toward the problem
The following paragraphs present key issues that

relate to interrupts. Without any loss of generality,
they only focus on a single-CPU system.

Principles
For simplicity, let us assume that the CPU is

either disabled or continuously busy by processing
instructions. This manuscript distinguishes three
classes of the CPU business, based on the execution
level. In Figure 1, the symbols Lmain, Lctx, and Lisr indi-
cate the levels. A dotted area indicates the period
of time in which the CPU is busy due to executing
instructions at the given level. The illustration starts
at Lmain where the CPU processes instructions from
the main program loop, “main( )” in brief. While
executing part (1) of main( ), an interrupt request
(IRQ) may occur at tIRQ. However, this may happen
under various scenarios, where each one delays a
reaction to the IRQ. Examples of such scenarios are
the masking of the IRQ or the start of processing an
instruction. After such a scenario is over, the level
switches to Lctx, starting the process (2) of saving
the CPU’s state/context onto the stack (“stacking”).
The process typically ends by disabling all maskable
interrupts and then consecutive arbitration of IRQs
that are pending at that moment. The arbitration
fetches the vector of the highest-priority pending
IRQ and puts it into the program counter (PC) of the

CPU. The placement starts the associated interrupt
service routine (ISR) at Lisr.

An ISR may be started by a prologue (3) able to
perform actions such as running an ISR-entry code for
an operating system (OS). Then, the service itself runs
within (4)–(6), followed by an epilogue (7) running
an ISR-exit code. The levels Lctx, Lisr may nest (embed)
in a recurrent way; particularly, if an IRQ of a suffi-
ciently high priority becomes enabled in (4), then the
execution of (4) at Lisr stops during (5). The stop is an
effect of nesting of further levels Lctx, Lisr of higher prior-
ity between (4) and (6) of lower priority. After an ISR
is completed, the CPU context typically switches back
(8) to the state before entering the ISR (“unstacking”).
Some of the principles may vary if the nesting of ISRs
is off or interrupts are subject to techniques such as
tail-chaining or late-arriving in ARM Cortex.

Issues and perspectives
Figure 1 clarifies the following issues regard-

ing interrupts. First, the CPU processes IRQs prior
to main( ), resulting in stopping the execution of
main( ) during processing an IRQ. Second, the pro-
cessing is not immediate, but delayed due to mech-
anisms such as executing an instruction, masking of
interrupts, stacking of the CPU context or nesting of
ISRs. Third, each level of stacking or nesting needs
a memory to store the CPU context or local data of
the ISR. Finally, an IRQ may occur anytime and the
priority of a nonmaskable interrupt (NMI) is typically
one of the highest ones.

From the practical point of view, the following
perspectives are important. Each of them concen-
trates on various attributes of predictability. The
first one relates to time the CPU spends by execut-
ing main( ) under the given interrupt scenario. The
time decreases with factors such as interarrival rate
of interrupts (finterrupt) or the duration of ISRs. If a fac-
tor exceeds a certain level, then a system may stop
working correctly or collapse suddenly. Such an
excess is typically denoted as the interrupt overload
(IOV) problem, the seriousness of which grows with
the criticality of main( ). The second perspective
relates to ISRs, for which the inter rupt response and
interrupt service times are particularly important.
The third one relates to the dynamics of utilizing a
random access memory. It typically focuses on ana-
lyzing the worst-case utilization of stacks or buffers.

The model proposed in this manuscript is able to
cope with all of the issues and perspectives.Figure 1. Interrupt-related mechanisms.

59March/April 2018

State of the art
Various mechanisms of increasing predictability

under scenarios such as IOV exist. Many of them try
to increase it by preventing finterrupt from exceeding
the critical level [2]. In our previous research [3],
we dealt with the modeling and analysis of the pre-
ventive mechanisms as well. But our approach has
not reflected facts such as NMIs or variability in
executing ISRs. Under such facts, the predictability
analysis remains a problem despite all of the mech-
anisms. Similar limitations can be found in existing
approaches as well. For example, Chattopadhyay
et al. [4] analyzed the predictability of a system
under disabled interrupts. Further approaches, such
as [5] and [6], limit themselves to a simplified static
model of a system and analytical solution of the
problem. In particular, they support just periodic
interrupts, no nesting of ISRs, no execution jitters,
no un/masking, no priorities, and no arbitration of
IRQs at the runtime. Kidd et al. [7] expect that an
IRQ cannot occur anytime, but after the so-called
hyperperiod. Contrary to that, the approach in [8]
supposes that an IRQ arrives whenever an instruc-
tion is completed. Finally, Kroening et al. [9] con-
sider nesting and priorities of interrupts, but did not
deal with the unpredictability of IRQ arrival times,
un/masking of interrupts at the runtime and variabil-
ity in executing ISRs.

Proposed approach
This section outlines the applicability of the pub-

licly available toolset UPPAAL SMC [10] with respect
to the modeling a system from the interrupt perspec-
tive and its analysis from the predictability view-
point. The toolbox allows us to create a model of an
RT system on the basis of stochastic timed automata
(STAs) and to analyze its properties in the given sto-
chastic environment. To check whether a property
holds or not, UPPAAL SMC applies the so-called
statistical model checking (SMC) technique. SMC
monitors simulation runs over a model in order to
process them statistically. This continues until the
probability of satisfying a specified property meets
the predefined degree of confidence.

Works such as [11] show that methods based on
SMC easily scale to industrial size systems. These
works conclude that the methods scale logarithmi-
cally in the size of the analyzed models and that they
are trivially parallelizable and still scale sublinearly
in the time domain.

Models
For the predictability analysis purposes, we have

proposed a set of STA models (Figure 2) that are

related to the following parts of a system: a) CPU,

b) IRQ controller, c) ISR, and d)–f) IRQ sources.

Each of them is parameterizable and represents

a template that may be instantiated many times.

Despite our models comprise components such as

pipelines and caches, we skip further details to the

Figure 2. Proposed STA models of a) CPU, b) IRQ
controller, c) ISR, and d)–f) IRQ sources.

60 IEEE Design&Test

Time-Critical Systems Design

components as their presentation is beyond the
scope of this manuscript. For more details, refer to [12].

The model of a CPU (Figure 2a, parameter “cpu”)
starts in its initial location (“instrStart”) where it pre-
pares for fetching an instruction of main( ). Then,
either of the transitions “tr-cpu-main,” “tr-cpu-bypass”
is fired before transiting to “instrEnd.” A pending
IRQ is detected by the function “isr_pend( ).” If no
IRQ is pending (“tr-cpu-main”), then the process of
fetching an instruction starts, which ends by entering
“main.” The model stays here until the instruction is
completed, which takes “twork” units of time. In fact,
“twork” is a random variable with the uniform distri-
bution of probability within [1,10). Otherwise, if an
IRQ is pending, no fetching starts (“tr-cpu-bypass”).
In “instrEnd,” two situations may occur depending
on whether an IRQ is pending (“tr-cpu-irq”) or not
(“tr-cpu-noirq”). During “tr-cpu-irq,” the CPU sends
a message (“irqRdy[cpu]!”) to the corresponding
IRQ controller to let it consume the CPU time for IRQ
processing purposes. In “irqPend,” the model stays
while a pending IRQ exists.

The model of an IRQ controller (Figure 2b, param-
eter “cpu”) starts in “noIRQ.” Here, it stays until the
corresponding CPU agrees to process an IRQ. Then
it moves to “exeStop” with the two outgoing tran-
sitions. The first one (“tr-int-main”) represents the
interruption at a level corresponding to main( ).
As the execution of main( ) is already stopped, no
action is associated with the transition. The second
transition (“tr-int-isr”) relates to the interruption at
the level corresponding to an ISR. Here, the actual
ISR must stop (“isr_stop[cpu]!”) as an ISR of a more
significant priority, represented by a lower numerical
value, is pending. Then, the model moves to “ctxSt0”
where the stacking starts. After “T_CTX_ST” units
of time, the stacking is completed (“ctxStl”). Then,
the CPU sets the global interrupt mask (“maskSet”),
arbitrates pending IRQs (“arbitrate( )”), fetches the
vector of the ISR that has won the arbitration, and
finally, starts the ISR (“tr-isr-start”).

The model of an ISR (Figure 2c) has four param-
eters (“cpu,” “id,” “bcet,” and “wcet”), where “id”
is a unique identifier of the corresponding source
of IRQs; “bcet” and “wcet” are the best-case and
worst-case execution times of the ISR, respectively.
The model uses the local clocks “texe” and “tserv”
to measure the execution and servicing times of an
ISR, respectively. The model starts in “noIrq,” where
it waits until it receives a signal to start the ISR. Until

then, neither of the clocks “texe,” “tserv” measures
time. Afterward, the model increments the CPU’s
level of nesting executions due to ISRs performs
the prologue of the ISR and enters “service.” Here
it consumes the CPU time, the amount of which
ranges from “bcet” to “wcet.” Implicitly, the model
allows the nesting of ISRs. So, if a higher-priority IRQ
becomes pending, then the servicing stops (“stop”)
until it receives the signal to start again. By then the
ISR does not consume the CPU time, so the meas-
urement using “texe” stops too. But “tserv” still runs
to measure how much time the ISR spends in the
“stop.” From “service,” the model moves to “done” in
which the measurement using “texe,” “tserv” stops.
Then the return from an ISR starts (“tr-isr-ret”) by the
unstacking and consequent resumption of either
main( ) or a lower-priority ISR.

Finally, we have created models of vari-
ous sources of interrupts. Their representatives
(Figure 2d–f) include a maskable periodic IRQ
from a timer (TMR), unmaskable aperiodic IRQ
from a software interrupt (SWI), and maskable
aperiodic IRQ from a keyboard interface (KBI).
The model of an IRQ source has three parameters
(“cpu,” “id,” and “T”), where “id” is a unique iden-
tifier of the IRQ and “T” defines the interarrival
time of the IRQ. IRQs from TMR arrive exactly after
“T” units of time. For KBI, they are uniformly dis-
tributed in the interval [“T,” “10×T”). For SWI, the
distribution is given by a user-defined “delay( )”
function that returns a random number given by
the normal distribution of probability. This is made
possible by using the stopwatch concept, details
of which follows. First, “delay( )” returns the time
to produce a new IRQ. The (final) time captures
into the clock “tfin.” Then the model moves to
“dly,” where it waits until the clock “t” reaches
“tfin” (“tfin” will stop until then). The function
“new_irq(cpu, id)” simply sets the request for the
given CPU and IRQ sources.

Scenarios
Applicability of our models is demonstrated by

the four scenarios. For each of them, properties of
the models are analyzed by various SMC means.
The implicit setup represents the scenario Sc(0),
denoted by Sc(0)/N+ as well (“N+” means that
the nesting of ISRs is allowed). Further scenarios
(Sc(0)/N-, Sc(1), Sc(2)) result from modifications of
Sc(0) that are emphasized in the next paragraphs.

61March/April 2018

In all the scenarios, both the CPU and IRQ control-
lers are instantiated by “cpu=0.”

Using the templates from Figure 2d–f, Sc(0) instan-
tiates the four sources of IRQs: SWI0, TMR1, TMR0,
and KBI0. Their priorities are fixed and their values
are 1 (the most significant) for SWI0, 3 for TMR1, 4 for
TMR0, 7 (the least significant) for KBI0. The priority
of main( ) is set to 8. Masking of IRQs is possible just
for TMR1, TMR0, and KBI0. After the CPU resets, all
maskable IRQs are disabled. Parameters of the IRQ
sources are as follows: SWI0 (cpu=0, id=1), TMR1
(cpu=0, id=3, T=500), TMR0 (cpu=0, id=4, T=1000),
and KBI0 (cpu=0, id=7, T=50), with the results shown
in Figure 3a–d. In relation to SWI0, “delay( )” returns
a random number of the normal distribution of prob-
ability with its mean set to 500 and the standard devi-
ation of 50. Parameters of the corresponding ISRs
are also adjusted so: SWI0 (cpu=0, id=1, bcet=35,
wcet=35), TMR1 (cpu=0, id=3, bcet=170, wcet=230),
TMR0 (cpu=0, id=4, bcet=250, wcet=250), and KBI0
(cpu=0, id=7, bcet=95, wcet=120). For the constants,
it holds DLY=1, EXE_HPRI=0, EXE_LPRI=8, T_CTX_
ST=5, TCTX_LD=5, CTX_BYTES=6, STK_SIZE=256.
Implicitly, the analysis has been performed within
25,000 µs.

In all the scenarios, main( ) calls an initiali-
zation subroutine, the execution of which takes
1000 µs. Then, it enters the infinite loop, an itera-
tion of which operates as follows. If the time equals
to 1100 µs, then the IRQ mask for KBI0 is cleared.
100 µs later, the mask for TMR0 is cleared and after
100 µs, the mask for TMR1 is cleared. 500 µs later,
masks for TMR1 and TMR0 are set up again along
with the CPU’s mask. In 200 µs, the mask for TMR0
is cleared while the mask for KBI0 is set up and the
CPU’s mask is cleared. 100 µs later, the mask for
TMR1 is cleared, the iteration ends, and the time
is reset. For the resulting dynamics, see Figure 3e.
Details of the stack manipulation are as follows. In
main( ), the probability of calling or returning from
a subroutine by the corresponding instruction is
25%. Each such a call or return adds two bytes to
the stack or removes them from the stack, respec-
tively. The stack sizes (in bytes) for particular
ISRs are as follows: 8 for SWI0, 16 for TMR1, 24 for
TMR0, and128 for KBI0. Such a space is allocated or
released after the corresponding ISR starts or before
it ends, respectively.

Scenarios Sc(0)/N-, Sc(1), and Sc(2) result from
Sc(0) as follows. Comparing Sc(0), Sc(0)/N- does not

allow ISRs to nest. Sc(1) decreases both the mean
and deviation in SWI0’s delay( ) function (Figure 2d)
10 times. This allows IRQs from SWI0 to arrive more
frequently. Finally, Sc(2) decreases “bcet,” “wcet”
of ISRs for TMR1, TMR0, respectively, 10 times. This
allows the ISRs to finish sooner.

Queries and results
Regarding the perspectives mentioned at the

end of “Issues and perspectives,” this section tries
to demonstrate that our approach is capable of
solving practical problems. Despite the generality
of the approach, this section is just limited to some
representatives of the problems. For a given scenario
(“Scenario”), each of the problems relates to an anal-
ysis of the property/attribute that is important from
the predictability viewpoint. Such an analysis may
be related to the CPU load due IRQs, stack utiliza-
tion, interrupt service, and latency times or through-
put of produced/serviced IRQs. Details of such an
analysis are shown in Figure 4.

Figure 4a results from the SMC query “simulate 1
[<=25,000] 100.0*(t_main[0]/t),” where 1 represents
the number of simulation runs, 25,000 represents

Figure 3. PDFs of the IRQ arrival times for
particular IRQ sources (a–d) and a cutout of
selected 2500 ms-wide waveforms resulting from
a single simulation (e).

62 IEEE Design&Test

Time-Critical Systems Design

the maximum value of the simulation time and
“t_main[0]” and “t” represent the time spent by the
CPU, indexed by 0, in main( ) and the total time that
has elapsed, respectively. It shows that turning the
nesting of ISRs on or off has a negligible impact to
the observed attribute, while an impact of SC(1),
SC(2) is significant.

Figure 4b results from the SMC query
“E[<=25,000; 10] (max: isrSP[0])” capable of finding
the maximum increment of the CPU’s stack pointer
(isrSP[0]). It evaluates both the maximum within 10
simulation runs, each taking 25,000 µs, and the prob-
ability of reaching the maximum. The results show
that the maximum is lower under Sc(0)/N-, Sc(1)

and that the probability of reaching the maximum is
smaller for Sc(1) and Sc(2).

Figure 4c results from the SMC queries “E[<=25,000;
10] (max: X.tserv),” “E[< =25,000; 10] (min: X.tserv),”
where X represents one of SWI0, TMR1, TMR0, and
KBI0. It shows that, for lower-priority IRQs, the time
is prolonged significantly under Sc(0) and yet more
under Sc(1).

Figure 4d results from the measuring time
between ith occurrence of an IRQ and starting the
corresponding ISR of that IRQ. A special STA must
exist for that purpose and an instance of the STA
must be created dynamically, after an IRQ occurs.
As further explanation of the concept needs many
illustrations and comments, it is omitted.

Figure 4e results from the SMC query “E[<=25,000; 10]
(max: numIRQs[0]),” where numIRQs[0] represents
the number of IRQs that has arrived to the CPU till a
particular instant.

Figure 4f results from the SMC queries
“E[<=25,000; 10] (min: 100.0*numberOfDoneISRs/
numberOfIRQs),” “E[<=25,000; 10] (max: 100.0*num-
berOfDoneISRs/numberOfIRQs),” sequentially applied
to the associated sources of IRQs (SWI0, KBI0, all).
It shows that, for KBI0, the observed ratio changes
significantly under Sc(0).

Figure 4g illustrates the scalability of our approach
(mean memory and mean time consumed during
the process of checking SMC queries, respectively)
as a function of the number of interrupt sources.
Even though the number of interrupt sources in
today’s systems typically does not exceed 256, we
have analyzed the scalability up to 4096 interrupt
sources. The figure shows that, approximately, our
approach scales sublinearly in the memory domain
and linearly in the time domain.

This paper presents a novel model of an inter-
rupt-driven CPU-based system. Its novelty relies on
stochastical timed automata, which allows us to
model sources of unpredictability not covered by
existing approaches. The manuscript shows that by
means of a statistical model checker, it is possible
to handle a variety of aspects with respect to ana-
lyzing predictability under various scenarios. Such
an approach is capable of facilitating the analysis
of parameters such as interrupt latency or interrupt
servicing time and minimizing the over/underesti-
mation of their values.� 

Figure 4. Results of analyzing predictability of
selected properties attributes under various
scenarios. a) The CPU time spent by executing the
main program loop. b) Maximum utilization of the
stack. c) Jitter of interrupt service times. d) Interrupt
latency jitter. e) Maximum number of interrupt
requests. f) Jitter of the percentage of serviced
interrupt requests. g) Scalability of the proposed
approach in memory and time domains.

63March/April 2018

Acknowledgments
This paper was supported by The Ministry of Edu-

cation, Youth and Sports of the Czech Republic from
the National Programme of Sustainability (NPU II);
project IT4Innovations excellence in science - LQ1602.

 References
	 [1]	 C. Baier and J. P. Katoen, Principles of Model

Checking, Cambridge, UK: MIT Press, May 2008.

	 [2]	 J. Regehr and U. Duongsaa, “Preventing interrupt

overload,” SIGPLAN Not., vol. 40, no. 7, pp. 50–58,

2005.

	 [3]	 J. Strnadel and M. Risa, “On analysis of software

interrupt limiters for embedded systems by means

of UPPAAL SMC,” in Proc. Austrochip Workshop

Microelectronics (Austrochip), Villach, Austria,

Oct. 2016, pp. 45–50.

	 [4]	 S. Chattopadhyay, M. Tresina, and S. Narayan, “Worst

case execution time analysis of automotive software,”

Procedia Engineering, vol. 30, pp. 983–988, 2012.

	 [5]	 J. Kotker, D. Sadigh, and S. A. Seshia, “Timing

analysis of interrupt-driven programs under context

bounds,” in Proc. Formal Methods Comput. Aided Des.

(FMCAD), Austin, TX, USA, Oct. 2011, pp. 81–90.

	 [6]	 L. E. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz,

“Integrated task and interrupt management for real-

time systems,” ACM Trans. Embed. Comput. Sys.,

vol. 11, no. 2, pp. 32:1–32:31, 2012.

	 [7]	 N. Kidd, S. Jagannathan, and J. Vitek, “One stack

to run them all: reducing concurrent analysis to

sequential analysis under priority scheduling,” in Proc.

Int. SPIN Conf. Model Checking Software, Enschede,

The Netherlands, Sept. 2010, pp. 245–261.

	 [8]	 X. Wu, Y. Wen, L. Chen, W. Dong, and J. Wang, “Data

Race detection for interrupt-driven programs via

bounded model checking,” in Proc. IEEE Int. Conf.

Software Security Reliab. Companion, Gaithersburg,

MD, USA, 2013, pp. 204–210.

	 [9]	 D. Kroening, L. Liang, T. Melham, P. Schrammel,

and M. Tautschnig, “Effective verification of low-level

software with nested interrupts,” in Proc. 2015 Des.

Autom. Test Europe Conf. Exhibition, Dresden,

Germany, 2015, pp. 229–234.

	[10]	 A. David, K. Larsen, A. Legay, M. Mikuionis, and

D. Poulsen, “Uppaal SMC Tutorial,” Int. J. Software

Tools Tech. Transfer, vol. 17, no. 4, pp. 397–415, 2015.

	[11]	 J. H. Kim, A. Boudjadar, U. Nyman, M. Mikucionis,

K. G. Larsen, and I. Lee, “Quantitative schedulability

analysis of continuous probability tasks in a

hierarchical context,” in Proc. 2015 18th Int. ACM

SIGSOFT Symp. Component-Based Software Eng.

(CBSE), Montréal, QC, Canada, May 2015, pp. 91–100.

	[12]	 A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen,

and K. G. Larsen, “METAMOC: Modular execution time

analysis using model checking,” in 10th International

Workshop on Worst-Case Execution Time Analysis

(WCET 2010), B. Lisper, Ed. Dagstuhl, Germany:

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2010, pp. 113–123.

Josef Strnadel is an Assistant Professor at
the Centre of Excellence IT4Innovations, Faculty
of Information Technology, Brno University of
Technology, Brno, Czech Republic. His research
interests include the dependability of embedded
and real-time systems. He has a PhD in information
technology from the Brno University of Technology.

 Direct questions and comments about this article
to Josef Strnadel, Brno University of Technology,
Brno, Czech Republic; e-mail: strnadel@fit.vutbr.cz.

