
DOI: 10.4018/IJSSOE.2018010103

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

﻿
Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

44

A Case Study:
Mobile Service Migration Based
Traffic Jam Detection
M. Mohanned Kazzaz, Brno University of Technology, Brno, Czech Republic

Marek Rychlý, Brno University of Technology, Brno, Czech Republic

ABSTRACT

This article provides a proof-of-concept of the applicability and reusability of the authors proposed
framework for web service migration through a traffic jam detection case study. The framework
migrates mobile hosted web services between mobile vehicles using context-aware self-adaptive
mechanism in order to guarantee service availability and quality. A decision-making process is
implemented to select the best destination vehicle from between the found possible migrations based
on prioritized criteria set.

Keywords
Context-awareness, Mobile Host, Mobile Service, Service Migration

1. INTRODUCTION

Mobile service development and provisioning have become main focuses of nowadays researches
because of the huge improvements in mobile device capabilities and the vast availability of wireless
networks. As in the traditional Service Oriented Architecture (SOA) (Erl, 2005) researches, context-
awareness (Abowd et al., 1999) and self-adaptation (Garlan, Cheng, Huang, Schmerl, & Steenkiste,
2004) have been the main approaches proposed to enable and leverage SOA capabilities in mobile
systems (Papakos, Capra, & Rosenblum, 2010; Hoang; & Chen, 2010; Paspallis, 2008; Alkhabbas,
Spalazzese, & Davidsson, 2017).

Service mobility has been proposed in ad-hoc networks to support services sharing and consuming
on the fly between mobile devices (AlShahwan, Carrez, & Moessner, 2012; Wagh & Thool, 2014;
Zuo & Liu, 2015). A service can be moved to perform location-based tasks (i.e., device tracking or
search for surrounding devices), to process data on other devices and/or to temporally use resources
of available devices in the network (such as processing power or sensors). In order to enable service
mobility between mobile devices, a shared semantic understanding between devices to express the
status of their specifications and requirements. Additionally, it is required to provide a semantic
description to define services specifications and properties. Contextual information such as location,
speed, hosted services, and service description must be semantically presented and dynamically
generated to provide a real-time information and status of the participating devices and services in
the system.

The possibility of having several adaptation plans for a client’s service to move over a set of
possible destination hosts requires a decision making process. This process provides the adaptation

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

45

system with a selection mechanism to decide where to migrate its service based on defined criteria
that affect service quality and system adaptation in different levels.

In this work, we demonstrate a traffic jam detection scenario in peer-to-peer network as the
proof-of-concept to the applicability of the Mobile Web service migration framework in Kazzaz and
Rychlý (2017). The framework is proposed to enable service provisioning and migration in Mobile
SOA by providing system adaptation to context changes of the mobile device resources. The provided
case study presents the reusability of the demonstrated migration framework by adopting a traffic
jam detection scenario and extending system ontology and decision-making process introduced in
(Kazzaz & Rychlý, 2015).

This work is motivated by the traffic jam scenarios presented in (Riva, Nadeem, Borcea, & Iftode,
2013; Weyns, Malek, & Andersson, 2010) where the migration framework is installed on a group
of cooperative cars. A car 𝐴, can plan its route from point 𝑋 to point 𝑌 and investigate a traffic jam
possibility on this route. The traffic jam investigation is performed through migrating TrafficJamSearch
service of car 𝐴 and running it on another car 𝐵 (i.e., a new service provider) located in the area
of interest (AOI) defined by car 𝐴. By calling the migrated service, car 𝐴 will acquire the required
information in order to plan a better route by avoiding traffic jams.

In this example, there are two criteria governing the service migration decision making process:

1. 	 SpeedCriteria: represents the speed difference between a subject car 𝐴 and the destination car
𝐵, and

2. 	 CenterDistanceCriteria: represents the distance of destination car 𝐵 from the AOI’s center of
car 𝐴.

The SpeedCriteria promotes the migration selection to destination car with the speed closest to
the speed of 𝐴. While the CenterDistanceCriteria promotes the selection of service TrafficJamSearch
migration to the car closest to the center of the AOI of car 𝐴.

When a car 𝐵 is chosen as a new destination for the TrafficJamSearch service, the migration
controller on 𝐴 starts the physical migration process to 𝐵. Then, 𝐴 executes a search process on 𝐵
by calling TrafficJamSearch to discover the number of existed cars in 𝐴’s AOI in order to detect
a traffic jam on its planned route. This work adopts the Internet of Things (IoT) approach through
depending on a migrated service that is locally hosted on a mobile device instead of relying on an
external cloud service.

The rest of this paper is organized as follows. Section 2 discusses the related work on context-
awareness and related implementation on traffic jam detection. Section 3 presents the ontology-
based context model provided to describe services and vehicles properties and preferences. Section
4 demonstrates the migration framework for mobile service migration between vehicles. Section 5
provides a detailed description of the framework implementation. Section 6 provides description of
the experiment performed to test the context-aware mobile Web service migration approach through
cooperative vehicles scenario. Finally, the researchers present the work conclusion in Section 7.

2. RELATED WORK

This section presents the related work utilizing context awareness and self-adaptation to solve traffic
jam problems. It discusses the differences between these works and this one.

In (Feld, & Müller, 2011), the authors demonstrated an automotive ontology-based vehicle
and user models to support knowledge sharing between cars and to allow system adaptation and
recommendation based on user’s preferences.

In the work of (Hu, Li, Ngai, Leung, & Kruchten, 2014) context-awareness has been proposed to
enable the usage of several resources of contextual data such as user’s personal activities, social data

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

46

and environment context (i.e., location, temperature). The authors defined an ontology to describe a
mobile smart city system in a crowdsensing scenario. Context-awareness was implemented through
context monitoring and matching of the collected context data and providing system recommendation
to the user.

The authors of (Autili, Cortellessa, Di Benedetto, & Inverardi, 2015) provided a framework for
adaptive context-aware mobile services. They defined a Service Level Specification (SLS) notion to
describe extra-functional information to be used in selecting the proper service during the adaptation.
The adaptation process is presented by rebuilding service source code based on user preferences.
However, the adaptation process is still limited by the need to statically define the adaptable classes
and their alternatives.

The authors in (Deng et al., 2017) propose a peer-to-peer architecture for mobile Web service
selection and composition. The proposed architecture composer is responsible for discovering the
services hosted on nearby mobile devices and composing the required service to respond to a mobile
user service request. However, their proposed algorithm uses only service response time factor to
select the best services to involve in the composition. In the contrast, this work’s framework allows
to use a dynamic set of services’ and devices’ properties and preferences in order to find a set of
possible destinations. Moreover, the work authors utilize the Analytic Hierarchy Process (AHP) (Saaty,
1990) decision making algorithm with a dynamic set of criteria to determine the best migration to
perform. However, this work proposes service migration as an adaptation so that the service can be
migrated and hosted on the requesting device, not only to be used while the requester is close to the
service origin device.

Bauza and Gozálvez, 2013 provided a fuzzy-logic based system to detect road traffic congestion
using Vehicle-to-Vehicle (V2V) communications. The system implements a mechanism of two stages
to detect the congestion. First, it receives information messages published by surrounding cars to
locally estimate the possible congestion. Second, if a congestion is sensed, the system shares and
utilizes other estimations of surrounding cars to make more accurate estimation of the congestion.

Another cooperative aware vehicle communication system is proposed in the work of Santa,
Pereñíguez, Moragón, and Skarmeta, (2014) to provide information about traffic status and events.
A Cooperative Awareness Message (CAM) and Decentralized Environmental Notification Message
(DENM) are proposed to describe exchanged messages between cars stating their current status and
position. While CAM is used for status notification in one-hop communication, DENM messages
are broadcasted over multi-hop communication to cover a specific geographic area. A car hosts
services that allow the system to retrieve its position and status to be used in traffic tracking and
monitoring applications. Compared to their work, the contribution of this work provides a generic
context aware adaptive system that can be customized and utilized in different scenarios including
the traffic monitoring system.

In order to use the mobile Web service migration framework introduced in (Kazzaz & Rychlý,
2017) in a traffic jam detection scenario, we customized and extended the ontology provided in (Kazzaz
& Rychlý, 2015) with new traffic jam domain-specific classes to describe system components models,
properties and related criteria governing the AHP-based decision-making algorithm proposed to
select the best migration to perform. On the other hand, we improved the decision-making algorithm
with new weighting approach during the decision-making process. For example, when weighting
the speed properties based on the speed criterion, a car with speed closer (both higher or lower) to
the source car speed should have higher weight and priority to be selected from between all other
possible destination cars.

3. SYSTEM COMPONENTS CONTEXT REPRESENTATION

System components, status, attributes, and preferences are contextual information that must be
formally described and understood in order to enable system adaptation and context awareness. For

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

47

this purpose, an ontology is utilized to semantically describe system components and their contextual
information. As discussed in Section 2, the researchers customized the Web service migration ontology
proposed in (Kazzaz & Rychlý, 2015) to describe a service migration between devices located on
cars in a cooperative vehicle scenario. The ontology enables the implementation of context reasoner
(for instance, Jena reasoner) to generate new information (facts) about system devices (cars) based on
the collected context. The new derived facts can trigger a context-aware process and lead the service
migration-based adaptation process. In Figure 1, a graphical presentation demonstrates the proposed
ontology-based model supporting service migration in cooperative cars scenario. The model describes
system components of services and service providers. A Service is either a FrameworkService or a
MigratableService. A FrameworkService is a type of service that is hosted to enable the adaptation
process, the communications between system components and publishing the context model of its
hosting service provider. On the other hand, a MigratableService is the type of service that can be
migrated from their current hosting device to another service provider. A service provider SP can be
defined as a CandidateDestinationServiceProvider for a given MigratableService S if SP satisfies the
requirements of S. Similarly, new context information can be generated by the reasoning process of the
context model. For example, a MigratableService S will be noted as a CandidateForMigrationService
if its current service provider SP is no longer capable to host it (i.e., S). Hence, a new information
will be assigned to SP as an instance of CandidateOriginServiceProvider type.

Component properties are presented in the ontology through instances of the Property class. The
utilized example defines the following properties: (1) Speed, (2) CenterDistance, (3) ServicePriority,
and (4) CriteriaProperty. A CriteriaProperty is defined as the criterion that is evaluated in the
decision-making process to choose the most suitable service provider to host the migrated service.
Two criteria are considered in this example, (1) SpeedCriteria, and (2) CenterDistanceCriteria. The
SpeedCriteria is the criterion that values the migration to the car that has the closest speed to the
speed of the source car. While CenterDistanceCriteria values the migration to the car that is closest
to the center of the AOI identified by the source car.

On the other hand, the component context model states the functional and non-functional
preferences and rules using Jena framework (Jena Apache, 2017). A Jena rule is described as a set of
Resource Description Framework (RDF) (World Wide Web Consortium, 2014) triples that can derive
new OWL1/RDF entries in system model. These rules can be reasoned using Apache Jena reasoner
to generate new context entries. Through a continuous context-aware monitoring of system context,
when a violation of the rules is sensed, the system launches an adaptation process of service migration
to a new service provider. In the example scenario, the violation is caused by the traffic information
service’s absence that rises the need to migrate a TrafficJamSearch service to a neighboring car in
order to search and discover the number of surrounding cars so that it can estimate traffic status and
predict traffic jams in an AOI.

4. MOBILE MIGRATION FRAMEWORK ARCHITECTURE

In this section the authors demonstrate the framework architecture supporting service migration in a
cooperative car scenario. For this purpose, the authors consider the migration for one service or more
to be temporally migrated/published on a new destination car (i.e., service provider) that exists in an
AOI identified by the source car. Based on that, the framework’s Controller of the source car will
lead both the context-aware and adaptation processes. On the first hand, the context-aware process
is presented in the system through the following functionalities:

1. 	 Discovering cars located in the AOI of source car.
2. 	 Checking the destination service provider availability.
3. 	 Monitoring the quality of service after migration and deciding if another migration is required.

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

48

On the other hand, system adaptation is presented through the ability of system to migrate the
service to a new car and retrieve the necessary information from the service after the migration.
The provided framework supports stateless service migration and a migration authorization process
based on real-time assessment of destination car rule defined in its context model (for example, the
rule allows service migrations only from cars with the same car manufacture of the destination car).

Figure 2 demonstrates the proposed framework architecture. The architecture consists of the
following modules.

4.1. Discovery Module
The Discovery Module is responsible for a car discovery process and retrieve a list of surrounding
cars located in the AOI of the source car.

4.2. System Context Manager Module
This module is responsible for generating, monitoring and reasoning system context periodically to
enable system context awareness. The module creates the system context model containing all retrieved
partial context models of discovered service providers and the MigratableService model intended for
migration. It is also responsible for generating the partial models of system components that define
a real-time status of their properties and state preference rules of the subject MigratableService and
the surrounding cars.

After creating the system context model of the discovered service providers, the Controller
looks for a destination car that can host MigratableService where the pre-defined rules of both
MigratableService and the destination car can be satisfied.

This process is performed through utilization of an ontology reasoning process of system context
model so that new RDF triples of service provider instances noted as possibleDestinationProvider-s
for the MigratableService will be created in the model. The output of this unit is a list of triple entries
stating the MigratableService, the source car, and the possible destination car.

4.3. Migration Module
This unit is responsible for selecting the best migration to perform from the input set of possible
migrations provided by the System Context Manager Module. It is also responsible for the physical

Figure 1. System model ontology-based representation

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

49

transferring and deploying of the service package on a destination car service provider. The migration
selection is provided through a multi-criteria decision-making process using the AHP decision
making method. A detailed description of the decision-making process is noted in the previous work
of Kazzaz and Rychlý (2015).

5. FRAMEWORK IMPLEMENTATION DESCRIPTION

The framework implementation is provided through two parts, the grounding framework service and
the Android mobile application. The framework service is a Restful-based web service implemented
using the Restlet framework (Louvel, Templier, & Boileau, 2012). It is responsible for publishing
the car/service provider instance in the network in order to be discovered by other cars. The authors
utilize the light-weight stack WS4D-JMEDS (Zeeb, Moritz, Timmermann, & Golatowski, 2010)
designed to support service and device discovery in ad-hoc network. The discovery process is enabled
by creating and starting JMEDS device instance on the mobile device. An example URI request to
perform a discovery process on destination car is:
http://{IP}:{Port}/FrameworkService/discover/centerLng/
{centerLng}/centerLat/{centerLat}

The service provider has the functionalities to retrieve car’s context model, GPS location, speed
(provided by the Google location service on Android device), and the position of its AOI. Moreover,
it provides the functionalities required for the physical migration and installation of service’s WAR
packages on the new host device. The context model of a MigratableService is integrated in its WADL
file while the context model of each service provider can be retrieved by calling the FrameworkService
method getProviderContext through the following URI:
http://{IP}:{Port}/FrameworkService/getProviderContext/json

The service migration Android application is responsible for the following tasks:

1. 	 Discovery process of cars located in a defined area of interest.
2. 	 Generating system context model by adding the context models of discovered cars.
3. 	 System context model reasoning and migration suggestion process.
4. 	 Performing the migration decision making process.
5. 	 Publishing TrafficJamSearch service on the selected destination car service provider.
6. 	 Calling TrafficJamSearch service to retrieve the information of traffic status in the defined area.

Figure 2. Mobile Web service migration framework architecture

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

50

The context model of a car is retrieved in JSON format by calling the getProviderContext method
of its framework service. Based on its IP, a car is identified in the network, and its context model can
be retrieved in order to create system context model as explained in Section 4.2.

When car 𝐴 launches the traffic jam detection process over a certain area on its route, it starts
searching for a car in that area to host its TrafficJamSearch service. When a car 𝑋 is discovered,
the source car 𝐴’s framework application requests the location and speed information of car 𝑋 to
determine whether the discovered car 𝑋 exists in its AOI or not based on the distance between the car
𝑋 location and car 𝐴’s AOI center. Only cars located in that area will be considered in the migration
process so that the framework will request its context model to include their properties and preferences
in the model reasoning process.

The framework application calculates the distance of each discovered car from the center of the
AOI of car 𝐴 and adds it to the system model as a CenterDistance property of the related car. The
calculation of CenterDistance uses the precise location of discovered car and the AOI center location
of the source car. Similarly, the most recent speed values of discovered cars are added to the system
model as Speed properties. The authors choose to consider average speed (estimated during the last
60 seconds) and precise location values to 1) keep the decision making more reliable and realistic
and 2) to avoid system failure of service migration to a car with an outdated location.

Finally, the AHP algorithm starts to weight the migrations based on two criteria: (1)
CenterDistanceCriteria; and (2) SpeedCriteria, so that the migration with the destination car closer
to the center of the AOI will have a higher weight to be chosen by the decision-making process.
Similarly, the car with a speed that is equal or around 𝐴’s speed will be more highly chosen as a
destination car. Finally, the decision-making process chooses the best destination with the highest
composite weight calculated based on the aforementioned criteria.

The physical migration of the subject MigratableService is provided through calling the
FrameworkService methods that enable sending and deploying the MigratableService WAR package
on the matching destination car. The Controller calls the following URI to perform the migration of
MigratableService’s implementation from source to destination:
http://{destination.IP}:{destination.Port}/FrameworkService/
download/{source.IP}/port/{source.Port}/temp/{source.TempFolder}/
service/{MigratableServiceWAR}

6. EXPERIMENT AND RESULTS

This section presents a scenario of traffic jam detection service migration from one car to another
in order to perform a car discovery process and avoid traffic jams over a specific route. In this
experiment, the authors use 3 Genymotion Android emulators and one real mobile device as service
providers. Each device represents a car on a planned route of a single lane where cars go from point
A to point B. Speeds of the emulator devices are mocked to have random values between 10 to 40
km/h while a fixed speed is set to 20 km/h for the source car. To present the possibility of setting
rules for migration process, the authors set a rule for Car3 to not accept services with a priority less
than 70%. The subject migratable service, TrafficJamSearch, has a priority property of 50%.

The researchers initialize the locations of these cars with 100 meters distance between them
consequently. Figure 3 demonstrates the interface visualizing the route and the AOI of the subject
car, Car1, is marked as a red circle. Each car is presented in a blue marker when located inside the
AOI of Car1.

On Car1, the framework starts searching for other cars located in its AOI looking for a suitable
destination car to host its search service so that it can call TrafficJamSearch service on its new
location and can get feedback about the status of traffic in that area. The area of interest, is set to be
200 meters ahead from Car1 with a diameter of 100 meters.

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

51

At first the framework on Car1, starts searching for neighboring cars. When a car is found, The
Car1 framework requests the FrameworkService hosted on the discovered car to get its current location
and check whether the discovered car is located inside Car1’s AOI to consider in the migration process
or not. After having a list of discovered cars, Car1 framework starts to create system context model
of the discovered cars and the subject TrafficJamSearch context models.

In Figure 5, the discovered cars are presented with their distances from the center of Car1 AOI.
To demonstrate the decision-making process, the authors choose the situation when the three cars are
located inside Car1’s AOI. Table 1 contains the Speed and CenterDistance properties of the cars during
the example’s migration decision. At this moment, the framework suggests two possible migration of

Figure 3. Application interface showing the planned route and surrounding cars during the experiment example

Table 1. Cars properties during migration example

Car Name CenterDistance (m) Speed (km/h)

Car1 Not applicable 20

Car2 41.54 18

Car3 17.5 30

Car4 12.34 24

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

52

the subject service. Mig A and Mig B, Mig A suggests the migration of the TrafficJamSearch to Car2
while Mig B suggests the migration to Car4. Even though Car3 is located inside the specified area
but it is not chosen as a destination to host the service regarding to Car3’s preference that allows it to
host only services with priorities higher that 70% while the TrafficJamSearch has a priority of 50%.

The next step for the framework to perform is to decide which one of this migration is best
to execute. This is decided based on the AHP process using the defined criteria priorities and the
related properties of the migration destinations. To enable the AHP decision making method, the
defined criteria priorities must ∈ {1, 3, 5, 7, 9} which gives weight to a criterion respectively from
the lowest priority of 1 to the highest priority of 9. For this experiment, the priority of SpeedCriteria
and CenterDistanceCriteria is set to 9 and 3 respectively.

In respect of the criteria proiorties, the criteria comparison matrix 𝐴 is initiated using the AHP-
based InitializeCriteriaMatrix algorithm, (see Figure 4), introduced in the previous work (Kazzaz
& Rychlý, 2015). 𝐴 is a square matrix of real numbers with a dimensions 𝑚 × 𝑚, where 𝑚 is the
number of considered criteria. Each 𝐴’s entry states the weight of the considered criterion to other
criteria based on their priorities. To set 𝐴 entries, the InitializeCriteriaMatrix algorithm performs
pair-wise evaluation between each two criteria and maps the difference between their CriteriaPriority
values to a value ∈ {1, 3, 5, 7, 9} or its reciprocal. The criteria comparison matrix generated by
InitializeCriteriaMatrix is demonstrated in Table 2. According to the defined criteria priorities, the
criteria comparison matrix entries show that service migration to a car D1 with a speed closer to the
speed of the source car is 7 times important than service migration to a car D2 located closer to the
interest area center of the source car than car D1.

Similarly, the AHP algorithm initiates for each criterion a pair-wise migration weight comparison
matrix with dimensions 𝑛 × 𝑛, where 𝑛 is the number of the possible migrations, based on the
migration properties related to that criterion. The CenterDistance property is governed by the
CenterDistanceCriteria. The CenterDistanceCriteria and CenterDistance are proportional so that the
CenterDistance property will have the highest weight of 50 when equals to 0 meter (i.e., located in
the middle of AOI) while it will have the lowest weight when it equals to 50 meters (i.e., located on
the boundary of AOI). On the other hand, Speed property is governed by the SpeedCriteria which is
dynamically calculated by the algorithm based on the current speeds of cars existed in the AOI. For
each migration the algorithm queries the system context model for the current cars speeds. Later, the
algorithm evaluates the weights of each car’s Speed property based on the speed of the source car
so that the car that has speed slightly different and closer to the speed of source car will have higher
weight to be chosen as a destination car. On the contrary, the car with a speed that significantly differs
from the source car’s speed will have lower weight and will be less likely to be chosen as a destination
car based on the SpeedCriteria factor. The migration comparison matrices are provided in Table 3.

Finally, the AHP algorithm computes the composite weight vector 𝑝 through Equation 1 and the
migration related to the highest value from between 𝑝 entries will be chosen and executed.

p V W = i 	 (1)
where 𝑉 is the 𝑛 × 𝑚 matrix of priority vectors of migration comparison matrices and 𝑊 is the weight
vector of matrix A. The computed weights of the possible migrations are noted in Equation 2.

p =












0 677

0 323

.

.
	 (2)

where p
11

 and p
21

 entries represent the weights of Mig A and Mig B respectively. Based on the
highest value of composite weight vector p , Mig A will be performed as it has the highest priority
(p

11
= 0.677).
This experiment is repeated 10 times in order to measure the time spent to perform the migration

process and its sub processes. The experiment shows that the average time for the whole migration
process is 7.5 Sec while the average time to create system context model and perform the ontology
inferencing process is 4.136 Sec and the time to make the decision using the AHP algorithm is 0.251

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

53

Sec. Based on the experiment settings, the authors see that the required migration time is acceptable
as the source car, moving with a speed of 20 km/h, will cross almost 40 meters only while performing
the migration. This leaves the car 160 meters away from its AOI which means it will have enough
distance for the routing system to call the TrafficJamSearch service and re-plan the route if necessary.

The result shows the validity of the proposed approach to solve a problem of traffic information
service absence in a real-time application through a seamless context-aware service migration
adaptation.

7. CONCLUSION

The authors designed and implemented a framework for TrafficJamSearch service migration between
cars to support traffic jam detection over a specified area. The experiment result demonstrates the
usability of the implemented framework supporting service mobility between mobile devices.

Figure 4. The InitializeCriteriaMatrix algorithm to compute a pair-wise criteria comparison matrix for AHP based on Criteria
priorities of individual criteria

Table 2. Main criteria comparison matrix and its priority vector

𝜆𝑚𝑎𝑥 = 2, 𝐶𝐼 = 0; 𝐶𝑅 = 0

CenterDistanceCriteria SpeedCriteria Priority vector - 𝑊

CenterDistanceCriteria 1.0 0.14 0.125

SpeedCriteria 7.0 1.0 0.875

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

54

Moreover, it presents the applicability of the proposed service migration adaptation approach to
survive service absence during route planning as real-life scenario.

For future work, the researchers plan to improve the proposed adaptation approach due to the
highly volatile system environment and migration criteria by performing multiple migrations to all
discovered cars with post-evaluation of those migrations. Which means that the subject service will be
migrated directly to any discovered car where the matching and reasoning process will be performed
locally on the discovered car. This delegation of this reasoning process to the discovered car will help
to improve system performance. Thus, the source car can start using a migrated service and later
decide which one and only of its migrated instances is the optimal choice to keep and utilize while
all other service instances will be removed. Another considered improvement is to optimize the speed
estimator and the defined AOI’s diameter through new experiments for more reliable experience.

Acknowledgements: This work was supported by The Ministry of Education, Youth and Sports of
the Czech Republic from the National Programme of Sustainability (NPU II) – project IT4Innovations
excellence in science LQ1602 and BUT internal grant “ICT tools, methods and technologies for
smart cities” FIT-S-17-3964.

Table 3. Migrations comparison matrices and priority vectors

Migration Comparison Matrix with regard to CenterDistanceCriteria

»
max
= 2 , 𝐶𝐼 = 0, 𝐶𝑅 = 0

Mig A Mig B Priority vector – V
1()

Mig A 1.0 0.2 0.166

Mig B 5.0 1.0 0.833

Migration Comparison Matrix with regard to SpeedCriteria

»
max
= 2 , 𝐶𝐼 = 0, 𝐶𝑅 = 0

Mig A Mig B Priority vector – V
2()

Mig A 1.0 3.0 0.75

Mig B 0.33 1.0 0.25

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

55

Figure 5. Mobile Web service migration framework application

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

56

REFERENCES

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999, September). Towards a
better understanding of context and context-awareness. In International Symposium on Handheld and Ubiquitous
Computing (pp. 304-307). Berlin: Springer. doi:10.1007/3-540-48157-5_29

Alkhabbas, F., Spalazzese, R., & Davidsson, P. (2017, April). Architecting emergent configurations in the
internet of things. In 2017 IEEE International Conference on Software Architecture (ICSA) (pp. 221-224).
IEEE. doi:10.1109/ICSA.2017.37

AlShahwan, F., Faisal, M., Karaata, M. H., & AlShamrani, M. (2015). RESTful-Based Bi-level Distribution
Framework for Context-Based Mobile Web Service Provision. JSW, 10(3), 260–287. doi:10.17706/jsw.10.3.260-
287

Autili, M., Cortellessa, V., Di Benedetto, P., & Inverardi, P. (2015). On the adaptation of context-aware services.
arXiv:1504.07558

Bauza, R., & Gozálvez, J. (2013). Traffic congestion detection in large-scale scenarios using vehicle-to-
vehicle communications. Journal of Network and Computer Applications, 36(5), 1295–1307. doi:10.1016/j.
jnca.2012.02.007

Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., & Zomaya, A. Y. (2017). Mobility-aware service composition
in mobile communities. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 47(3), 555–568.
doi:10.1109/TSMC.2016.2521736

Erl, T. (2005). Service-oriented architecture: concepts, technology, and design. Pearson Education India.

Feld, M., & Müller, C. (2011, November). The automotive ontology: managing knowledge inside the vehicle
and sharing it between cars. In Proceedings of the 3rd International Conference on Automotive User Interfaces
and Interactive Vehicular Applications (pp. 79-86). ACM. doi:10.1145/2381416.2381429

Garlan, D., Cheng, S. W., Huang, A. C., Schmerl, B., & Steenkiste, P. (2004). Rainbow: Architecture-based
self-adaptation with reusable infrastructure. Computer, 37(10), 46–54. doi:10.1109/MC.2004.175

Hoang, D. B., & Chen, L. (2010, December). Mobile cloud for assistive healthcare (MoCAsH). In Services
Computing Conference (APSCC), 2010 IEEE Asia-Pacific (pp. 325-332). IEEE.

Hu, X., Li, X., Ngai, E., Leung, V., & Kruchten, P. (2014). Multidimensional context-aware social network
architecture for mobile crowdsensing. IEEE Communications Magazine, 52(6), 78–87. doi:10.1109/
MCOM.2014.6829948

Jena, A Semantic Web Framework for Java, URL: http://jena.apache.org/

Kazzaz, M. M., & Rychlý, M. (2015, June). Web Service Migration using the Analytic Hierarchy Process. In 2015
IEEE International Conference on Mobile Services (MS) (pp. 423-430). IEEE. doi:10.1109/MobServ.2015.64

Kazzaz, M. M., & Rychlý, M. (2017, June). Restful-based Mobile Web Service Migration Framework. In 2017
IEEE International Conference on AI & Mobile Services (AIMS) (pp. 70-75). IEEE. doi:10.1109/AIMS.2017.18

Louvel, J., Templier, T., & Boileau, T. (2012). Restlet in action: developing restful web apis in Java. Manning
Publications Co.

Papakos, P., Capra, L., & Rosenblum, D. S. (2010, November). Volare: context-aware adaptive cloud service
discovery for mobile systems. In Proceedings of the 9th International Workshop on Adaptive and Reflective
Middleware (pp. 32-38). ACM. doi:10.1145/1891701.1891706

Paspallis, N., Rouvoy, R., Barone, P., Papadopoulos, G. A., Eliassen, F., & Mamelli, A. (2008, November). A
pluggable and reconfigurable architecture for a context-aware enabling middleware system. In OTM Confederated
International Conferences” On the Move to Meaningful Internet Systems” (pp. 553-570). Berlin:Springer.
doi:10.1007/978-3-540-88871-0_40

Riva, O., Nadeem, T., Borcea, C., & Iftode, L. (2007). Context-aware migratory services in ad hoc networks.
IEEE Transactions on Mobile Computing, 6(12), 1313–1328. doi:10.1109/TMC.2007.1053

http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1109/ICSA.2017.37
http://dx.doi.org/10.17706/jsw.10.3.260-287
http://dx.doi.org/10.17706/jsw.10.3.260-287
http://dx.doi.org/10.1016/j.jnca.2012.02.007
http://dx.doi.org/10.1016/j.jnca.2012.02.007
http://dx.doi.org/10.1109/TSMC.2016.2521736
http://dx.doi.org/10.1145/2381416.2381429
http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1109/MCOM.2014.6829948
http://dx.doi.org/10.1109/MCOM.2014.6829948
http://jena.apache.org/
http://dx.doi.org/10.1109/MobServ.2015.64
http://dx.doi.org/10.1109/AIMS.2017.18
http://dx.doi.org/10.1145/1891701.1891706
http://dx.doi.org/10.1007/978-3-540-88871-0_40
http://dx.doi.org/10.1109/TMC.2007.1053

International Journal of Systems and Service-Oriented Engineering
Volume 8 • Issue 1 • January-March 2018

57

Saaty, T. L. (1990). Decision making for leaders: the analytic hierarchy process for decisions in a complex
world. RWS publications.

Santa, J., Pereñíguez, F., Moragón, A., & Skarmeta, A. F. (2014). Experimental evaluation of CAM and DENM
messaging services in vehicular communications. Transportation Research Part C, Emerging Technologies, 46,
98–120. doi:10.1016/j.trc.2014.05.006

Wagh, K., & Thool, R. (2014). Mobile Web Service Provisioning and Performance Evaluation of Mobile Host.
International Journal on Web Service Computing, 5(2), 1–10. doi:10.5121/ijwsc.2014.5101

Weyns, D., Malek, S., & Andersson, J. (2010, May). On decentralized self-adaptation: lessons from the trenches
and challenges for the future. In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems (pp. 84-93). ACM. doi:10.1145/1808984.1808994

World Wide Web Consortium. (2014). RDF 1.1 Concepts and Abstract Syntax. Retrieved from http://www.
w3.org/TR/rdf11-concepts/

Zeeb, E., Moritz, G., Timmermann, D., & Golatowski, F. (2010, September). Ws4d: Toolkits for networked
embedded systems based on the devices profile for web services. In 2010 39th International Conference on
Parallel Processing Workshops (ICPPW) (pp. 1-8). IEEE.

Zuo, Y., & Liu, J. (2015, April). Mobile agent-based service migration. In 2015 12th International Conference
on Information Technology-New Generations (ITNG) (pp. 8-13). IEEE. doi:10.1109/ITNG.2015.7

ENDNOTES

1 	 https://www.w3.org/OWL/

M. Mohanned Kazzaz is currently a Ph.D. student in the Department of Information Systems at Brno University of
Technology, Faculty of Information Technology (BUT FIT). He received the B.Eng. degree in Computer Engineering
from the University of Aleppo, Syria, in 2007. His research interests are in the area of Software Engineering and
more specifically in development of self-adaptive software architectures. Kazzaz published five conference papers
and one article related to his dissertation topic.

Marek Rychlý is an assistant professor at Brno University of Technology, Faculty of Information Technology. His
research interests include component-based and service-oriented architectures, formal description of software
architectures and their evolution, functional and quality-driven automatic web services composition and testing,
big data and distributed software systems. He authored more than 25 papers in reviewed scientific journals and
conference proceedings.

http://dx.doi.org/10.1016/j.trc.2014.05.006
http://dx.doi.org/10.5121/ijwsc.2014.5101
http://dx.doi.org/10.1145/1808984.1808994
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://dx.doi.org/10.1109/ITNG.2015.7

