
Approximate Reduction of Finite
Automata for High-Speed Network

Intrusion Detection

Milan Češka, Vojtěch Havlena, Lukáš Hoĺık, Ondřej Lengál(B),
and Tomáš Vojnar

FIT, IT4Innovations Centre of Excellence,
Brno University of Technology,

Brno, Czech Republic
lengal@fit.vutbr.cz

Abstract. We consider the problem of approximate reduction of non-de-
terministic automata that appear in hardware-accelerated network intru-
sion detection systems (NIDSes). We define an error distance of a reduced
automaton from the original one as the probability of packets being incor-
rectly classified by the reduced automaton (wrt the probabilistic distri-
bution of packets in the network traffic). We use this notion to design
an approximate reduction procedure that achieves a great size reduction
(much beyond the state-of-the-art language preserving techniques) with
a controlled and small error. We have implemented our approach and eval-
uated it on use cases from Snort, a popular NIDS. Our results provide
experimental evidence that the method can be highly efficient in practice,
allowing NIDSes to follow the rapid growth in the speed of networks.

1 Introduction

The recent years have seen a boom in the number of security incidents in com-
puter networks. In order to alleviate the impact of network attacks and intru-
sions, Internet providers want to detect malicious traffic at their network’s entry
points and on the backbones between sub-networks. Software-based network
intrusion detection systems (NIDSes), such as the popular open-source system
Snort [1], are capable of detecting suspicious network traffic by testing (among
others) whether a packet payload matches a regular expression (regex) describing
known patterns of malicious traffic. NIDSes collect and maintain vast databases
of such regexes that are typically divided into groups according to types of the
attacks and target protocols.

Regex matching is the most computationally demanding task of a NIDS as its
cost grows with the speed of the network traffic as well as with the number and
complexity of the regexes being matched. The current software-based NIDSes
cannot perform the regex matching on networks beyond 1 Gbps [2,3], so they
cannot handle the current speed of backbone networks ranging between tens and
hundreds of Gbps. A promising approach to speed up NIDSes is to (partially)
c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 155–175, 2018.
https://doi.org/10.1007/978-3-319-89963-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_9&domain=pdf

156 M. Češka et al.

offload regex matching into hardware [3–5]. The hardware then serves as a pre-
filter of the network traffic, discarding the majority of the packets from further
processing. Such pre-filtering can easily reduce the traffic the NIDS needs to
handle by two or three orders of magnitude [3].

Field-programmable gate arrays (FPGAs) are the leading technology in high-
throughput regex matching. Due to their inherent parallelism, FPGAs pro-
vide an efficient way of implementing nondeterministic finite automata (NFAs),
which naturally arise from the input regexes. Although the amount of avail-
able resources in FPGAs is continually increasing, the speed of networks grows
even faster. Working with multi-gigabit networks requires the hardware to use
many parallel packet processing branches in a single FPGA [5]; each of them
implementing a separate copy of the concerned NFA, and so reducing the size
of the NFAs is of the utmost importance. Various language-preserving automata
reduction approaches exist, mainly based on computing (bi)simulation relations
on automata states (cf. the related work). The reductions they offer, however,
do not satisfy the needs of high-speed hardware-accelerated NIDSes.

Our answer to the problem is approximate reduction of NFAs, allowing for
a trade-off between the achieved reduction and the precision of the regex match-
ing. To formalise the intuitive notion of precision, we propose a novel probabilistic
distance of automata. It captures the probability that a packet of the input net-
work traffic is incorrectly accepted or rejected by the approximated NFA. The
distance assumes a probabilistic model of the network traffic (we show later how
such a model can be obtained).

Having formalised the notion of precision, we specify the target of our reduc-
tions as two variants of an optimization problem: (1) minimizing the NFA size
given the maximum allowed error (distance from the original), or (2) minimizing
the error given the maximum allowed NFA size. Finding such optimal approx-
imations is, however, computationally hard (PSPACE-complete, the same as
precise NFA minimization).

Consequently, we sacrifice the optimality and, motivated by the typical struc-
ture of NFAs that emerge from a set of regexes used by NIDSes (a union of many
long “tentacles” with occasional small strongly-connected components), we limit
the space of possible reductions by restricting the set of operations they can apply
to the original automaton. Namely, we consider two reduction operations: (i) col-
lapsing the future of a state into a self-loop (this reduction over-approximates
the language), or (ii) removing states (such a reduction is under-approximating).

The problem of identifying the optimal sets of states on which these oper-
ations should be applied is still PSPACE-complete. The restricted problem
is, however, more amenable to an approximation by a greedy algorithm. The
algorithm applies the reductions state-by-state in an order determined by a pre-
computed error labelling of the states. The process is stopped once the given
optimization goal in terms of the size or error is reached. The labelling is based
on the probability of packets that may be accepted through a given state and
hence over-approximates the error that may be caused by applying the reduction
at a given state. As our experiments show, this approach can give us high-quality
reductions while ensuring formal error bounds.

Approximate Reduction of Finite Automata 157

Finally, it turns out that even the pre-computation of the error labelling of
the states is costly (again PSPACE-complete). Therefore, we propose several
ways to cheaply over-approximate it such that the strong error bound guarantees
are still preserved. Particularly, we are able to exploit the typical structure of the
“union of tentacles” of the hardware NFA in an algorithm that is exponential in
the size of the largest “tentacle” only, which is indeed much faster in practice.

We have implemented our approach and evaluated it on regexes used to
classify malicious traffic in Snort. We obtain quite encouraging experimental
results demonstrating that our approach provides a much better reduction than
language-preserving techniques with an almost negligible error. In particular,
our experiments, going down to the level of an actual implementation of NFAs
in FPGAs, confirm that we can squeeze into an up-to-date FPGA chip real-life
regexes encoding malicious traffic, allowing them to be used with a negligible
error for filtering at speeds of 100 Gbps (and even 400 Gbps). This is far beyond
what one can achieve with current exact reduction approaches.

Related Work. Hardware acceleration for regex matching at the line rate is
an intensively studied technology that uses general-purpose hardware [6–14] as
well as FPGAs [3–5,15–20]. Most of the works focus on DFA implementation
and optimization techniques. NFAs can be exponentially smaller than DFAs but
need, in the worst case, O(n) memory accesses to process each byte of the pay-
load where n is the number of states. In most cases, this incurs an unacceptable
slowdown. Several works alleviate this disadvantage of NFAs by exploiting recon-
figurability and fine-grained parallelism of FPGAs, allowing one to process one
character per clock cycle (e.g. [3–5,15,16,19,20]).

In [14], which is probably the closest work to ours, the authors consider a set
of regexes describing network attacks. They replace a potentially prohibitively
large DFA by a tree of smaller DFAs, an alternative to using NFAs that mini-
mizes the latency occurring in a non-FPGA-based implementation. The language
of every DFA-node in the tree over-approximates the languages of its children.
Packets are filtered through the tree from the root downwards until they belong
to the language of the encountered nodes, and may be finally accepted at the
leaves, or are rejected otherwise. The over-approximating DFAs are constructed
using a similar notion of probability of an occurrence of a state as in our app-
roach. The main differences from our work are that (1) the approach targets
approximation of DFAs (not NFAs), (2) the over-approximation is based on a
given traffic sample only (it cannot benefit from a probabilistic model), and
(3) no probabilistic guarantees on the approximation error are provided.

Approximation of DFAs was considered in various other contexts. Hyper-mi-
nimization is an approach that is allowed to alter language membership of a
finite set of words [21,22]. A DFA with a given maximum number of states is
constructed in [23], minimizing the error defined either by (i) counting prefixes
of misjudged words up to some length, or (ii) the sum of the probabilities of
the misjudged words wrt the Poisson distribution over Σ∗. Neither of these
approaches considers reduction of NFAs nor allows to control the expected error
with respect to the real traffic.

158 M. Češka et al.

In addition to the metrics mentioned above when discussing the works
[21–23], the following metrics should also be mentioned. The Cesaro-Jaccard
distance studied in [24] is, in spirit, similar to [23] and does also not reflect the
probability of individual words. The edit distance of weighted automata from
[25] depends on the minimum edit distance between pairs of words from the two
compared languages, again regardless of their statistical significance. None of
these notions is suitable for our needs.

Language-preserving minimization of NFAs is a PSPACE-complete problem
[26,38]. More feasible (polynomial-time) is language-preserving size reduction of
NFAs based on (bi)simulations [27–30], which does not aim for a truly minimal
NFA. A number of advanced variants exist, based on multi-pebble or look-ahead
simulations, or on combinations of forward and backward simulations [31–33].
The practical efficiency of these techniques is, however, often insufficient to allow
them to handle the large NFAs that occur in practice and/or they do not manage
to reduce the NFAs enough. Finally, even a minimal NFA for the given set of
regexes is often too big to be implemented in the given FPGA operating on the
required speed (as shown even in our experiments). Our approach is capable of
a much better reduction for the price of a small change of the accepted language.

2 Preliminaries

We use 〈a, b〉 to denote the set {x ∈ R | a ≤ x ≤ b} and N to denote the
set {0, 1, 2, . . . }. Given a pair of sets X1 and X2, we use X1 �X2 to denote
their symmetric difference, i.e., the set {x | ∃!i ∈ {1, 2} : x ∈ Xi}. We use the
notation [v1, . . . , vn] to denote a vector of n elements, 1 to denote the all 1’s
vector [1, . . . , 1], A to denote a matrix, and A� for its transpose, and I for the
identity matrix.

In the following, we fix a finite non-empty alphabet Σ. A nondeterministic
finite automaton (NFA) is a quadruple A = (Q, δ, I, F) where Q is a finite set
of states, δ : Q × Σ → 2Q is a transition function, I ⊆ Q is a set of initial
states, and F ⊆ Q is a set of accepting states. We use Q[A], δ[A], I[A], and F [A]
to denote Q, δ, I, and F , respectively, and q

a−→ q′ to denote that q′ ∈ δ(q, a).
A sequence of states ρ = q0 · · · qn is a run of A over a word w = a1 · · · an ∈ Σ∗

from a state q to a state q′, denoted as q
w,ρ� q′, if ∀1 ≤ i ≤ n : qi−1

ai−→ qi,
q0 = q, and qn = q′. Sometimes, we use ρ in set operations where it behaves as
the set of states it contains. We also use q

w� q′ to denote that ∃ρ ∈ Q∗ : q
w,ρ� q′

and q � q′ to denote that ∃w : q
w� q′. The language of a state q is defined as

LA(q) = {w | ∃qF ∈ F : q
w� qF } and its banguage (back-language) is defined

as L�
A(q) = {w | ∃qI ∈ I : qI

w� q}. Both notions can be naturally extended
to a set S ⊆ Q: LA(S) =

⋃
q∈S LA(q) and L�

A(S) =
⋃

q∈S L�
A(q). We drop the

subscript A when the context is obvious. A accepts the language L(A) defined
as L(A) = LA(I). A is called deterministic (DFA) if |I| = 1 and ∀q ∈ Q and
∀a ∈ Σ : |δ(q, a)| ≤ 1, and unambiguous (UFA) if ∀w ∈ L(A) : ∃!qI ∈ I, ρ ∈
Q∗, qF ∈ F : qI

w,ρ� qF .

Approximate Reduction of Finite Automata 159

The restriction of A to S ⊆ Q is an NFA A|S given as A|S = (S, δ ∩ (S ×
Σ × 2S), I ∩ S, F ∩ S). We define the trim operation as trim(A) = A|C where
C = {q | ∃qI ∈ I, qF ∈ F : qI � q � qF }. For a set of states R ⊆ Q, we use
reach(R) to denote the set of states reachable from R, formally, reach(R) = {r′ |
∃r ∈ R : r � r′}. We use the number of states as the measurement of the size
of A, i.e., |A| = |Q|.

A (discrete probability) distribution over a set X is a mapping Pr : X → 〈0, 1〉
such that

∑
x∈X Pr(x) = 1. An n-state probabilistic automaton (PA) over Σ is

a triple P = (α,γ, {Δa}a∈Σ) where α ∈ 〈0, 1〉n is a vector of initial weights,
γ ∈ 〈0, 1〉n is a vector of final weights, and for every a ∈ Σ, Δa ∈ 〈0, 1〉n×n

is a transition matrix for symbol a. We abuse notation and use Q[P] to denote
the set of states Q[P] = {1, . . . , n}. Moreover, the following two properties need
to hold: (i)

∑{α[i] | i ∈ Q[P]} = 1 (the initial probability is 1) and (ii) for
every state i ∈ Q[P] it holds that

∑{Δa[i, j] | j ∈ Q[P], a ∈ Σ} + γ[i] = 1 (the
probability of accepting or leaving a state is 1). We define the support of P as
the NFA supp(P) = (Q[P], δ[P], I[P], F [P]) s.t.

δ[P] = {(i, a, j) | Δa[i, j] > 0} I[P] = {i | α[i] > 0} F [P] = {i | γ[i] > 0}.

Let us assume that every PA P is such that supp(P) = trim(supp(P)). For
a word w = a1 . . . ak ∈ Σ∗, we use Δw to denote the matrix Δa1 · · · Δak

. It can
be easily shown that P represents a distribution over words w ∈ Σ∗ defined as
PrP (w) = α� ·Δw ·γ. We call PrP (w) the probability of w in P . Given a language
L ⊆ Σ∗, we define the probability of L in P as PrP (L) =

∑
w∈L PrP (w).

If Conditions (i) and (ii) from the definition of PAs are dropped, we speak
about a pseudo-probabilistic automaton (PPA), which may assign a word from
its support a quantity that is not necessarily in the range 〈0, 1〉, denoted as
the significance of the word below. PPAs may arise during some of our operations
performed on PAs.

3 Approximate Reduction of NFAs

In this section, we first introduce the key notion of our approach: a probabilis-
tic distance of a pair of finite automata wrt a given probabilistic automaton
that, intuitively, represents the significance of particular words. We discuss the
complexity of computing the probabilistic distance. Finally, we formulate two
problems of approximate automata reduction via probabilistic distance. Proofs of
the lemmas can be found in [43].

3.1 Probabilistic Distance

We start by defining our notion of a probabilistic distance of two NFAs. Assume
NFAs A1 and A2 and a probabilistic automaton P specifying the distribution

160 M. Češka et al.

PrP : Σ∗ → 〈0, 1〉. The probabilistic distance dP (A1, A2) between A1 and A2 wrt
PrP is defined as

dP (A1, A2) = PrP (L(A1)� L(A2)).

Intuitively, the distance captures the significance of the words accepted by one
of the automata only. We use the distance to drive the reduction process towards
automata with small errors and to assess the quality of the resulting automata.

The value of PrP (L(A1)� L(A2)) can be computed as follows. Using the
fact that (1) L1 � L2 = (L1 \ L2) � (L2 \ L1) and (2) L1 \ L2 = L1 \ (L1 ∩ L2),
we get

dP (A1, A2) = PrP (L(A1) \ L(A2)) + PrP (L(A2) \ L(A1))
= PrP (L(A1) \ (L(A1) ∩ L(A2))) + PrP (L(A2) \ (L(A2) ∩ L(A1)))
= PrP (L(A1)) + PrP (L(A2)) − 2 · PrP (L(A1) ∩ L(A2)).

Hence, the key step is to compute PrP (L(A)) for an NFA A and a PA P . Prob-
lems similar to computing such a probability have been extensively studied in
several contexts including verification of probabilistic systems [34–36]. The below
lemma summarises the complexity of this step.

Lemma 1. Let P be a PA and A an NFA. The problem of computing PrP (L(A))
is PSPACE-complete. For a UFA A, PrP (L(A)) can be computed in PTIME.

In our approach, we apply the method of [36] and compute PrP (L(A)) in
the following way. We first check whether the NFA A is unambiguous. This
can be done by using the standard product construction (denoted as ∩) for
computing the intersection of the NFA A with itself and trimming the result,
formally B = trim(A ∩ A), followed by a check whether there is some state
(p, q) ∈ Q[B] s.t. p = q [37]. If A is ambiguous, we either determinise it or
disambiguate it [37], leading to a DFA/UFA A′, respectively.1 Then, we construct
the trimmed product of A′ and P (this can be seen as computing A′ ∩ supp(P)
while keeping the probabilities from P on the edges of the result), yielding a PPA
R = (α,γ, {Δa}a∈Σ).2 Intuitively, R represents not only the words of L(A)
but also their probability in P . Now, let Δ =

∑
a∈Σ Δa be the matrix that

expresses, for any p, q ∈ Q[R], the significance of getting from p to q via any
a ∈ Σ. Further, it can be shown (cf. the proof of Lemma 1 in [43]) that the matrix
Δ∗, representing the significance of going from p to q via any w ∈ Σ∗, can be
computed as (I − Δ)−1. Then, to get PrP (L(A)), it suffices to take α� · Δ∗ · γ.
Note that, due to the determinisation/disambiguation step, the obtained value
indeed is PrP (L(A)) despite R being a PPA.

1 In theory, disambiguation can produce smaller automata, but, in our experiments,
determinisation proved to work better.

2 R is not necessarily a PA since there might be transitions in P that are either
removed or copied several times in the product construction.

Approximate Reduction of Finite Automata 161

3.2 Automata Reduction Using Probabilistic Distance

We now exploit the above introduced probabilistic distance to formulate the task
of approximate reduction of NFAs as the following two optimisation problems.
Given an NFA A and a PA P specifying the distribution PrP : Σ∗ → 〈0, 1〉, we
define

– size-driven reduction: for n ∈ N, find an NFA A′ such that |A′| ≤ n and
the distance dP (A,A′) is minimal,

– error-driven reduction: for ε ∈ 〈0, 1〉, find an NFA A′ such that
dP (A,A′) ≤ ε and the size |A′| is minimal.

The following lemma shows that the natural decision problem underlying both
of the above optimization problems is PSPACE-complete, which matches the
complexity of computing the probabilistic distance as well as that of the exact
reduction of NFAs [38].

Lemma 2. Consider an NFA A, a PA P , a bound on the number of states
n ∈ N, and an error bound ε ∈ 〈0, 1〉. It is PSPACE-complete to determine
whether there exists an NFA A′ with n states s.t. dP (A,A′) ≤ ε.

The notions defined above do not distinguish between introducing a false
positive (A′ accepts a word w /∈ L(A)) or a false negative (A′ does not accept
a word w ∈ L(A)) answers. To this end, we define over-approximating and
under-approximating reductions as reductions for which the additional condi-
tions L(A) ⊆ L(A′) and L(A) ⊇ L(A′) hold, respectively.

A näıve solution to the reductions would enumerate all NFAs A′ of sizes from
0 up to k (resp. |A|), for each of them compute dP (A,A′), and take an automa-
ton with the smallest probabilistic distance (resp. a smallest one satisfying the
restriction on dP (A,A′)). Obviously, this approach is computationally infeasible.

4 A Heuristic Approach to Approximate Reduction

In this section, we introduce two techniques for approximate reduction of NFAs
that avoid the need to iterate over all automata of a certain size. The first
approach under-approximates the automata by removing states—we call it the
pruning reduction—while the second approach over-approximates the automata
by adding self-loops to states and removing redundant states—we call it the
self-loop reduction. Finding an optimal automaton using these reductions is also
PSPACE-complete, but more amenable to heuristics like greedy algorithms. We
start with introducing two high-level greedy algorithms, one for the size- and one
for the error-driven reduction, and follow by showing their instantiations for the
pruning and the self-loop reduction. A crucial role in the algorithms is played
by a function that labels states of the automata by an estimate of the error that
will be caused when some of the reductions is applied at a given state.

162 M. Češka et al.

4.1 A General Algorithm for Size-Driven Reduction

Algorithm 1. A greedy size-driven reduction
Input : NFA A = (Q, δ, I, F), PA P , n ≥ 1
Output: NFA A′, ε ∈ R s.t. |A| ≤ n and

dP (A,A′) ≤ ε
1 V ← ∅;
2 for q ∈ Q in the order �A,label(A,P) do
3 V ← V ∪ {q}; A′ ← reduce(A, V);
4 if |A′| ≤ n then break ;
5 return A′, ε = error(A, V, label(A,P));

Algorithm 1 shows a general
greedy method for perform-
ing the size-driven reduc-
tion. In order to use the
same high-level algorithm in
both directions of reduction
(over/under-approximating), it
is parameterized with three
functions: label , reduce, and
error . The real intricacy of
the procedure is hidden inside
these three functions. Intuitively, label(A,P) assigns every state of an NFA A an
approximation of the error that will be caused wrt the PA P when a reduction
is applied at this state, while the purpose of reduce(A, V) is to create a new
NFA A′ obtained from A by introducing some error at states from V .3 Fur-
ther, error(A, V, label(A,P)) estimates the error introduced by the application
of reduce(A, V), possibly in a more precise (and costly) way than by just sum-
ming the concerned error labels: Such a computation is possible outside of the
main computation loop. We show instantiations of these functions later, when
discussing the reductions used. Moreover, the algorithm is also parameterized
with a total order �A,label(A,P) that defines which states of A are processed first
and which are processed later. The ordering may take into account the precom-
puted labelling. The algorithm accepts an NFA A, a PA P , and n ∈ N and
outputs a pair consisting of an NFA A′ of the size |A′| ≤ n and an error bound
ε such that dP (A,A′) ≤ ε.

The main idea of the algorithm is that it creates a set V of states where
an error is to be introduced. V is constructed by starting from an empty set
and adding states to it in the order given by �A,label(A,P), until the size of the
result of reduce(A, V) has reached the desired bound n (in our setting, reduce is
always antitone, i.e., for V ⊆ V ′, it holds that |reduce(A, V)| ≥ |reduce(A, V ′)|).
We now define the necessary condition for label , reduce, and error that makes
Algorithm 1 correct.

Condition C1 holds if for every NFA A, PA P , and a set V ⊆ Q[A], we have
that (a) error(A, V, label(A,P)) ≥ dP (A, reduce(A, V)), (b) |reduce(A,Q[A])| ≤
1, and (c) reduce(A, ∅) = A.

C1(a) ensures that the error computed by the reduction algorithm indeed
over-approximates the exact probabilistic distance, C1(b) ensures that the algo-
rithm can (in the worst case, by applying the reduction at every state of A) for
any n ≥ 1 output a result |A′| of the size |A′| ≤ n, and C1(c) ensures that when
no error is to be introduced at any state, we obtain the original automaton.

Lemma 3. Algorithm 1 is correct if C1 holds.
3 We emphasize that this does not mean that states from V will be simply removed

from A—the performed operation depends on the particular reduction.

Approximate Reduction of Finite Automata 163

4.2 A General Algorithm for Error-Driven Reduction

Algorithm 2. A greedy error-driven reduction.
Input : NFA A = (Q, δ, I, F), PA P , ε ∈ 〈0, 1〉
Output: NFA A′ s.t. dP (A,A′) ≤ ε

1 � ← label(A,P);
2 V ← ∅;
3 for q ∈ Q in the order �A,label(A,P) do
4 e ← error(A, V ∪ {q}, �);
5 if e ≤ ε then V ← V ∪ {q} ;
6 return A′ = reduce(A, V);

In Algorithm 2, we pro-
vide a high-level method of
computing the error-driven
reduction. The algorithm is
in many ways similar to
Algorithm 1; It also com-
putes a set of states V
where an error is to be
introduced, but an impor-
tant difference is that we
compute an approximation
of the error in each step and only add q to V if it does not raise the error over
the threshold ε. Note that the error does not need to be monotone, so it may
be advantageous to traverse all states from Q and not terminate as soon as the
threshold is reached. The correctness of Algorithm 2 also depends on C1.

Lemma 4. Algorithm 2 is correct if C1 holds.

4.3 Pruning Reduction

The pruning reduction is based on identifying a set of states to be removed
from an NFA A, under-approximating the language of A. In particular, for A =
(Q, δ, I, F), the pruning reduction finds a set R ⊆ Q and restricts A to Q \ R,
followed by removing useless states, to construct a reduced automaton A′ =
trim(A|Q\R). Note that the natural decision problem corresponding to this
reduction is also PSPACE-complete.

Lemma 5. Consider an NFA A, a PA P , a bound on the number of states
n ∈ N, and an error bound ε ∈ 〈0, 1〉. It is PSPACE-complete to determine
whether there exists a subset of states R ⊆ Q[A] of the size |R| = n such that
dP (A,A|R) ≤ ε.

Although Lemma 5 shows that the pruning reduction is as hard as a general
reduction (cf. Lemma 2), the pruning reduction is more amenable to the use
of heuristics like the greedy algorithms from Sects. 4.1 and 4.2. We instantiate
reduce, error , and label in these high-level algorithms in the following way (the
subscript p means pruning):

reducep(A, V) = trim(A|Q\V), errorp(A, V, �) = min
V ′∈�V �p

∑
{�(q) | q ∈ V ′} ,

where �V �p is defined as follows. Because of the use of trim in reducep, for
a pair of sets V, V ′ s.t. V ⊂ V ′, it holds that reducep(A, V) may, in general,
yield the same automaton as reducep(A, V ′). Hence, we define a partial order
�p on 2Q as V1 �p V2 iff reducep(A, V1) = reducep(A, V2) and V1 ⊆ V2, and
use �V �p to denote the set of minimal elements wrt V and �p. The value of the

164 M. Češka et al.

approximation errorp(A, V, �) is therefore the minimum of the sum of errors over
all sets from �V �p.

Note that the size of �V �p can again be exponential, and thus we employ
a greedy approach for guessing an optimal V ′. Clearly, this cannot affect the
soundness of the algorithm, but only decreases the precision of the bound on
the distance. Our experiments indicate that for automata appearing in NIDSes,
this simplification has typically only a negligible impact on the precision of the
bounds.

For computing the state labelling, we provide the following three functions,
which differ in the precision they provide and the difficulty of their computation
(naturally, more precise labellings are harder to compute): label1p, label

2
p, and

label3p. Given an NFA A and a PA P , they generate the labellings �1p, �
2
p, and �3p,

respectively, defined as

�1p(q) =
∑ {

PrP (L�
A(q′))

∣
∣
∣ q′ ∈ reach({q}) ∩ F

}
,

�2p(q) = PrP

(
L�

A(F ∩ reach(q))
)

, �3p(q) = PrP

(
L�

A(q).LA(q)
)

.

A state label �(q) approximates the error of the words removed from L(A)
when q is removed. More concretely, �1p(q) is a rough estimate saying that the
error can be bounded by the sum of probabilities of the banguages of all final
states reachable from q (in the worst case, all those final states might become
unreachable). Note that �1p(q) (1) counts the error of a word accepted in two
different final states of reach(q) twice, and (2) also considers words that are
accepted in some final state in reach(q) without going through q. The labelling �2p
deals with (1) by computing the total probability of the banguage of the set of
all final states reachable from q, and the labelling �3p in addition also deals with
(2) by only considering words that traverse through q (they can still be accepted
in some final state not in reach(q) though, so even �3p is still imprecise). Note
that if A is unambiguous then �1p = �2p.

When computing the label of q, we first modify A to obtain A′ accepting
the language related to the particular labelling. Then, we compute the value of
PrP (L(A′)) using the algorithm from Sect. 3.1. Recall that this step is in general
costly, due to the determinisation/disambiguation of A′. The key property of
the labelling computation resides in the fact that if A is composed of several
disjoint sub-automata, the automaton A′ is typically much smaller than A and
thus the computation of the label is considerable less demanding. Since the
automata appearing in regex matching for NIDS are composed of the union of
“tentacles”, the particular A′s are very small, which enables efficient component-
wise computation of the labels.

The following lemma states the correctness of using the pruning reduction
as an instantiation of Algorithms 1 and 2 and also the relation among �1p, �2p,
and �3p.

Approximate Reduction of Finite Automata 165

Lemma 6. For every x ∈ {1, 2, 3}, the functions reducep, errorp, and labelxp
satisfy C1. Moreover, consider an NFA A, a PA P , and let �x

p = labelxp(A,P)
for x ∈ {1, 2, 3}. Then, for each q ∈ Q[A], we have �1p(q) ≥ �2p(q) ≥ �3p(q).

4.4 Self-loop Reduction

The main idea of the self-loop reduction is to over-approximate the language
of A by adding self-loops over every symbol at selected states. This makes some
states of A redundant, allowing them to be removed without introducing any
more error. Given an NFA A = (Q, δ, I, F), the self-loop reduction searches for
a set of states R ⊆ Q, which will have self-loops added, and removes other
transitions leading out of these states, making some states unreachable. The
unreachable states are then removed.

Formally, let sl(A,R) be the NFA (Q, δ′, I, F) whose transition function δ′

is defined, for all p ∈ Q and a ∈ Σ, as δ′(p, a) = {p} if p ∈ R and δ′(p, a) =
δ(p, a) otherwise. As with the pruning reduction, the natural decision problem
corresponding to the self-loop reduction is also PSPACE-complete.

Lemma 7. Consider an NFA A, a PA P , a bound on the number of states
n ∈ N, and an error bound ε ∈ 〈0, 1〉. It is PSPACE-complete to determine
whether there exists a subset of states R ⊆ Q[A] of the size |R| = n such that
dP (A, sl(A,R)) ≤ ε.

The required functions in the error- and size-driven reduction algorithms are
instantiated in the following way (the subcript sl means self-loop):

reducesl(A, V) = trim(sl(A, V)), error sl(A, V, �) =
∑

{�(q) | q ∈ min (�V �sl)} ,

where �V �sl is defined in a similar manner as �V �p in the previous section (using
a partial order �sl defined similarly to �p; in this case, the order �sl has a single
minimal element, though).

The functions label1sl , label
2
sl , and label3sl compute the state labellings �1sl , �

2
sl ,

and �3sl for an NFA A and a PA P defined as follows:

�1sl(q) = weightP (L�
A(q)), �2sl(q) = PrP

(
L�

A(q).Σ∗
)

,

�3sl(q) = �2sl(q) − PrP

(
L�

A(q).LA(q)
)

.

Above, weightP (w) for a PA P = (α,γ, {Δa}a∈Σ) and a word w ∈ Σ∗ is
defined as weightP (w) = α� ·Δw ·1 (i.e., similarly as PrP (w) but with the final
weights γ discarded), and weightP (L) for L ⊆ Σ∗ is defined as weightP (L) =∑

w∈L weightP (w).
Intuitively, the state labelling �1sl(q) computes the probability that q is

reached from an initial state, so if q is pumped up with all possible word end-
ings, this is the maximum possible error introduced by the added word endings.
This has the following sources of imprecision: (1) the probability of some words
may be included twice, e.g., when L�

A(q) = {a, ab}, the probabilities of all words

166 M. Češka et al.

from {ab}.Σ∗ are included twice in �1sl(q) because {ab}.Σ∗ ⊆ {a}.Σ∗, and (2)
�1sl(q) can also contain probabilities of words that are already accepted on a run
traversing q. The state labelling �2sl deals with (1) by considering the probability
of the language L�

A(q).Σ∗, and �3sl deals also with (2) by subtracting from the
result of �2sl the probabilities of the words that pass through q and are accepted.

The computation of the state labellings for the self-loop reduction is done in
a similar way as the computation of the state labellings for the pruning reduction
(cf. Sect. 4.3). For a computation of weightP (L) one can use the same algorithm
as for PrP (L), only the final vector for PA P is set to 1. The correctness of
Algorithms 1 and 2 when instantiated using the self-loop reduction is stated in
the following lemma.

Lemma 8. For every x ∈ {1, 2, 3}, the functions reducesl , error sl , and labelxsl
satisfy C1. Moreover, consider an NFA A, a PA P , and let �x

sl = labelxsl(A,P)
for x ∈ {1, 2, 3}. Then, for each q ∈ Q[A], we have �1sl(q) ≥ �2sl(q) ≥ �3sl(q).

5 Reduction of NFAs in Network Intrusion Detection
Systems

We have implemented our approach in a Python prototype named Appreal
(APProximate REduction of Automata and Languages)4 and evaluated it on the
use case of network intrusion detection using Snort [1], a popular open source
NIDS. The version of Appreal used for the evaluation in the current paper is
available as an artifact [44] for the TACAS’18 artifact virtual machine [45].

5.1 Network Traffic Model

The reduction we describe in this paper is driven by a probabilistic model repre-
senting a distribution over Σ∗, and the formal guarantees are also wrt this model.
We use learning to obtain a model of network traffic over the 8-bit ASCII alpha-
bet at a given network point. Our model is created from several gigabytes of
network traffic from a measuring point of the CESNET Internet provider con-
nected to a 100 Gbps backbone link (unfortunately, we cannot provide the traffic
dump since it may contain sensitive data).

Learning a PA representing the network traffic faithfully is hard. The PA
cannot be too specific—although the number of different packets that can occur
is finite, it is still extremely large (a conservative estimate assuming the most
common scenario Ethernet/IPv4/TCP would still yield a number over 210,000).
If we assigned non-zero probabilities only to the packets from the dump (which
are less than 220), the obtained model would completely ignore virtually all
packets that might appear on the network, and, moreover, the model would also
be very large (millions of states), making it difficult to use in our algorithms.
A generalization of the obtained traffic is therefore needed.

4 https://github.com/vhavlena/appreal/tree/tacas18.

https://github.com/vhavlena/appreal/tree/tacas18

Approximate Reduction of Finite Automata 167

A natural solution is to exploit results from the area of PA learning, such
as [39,40]. Indeed, we experimented with the use of Alergia [39], a learning
algorithm that constructs a PA from a prefix tree (where edges are labelled
with multiplicities) by merging nodes that are “similar.” The automata that we
obtained were, however, too general. In particular, the constructed automata
destroyed the structure of network protocols—the merging was too permissive
and the generalization merged distant states, which introduced loops over a very
large substructure in the automaton (such a case usually does not correspond
to the design of network protocols). As a result, the obtained PA more or less
represented the Poisson distribution, having essentially no value for us.

In Sect. 5.2, we focus on the detection of malicious traffic transmitted over
HTTP. We take advantage of this fact and create a PA representing the traffic
while taking into account the structure of HTTP. We start by manually creating
a DFA that represents the high-level structure of HTTP. Then, we proceed by
feeding 34,191 HTTP packets from our sample into the DFA, at the same time
taking notes about how many times every state is reached and how many times
every transition is taken. The resulting PA PHTTP (of 52 states) is then obtained
from the DFA and the labels in the obvious way.

The described method yields automata that are much better than those
obtained using Alergia in our experiments. A disadvantage of the method
is that it is only semi-automatic—the basic DFA needed to be provided by an
expert. We have yet to find an algorithm that would suit our needs for learning
more general network traffic.

5.2 Evaluation

We start this section by introducing the experimental setting, namely, the inte-
gration of our reduction techniques into the tool chain implementing efficient
regex matching, the concrete settings of Appreal, and the evaluation environ-
ment. Afterwards, we discuss the results evaluating the quality of the obtained
approximate reductions as well as of the provided error bounds. Finally, we
present the performance of our approach and discuss its key aspects. Due to
the lack of space, we selected the most interesting results demonstrating the
potential as well as the limitations of our approach.

General Setting. Snort detects malicious network traffic based on rules that
contain conditions. The conditions may take into consideration, among others,
network addresses, ports, or Perl compatible regular expressions (PCREs) that
the packet payload should match. In our evaluation, we always select a sub-
set of Snort rules, extract the PCREs from them, and use Netbench [20] to
transform them into a single NFA A. Before applying Appreal, we use the state-
of-the-art NFA reduction tool Reduce [41] to decrease the size of A. Reduce
performs a language-preserving reduction of A using advanced variants of sim-
ulation [31] (in the experiment reported in Table 3, we skip the use of Reduce

168 M. Češka et al.

at this step as discussed in the performance evaluation). The automaton ARed

obtained as the result of Reduce is the input of Appreal, which performs one
of the approximate reductions from Sect. 4 wrt the traffic model PHTTP , yield-
ing AApp. After the approximate reduction, we, one more time, use Reduce and
obtain the result A′.

Settings of APPREAL. In the use case of NIDS pre-filtering, it may be impor-
tant to never introduce a false negative, i.e., to never drop a malicious packet.
Therefore, we focus our evaluation on the self-loop reduction (Sect. 4.4). In partic-
ular, we use the state labelling function label2sl , since it provides a good trade-off
between the precision and the computational demands (recall that the compu-
tation of label2sl can exploit the “tentacle” structure of the NFAs we work with).
We give more attention to the size-driven reduction (Sect. 4.1) since, in our set-
ting, a bound on the available FPGA resources is typically given and the task is
to create an NFA with the smallest error that fits inside. The order �A,�2sl

over
states used in Sects. 4.1 and 4.2 is defined as s �A,�2sl

s′ ⇔ �2sl(s) ≤ �2sl(s
′).

Evaluation Environment. All experiments run on a 64-bit Linux Debian
workstation with the Intel Core(TM) i5-661 CPU running at 3.33 GHz with
16 GiB of RAM.

Description of Tables. In the caption of every table, we provide the name of
the input file (in the directory regexps/tacas18/ of the repository of Appreal)
with the selection of Snort regexes used in the particular experiment, together
with the type of the reduction (size- or error-driven). All reductions are over-
approximating (self-loop reduction). We further provide the size of the input
automaton |A|, the size after the initial processing by Reduce (|ARed|), and the
time of this reduction (time(Reduce)). Finally, we list the times of computing
the state labelling label2sl on ARed (time(label2sl)), the exact probabilistic distance
(time(Exact)), and also the number of look-up tables (LUTs(ARed)) consumed
on the targeted FPGA (Xilinx Virtex 7 H580T) when ARed was synthesized
(more on this in Sect. 5.3). The meaning of the columns in the tables is the
following:

k/ε is the parameter of the reduction. In particular, k is used for the size-driven
reduction and denotes the desired reduction ration k = n

|ARed| for an input
NFA ARed and the desired size of the output n. On the other hand, ε is the
desired maximum error on the output for the error-driven reduction.

|AApp| shows the number of states of the automaton AApp after the reduction
by Appreal and the time the reduction took (we omit it when it is not
interesting).

|A′| contains the number of states of the NFA A′ obtained after applying
Reduce on AApp and the time used by Reduce at this step (omitted when
not interesting).

Approximate Reduction of Finite Automata 169

Table 1. Results for the http-malicious regex, |Amal| = 249, |ARed
mal | = 98,

time(Reduce) = 3.5 s, time(label2sl) = 38.7 s, time(Exact) = 3.8–6.5 s, and
LUTs(ARed

mal) = 382.

Error bound shows the estimation of the error of A′ as determined by the
reduction itself, i.e., it is the probabilistic distance computed by the function
error in Sect. 4.

Exact error contains the values of dPHTTP
(A,A′) that we computed after

the reduction in order to evaluate the precision of the result given in
Error bound. The computation of this value is very expensive (time(Exact))
since it inherently requires determinisation of the whole automaton A. We do
not provide it in Table 3 (presenting the results for the automaton Abd with
1,352 states) because the determinisation ran out of memory (the step is not
required in the reduction process).

Traffic error shows the error that we obtained when compared A′ with A on
an HTTP traffic sample, in particular the ratio of packets misclassified by A′

to the total number of packets in the sample (242,468). Comparing Exact
error with Traffic error gives us a feedback about the fidelity of the traffic
model PHTTP . We note that there are no guarantees on the relationship
between Exact error and Traffic error.

LUTs is the number of LUTs consumed by A′ when synthesized into the FPGA.
Hardware synthesis is a costly step so we provide this value only for selected
NFAs.

Approximation Errors
Table 1 presents the results of the self-loop reduction for the NFA Amal describing
http-malicious regexes. We can observe that the differences between the upper
bounds on the probabilistic distance and its real value are negligible (typically
in the order of 10−4 or less). We can also see that the probabilistic distance
agrees with the traffic error. This indicates a good quality of the traffic model
employed in the reduction process. Further, we can see that our approach can
provide useful trade-offs between the reduction error and the reduction factor.
Finally, Table 1 shows that a significant reduction is obtained when the error
threshold ε is increased from 0.04 to 0.07.

170 M. Češka et al.

Table 2. Results for the http-attacks regex,
size-driven reduction, |Aatt| = 142, |ARed

att | =
112, time(Reduce) = 7.9 s, time(label2sl) =
28.3 min, time(Exact) = 14.0–16.4 min.

k |AApp
att | |A ′

att| Error
bound

Exact
error

Traffic
error

0.1 11 (1.1 s) 5 (0.4 s) 1.0 0.9972 0.9957

0.2 22 (1.1 s) 14 (0.6 s) 1.0 0.8341 0.2313

0.3 33 (1.1 s) 24 (0.7 s) 0.081 0.0770 0.0067

0.4 44 (1.1 s) 37 (1.6 s) 0.0005 0.0005 0.0010

0.5 56 (1.1 s) 49 (1.2 s) 3.3e–06 3.3e–06 0.0010

0.6 67 (1.1 s) 61 (1.9 s) 1.2e–09 1.2e–09 8.7e–05

0.7 78 (1.1 s) 72 (2.4 s) 4.8e–12 4.8e–12 1.2e–05

0.9 100 (1.1 s) 93 (4.7 s) 3.7e–16 1.1e–15 0.0

Table 2 presents the results of
the size-driven self-loop reduction
for NFA Aatt describing http-
attacks regexes. We can observe
that the error bounds provide
again a very good approximation
of the real probabilistic distance.
On the other hand, the differ-
ence between the probabilistic dis-
tance and the traffic error is larger
than for Amal. Since all exper-
iments use the same probabilis-
tic automaton and the same traf-
fic, this discrepancy is accounted to the different set of packets that
are incorrectly accepted by ARed

att . If the probability of these packets is
adequately captured in the traffic model, the difference between the distance and
the traffic error is small and vice versa. This also explains an even larger differ-
ence in Table 3 (presenting the results for Abd constructed from http-backdoor
regexes) for k ∈ 〈0.2, 0.4〉. Here, the traffic error is very small and caused by a
small set of packets (approx. 70), whose probability is not correctly captured in
the traffic model. Despite this problem, the results clearly show that our app-
roach still provides significant reductions while keeping the traffic error small:
about a 5-fold reduction is obtained for the traffic error 0.03 % and a 10-fold
reduction is obtained for the traffic error 6.3 %. We discuss the practical impact
of such a reduction in Sect. 5.3.

Performance of the Approximate Reduction

Table 3. Results for http-backdoor, size-
driven reduction, |Abd| = 1, 352, time(label2sl) =
19.9 min, LUTs(ARed

bd) = 2, 266.

k |AApp
bd | |A ′

bd| Error
bound

Traffic
error

LUTs

0.1 135 (1.2m) 8 (2.6 s) 1.0 0.997 202

0.2 270 (1.2m) 111 (5.2 s) 0.0012 0.0631 579

0.3 405 (1.2m) 233 (9.8 s) 3.4e–08 0.0003 894

0.4 540 (1.3m) 351 (21.7 s) 1.0e–12 0.0003 1063

0.5 676 (1.3m) 473 (41.8 s) 1.2e–17 0.0 1249

0.7 946 (1.4m) 739 (2.1m) 8.3e–30 0.0 1735

0.9 1216 (1.5m) 983 (5.6m) 1.3e–52 0.0 2033

In all our experiments (Tables 1,
2 and 3), we can observe that
the most time-consuming step of
the reduction process is the com-
putation of state labellings (it
takes at least 90 % of the total
time). The crucial observation is
that the structure of the NFAs
fundamentally affects the per-
formance of this step. Although
after Reduce, the size of Amal is
very similar to the size of Aatt,
computing label2sl takes more time (28.3 min vs. 38.7 s). The key reason behind
this slowdown is the determinisation (or alternatively disambiguation) process
required by the product construction underlying the state labelling computation
(cf. Sect. 4.4). For Aatt, the process results in a significantly larger product when
compared to the product for Amal. The size of the product directly determines
the time and space complexity of solving the linear equation system required for
computing the state labelling.

Approximate Reduction of Finite Automata 171

As explained in Sect. 4, the computation of the state labelling label2sl can
exploit the “tentacle” structure of the NFAs appearing in NIDSes and thus can
be done component-wise. On the other hand, our experiments reveal that the use
of Reduce typically breaks this structure and thus the component-wise compu-
tation cannot be effectively used. For the NFA Amal, this behaviour does not have
any major performance impact as the determinisation leads to a moderate-sized
automaton and the state labelling computation takes less than 40 s. On the other
hand, this behaviour has a dramatic effect for the NFA Aatt. By disabling the
initial application of Reduce and thus preserving the original structure of Aatt,
we were able to speed up the state label computation from 28.3 min to 1.5 min.
Note that other steps of the approximate reduction took a similar time as before
disabling Reduce and also that the trade-offs between the error and the reduc-
tion factor were similar. Surprisingly, disabling Reduce caused that the com-
putation of the exact probabilistic distance became computationally infeasible
because the determinisation ran out of memory.

Due to the size of the NFA Abd, the impact of disabling the initial applica-
tion of Reduce is even more fundamental. In particular, computing the state
labelling took only 19.9 min, in contrast to running out of memory when the
Reduce is applied in the first step (therefore, the input automaton is not pro-
cessed by Reduce in Table 3; we still give the number of LUTs of its reduced
version for comparison, though). Note that the size of Abd also slows down other
reduction steps (the greedy algorithm and the final Reduce reduction). We
can, however, clearly see that computing the state labelling is still the most
time-consuming step.

5.3 The Real Impact in an FPGA-Accelerated NIDS

Further, we also evaluated some of the obtained automata in the setting of [5]
implementing a high-speed NIDS pre-filter. In that setting, the amount of
resources available for the regex matching engine is 15,000 LUTs5 and the fre-
quency of the engine is 200 MHz. We synthesized NFAs that use a 32-bit-wide
data path, corresponding to processing 4 ASCII characters at once, which is—
according to the analysis in [5]—the best trade-off between the utilization of
the chip resources and the maximum achievable frequency. A simple analysis
shows that the throughput of one automaton is 6.4 Gbps, so in order to reach
the desired link speed of 100 Gbps, 16 units are required, and 63 units are needed
to handle 400 Gbps. With the given amount of LUTs, we are therefore bounded
by 937 LUTs for 100 Gbps and 238 LUTs for 400 Gbps.

We focused on the consumption of LUTs by an implementation of the regex
matching engines for http-backdoor (ARed

bd) and http-malicious (ARed
mal).

– 100 Gbps: For this speed, ARed
mal can be used without any approximate reduc-

tion as it is small enough to fit in the available space. On the other hand, ARed
bd

5 We omit the analysis of flip-flop consumption because in our setting it is dominated
by the LUT consumption.

172 M. Češka et al.

without the approximate reduction is way too large to fit (at most 6 units fit
inside the available space, yielding the throughput of only 38.4 Gbps, which
is unacceptable). The column LUTs in Table 3 shows that using our frame-
work, we are able to reduce ARed

bd such that it uses 894 LUTs (for k = 0.3),
and so all the needed 16 units fit into the FPGA, yielding the throughput
over 100 Gbps and the theoretical error bound of a false positive ≤ 3.4×10−8

wrt the model PHTTP .
– 400 Gbps: Regex matching at this speed is extremely challenging. The only

reduced version of ARed
bd that fits in the available space is the one for the value

k = 0.1 with the error bound almost 1. The situation is better for ARed
mal . In the

exact version, at most 39 units can fit inside the FPGA with the maximum
throughput of 249.6 Gbps. On the other hand, when using our approximate
reduction framework, we are able to place 63 units into the FPGA, each
of the size 224 LUTs (k = 0.6) with the throughput over 400 Gbps and the
theoretical error bound of a false positive ≤ 8.7×10−8 wrt the model PHTTP .

6 Conclusion

We have proposed a novel approach for approximate reduction of NFAs used in
network traffic filtering. Our approach is based on a proposal of a probabilistic
distance of the original and reduced automaton using a probabilistic model of the
input network traffic, which characterizes the significance of particular packets.
We characterized the computational complexity of approximate reductions based
on the described distance and proposed a sequence of heuristics allowing one to
perform the approximate reduction in an efficient way. Our experimental results
are quite encouraging and show that we can often achieve a very significant
reduction for a negligible loss of precision. We showed that using our approach,
FPGA-accelerated network filtering on large traffic speeds can be applied on
regexes of malicious traffic where it could not be applied before.

In the future, we plan to investigate other approximate reductions of the
NFAs, maybe using some variant of abstraction from abstract regular model
checking [42], adapted for the given probabilistic setting. Another important
issue for the future is to develop better ways of learning a suitable probabilistic
model of the input traffic.

Data Availability Statement and Acknowledgements. The tool used for the
experimental evaluation in the current study is available in the following
figshare repository: https://doi.org/10.6084/m9.figshare.5907055.v1. We thank
Jan Kořenek, Vlastimil Košař, and Denis Matoušek for their help with translat-
ing regexes into automata and synthesis of FPGA designs, and Martin Žádńık
for providing us with the backbone network traffic. We thank Stefan Kiefer for
helping us proving the PSPACE part of Lemma 1 and Petr Peringer for test-
ing our artifact. The work on this paper was supported by the Czech Science
Foundation project 16-17538S, the IT4IXS: IT4Innovations Excellence in Science
project (LQ1602), and the FIT BUT internal project FIT-S-17-4014.

https://doi.org/10.6084/m9.figshare.5907055.v1

Approximate Reduction of Finite Automata 173

References

1. The Snort Team: Snort. http://www.snort.org
2. Becchi, M., Wiseman, C., Crowley, P.: Evaluating regular expression matching

engines on network and general purpose processors. In: Proceedings of ANCS 2009,
pp. 30–39. ACM (2009)

3. Kořenek, J., Kobierský, P.: Intrusion detection system intended for multigigabit
networks. In: Proceedings of DDECS 2007. IEEE (2007)

4. Kaštil, J., Kořenek, J., Lengál, O.: Methodology for fast pattern matching by
deterministic finite automaton with perfect hashing. In: Proceedings of DSD 2007,
pp. 823–829. IEEE (2009)

5. Matoušek, D., Kořenek, J., Puš, V.: High-speed regular expression matching with
pipelined automata. In: Proceedings of FPT 2016, pp. 93–100. IEEE (2016)

6. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.S.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. In:
Proceedings of SIGCOMM 2006, pp. 339–350. ACM (2006)

7. Tan, L., Sherwood, T.: A high throughput string matching architecture for intru-
sion detection and prevention. In: Proceedings of ISCA 2005, pp. 112–122. IEEE
(2005)

8. Kumar, S., Turner, J.S., Williams, J.: Advanced algorithms for fast and scalable
deep packet inspection. In: Proceedings of ANCS 2006, pp. 81–92. ACM (2006)

9. Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet inspec-
tion. In: Proceedings of CoNEXT 2007. ACM (2007)

10. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression
evaluation. In: Proceedings of ANCS 2007, pp. 145–154. ACM (2007)

11. Kumar, S., Chandrasekaran, B., Turner, J.S., Varghese, G.: Curing regular expres-
sions matching algorithms from insomnia, amnesia, and acalculia. In: Proceedings
of ANCS 2007, 155–164. ACM (2007)

12. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and memory-efficient
regular expression matching for deep packet inspection. In: Proceedings of ANCS
2006, pp. 93–102. ACM (2006)

13. Liu, C., Wu, J.: Fast deep packet inspection with a dual finite automata. IEEE
Trans. Comput. 62(2), 310–321 (2013)

14. Luchaup, D., De Carli, L., Jha, S., Bach, E.: Deep packet inspection with DFA-
trees and parametrized language overapproximation. In: Proceedings of INFOCOM
2014, pp. 531–539. IEEE (2014)

15. Mitra, A., Najjar, W.A., Bhuyan, L.N.: Compiling PCRE to FPGA for accelerating
SNORT IDS. In: Proceedings of ANCS 2007. ACM (2007) 127–136

16. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for high-
throughput regular-expression pattern matching. In: Proceedings of ISCA 2006,
pp. 191–202. IEEE (2006)

17. Clark, C.R., Schimmel, D.E.: Efficient reconfigurable logic circuits for matching
complex network intrusion detection patterns. In: Y. K. Cheung, P., Constan-
tinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 956–959. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45234-8 94

18. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intrusion detection
with reconfigurable Hardware. In: Proceedings of FCCM 2002, pp. 111–120. IEEE
(2002)

19. Sidhu, R.P.S., Prasanna, V.K.: Fast regular expression matching using FPGAs. In:
Proceedings of FCCM 2001, pp. 227–238. IEEE (2001)

http://www.snort.org
https://doi.org/10.1007/978-3-540-45234-8_94

174 M. Češka et al.

20. Puš, V., Tobola, J., Košař, V., Kaštil, J., Kořenek, J.: Netbench: framework for
evaluation of packet processing algorithms. In: Proceedings of ANCS 2011, pp.
95–96. ACM/IEEE (2011)

21. Maletti, A., Quernheim, D.: Optimal Hyper-Minimization. CoRR abs/1104.3007
(2011)

22. Gawrychowski, P., Jeż, A.: Hyper-minimisation made efficient. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 356–368. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03816-7 31

23. Gange, G., Ganty, P., Stuckey, P.J.: Fixing the state budget: approximation of
regular languages with small DFAs. In: D’Souza, D., Narayan Kumar, K. (eds.)
ATVA 2017. LNCS, vol. 10482, pp. 67–83. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68167-2 5

24. Parker, A.J., Yancey, K.B., Yancey, M.P.: Regular Language Distance and Entropy.
CoRR abs/1602.07715 (2016)

25. Mohri, M.: Edit-distance of weighted automata. In: Champarnaud, J.-M., Maurel,
D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 1–23. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-44977-9 1

26. Malcher, A.: Minimizing finite automata is computationally hard. Theor. Comput.
Sci. 327(3), 375–390 (2004)

27. Hopcroft, J.E.: An N.logN Algorithm for Minimizing States in a Finite Automaton.
Technical report (1971)

28. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

29. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput.
Log. 4(2), 181–206 (2003)

30. Champarnaud, J., Coulon, F.: NFA reduction algorithms by means of regular
inequalities. Theor. Comput. Sci. 327(3), 241–253 (2004)

31. Mayr, R., Clemente, L.: Advanced automata minimization. In: Proceedings of
POPL 2013, pp. 63–74. ACM (2013)

32. Etessami, K.: A hierarchy of polynomial-time computable simulations for
automata. In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR
2002. LNCS, vol. 2421, pp. 131–144. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45694-5 10

33. Clemente, L.: Büchi automata can have smaller quotients. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 258–270. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-22012-8 20

34. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: Proceedings of SFCS 1985, pp. 327–338. IEEE (1985)

35. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov
chains and unambiguous Büchi automata. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 23–42. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41528-4 2

36. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov
Chains and Unambiguous Büchi Automata. CoRR abs/1605.00950 (2016)

37. Mohri, M.: A disambiguation algorithm for finite automata and functional trans-
ducers. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 265–277.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31606-7 23

38. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117–1141 (1993)

https://doi.org/10.1007/978-3-642-03816-7_31
https://doi.org/10.1007/978-3-319-68167-2_5
https://doi.org/10.1007/978-3-319-68167-2_5
https://doi.org/10.1007/3-540-44977-9_1
https://doi.org/10.1007/3-540-45694-5_10
https://doi.org/10.1007/3-540-45694-5_10
https://doi.org/10.1007/978-3-642-22012-8_20
https://doi.org/10.1007/978-3-319-41528-4_2
https://doi.org/10.1007/978-3-319-41528-4_2
https://doi.org/10.1007/978-3-642-31606-7_23

Approximate Reduction of Finite Automata 175

39. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

40. Thollard, F., Clark, A.: Learning stochastic deterministic regular languages. In:
Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 248–
259. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30195-0 22

41. Mayr, R., et al.: Reduce: A Tool for Minimizing Nondeterministic Finite-Word
and Büchi Automata. http://languageinclusion.org/doku.php?id=tools. Accessed
30 Sept 2017

42. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (Tree)
model checking. STTT 14(2), 167–191 (2012)

43. Češka, M., Havlena, V., Hoĺık, L., Lengál, O., Vojnar, T.: Approximate Reduction
of Finite Automata for High-Speed Network Intrusion Detection. Technical report.
CoRR abs/1710.08647 (2017)

44. Češka, M., Havlena, V., Hoĺık, L., Lengál, O., Vojnar, T.: Approximate Reduction
of Finite Automata for High-Speed Network Intrusion Detection. Figshare (2018).
https://doi.org/10.6084/m9.figshare.5907055.v1

45. Hartmanns, A., Wendler, P.: TACAS 2018 Artifact Evaluation VM. Figshare
(2018). https://doi.org/10.6084/m9.figshare.5896615

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/978-3-540-30195-0_22
http://languageinclusion.org/doku.php?id=tools
https://doi.org/10.6084/m9.figshare.5907055.v1
https://doi.org/10.6084/m9.figshare.5896615
http://creativecommons.org/licenses/by/4.0/

	Approximate Reduction of Finite Automata for High-Speed Network Intrusion Detection
	1 Introduction
	2 Preliminaries
	3 Approximate Reduction of NFAs
	3.1 Probabilistic Distance
	3.2 Automata Reduction Using Probabilistic Distance

	4 A Heuristic Approach to Approximate Reduction
	4.1 A General Algorithm for Size-Driven Reduction
	4.2 A General Algorithm for Error-Driven Reduction
	4.3 Pruning Reduction
	4.4 Self-loop Reduction

	5 Reduction of NFAs in Network Intrusion Detection Systems
	5.1 Network Traffic Model
	5.2 Evaluation
	5.3 The Real Impact in an FPGA-Accelerated NIDS

	6 Conclusion
	References

