
Efficient Lossy Compression of Ultrasound Data

Petr Kleparnik∗, Pavel Zemcik∗, and Jiri Jaros†
∗Department of Computer Graphics and Multimedia, †Department of Computer Systems

Faculty of Information Technology, Brno University of Technology
Brno, Czech Republic

ikleparnik@fit.vutbr.cz, zemcik@fit.vutbr.cz, jarosjir@fit.vutbr.cz

Abstract—Large-scale numerical simulations of high-
intensity focused ultrasound (HIFU), important for model-
based treatment planning, generate large amounts of data.
Typically, it is necessary to save hundreds of gigabytes during
simulation. We propose a novel algorithm for time varying
simulation data compression specialized for HIFU. Our ap-
proach is especially focused on the on-the-fly parallel data
compression during simulations. Now, we are able to compress
3D pressure time series of linear and nonlinear simulations
with very acceptable compression ratios and errors (over 80 %
of the space can be saved with an acceptable error). The
proposed compression will be helpful for significant reduction
of resources, such as storage space, network bandwidth, CPU
time, etc., enabling better treatment planning using fast volume
data visualizations. The paper describes the proposed method,
its experimental evaluation, and comparison to the state of the
art.

Index Terms—compression, ultrasound simulation, high in-
tensity focused ultrasound, k-Wave toolbox

I. INTRODUCTION

High-intensity focused ultrasound (HIFU) is an emerging
non-invasive therapy. The focused beam of ultrasound, typ-
ically made using a big transducer, is sent into the tissue.
The cells of tissue in a localized region are rapidly heated
which causes the tissue death while the surrounding tissue
is left unharmed. Large-scale numerical HIFU simulations
are important for precise model-based treatment planning
(precise placement of the focus and dosage assessment [1]).

However, two key challenges must be addressed. First, it
is necessary to create an acoustic and thermal model that
is physically complex due to heterogeneous medium and
nonlinear wave propagation. Second, the simulations are
computationally very intensive and expensive as they must
be executed on large domains with billions of gridpoints [2].
Although the computational requirements have been allevi-
ated by a distributed multi-GPU implementation [1], [2], the
amount of generated data quickly becomes unmanageable;
moreover, the I/O operation becomes a dominating factor of
the simulation run time [1], [3].

Due to large distances traveled by the ultrasound waves
relative to the wavelength of the highest harmonic frequency
and in order to set precise results and applications in medical
treatments, very large simulations have to be performed. At
the time being, the resolutions of the ultrasound simulation
grid come up to 4096×2048×2048 in 3D space. Usually,
a few time steps in a small area encompassing the focus

(sensor mask) or a discontinuous field of point sensors have
to be sampled and saved for further processing, e.g. thermal
modelling [1], [3]. A typical size of sampled data reaches
0.5TB.

In this paper, we present a novel compression method
for time-varying HIFU simulation data (acoustic pressure
and velocity). Our approach is focused on the on-the-fly
parallel data compression during distributed simulation in
which, every grid point of interest in 3D space is processed
separately.

At this point, we have ready an experimental implemen-
tation of the compression method for the offline datasets
processing. We have made first experiments on datasets
representing clinical situations with heterogeneous tissue.
The results show very promising compression ratios and
errors.

II. RELATED WORK

Generally, specialised sophisticated compression methods
for various application data exists but no any compression
method/tool designed especially for HIFU simulation data
exists. The most relevant works are focused on the com-
pression of signals gained by ultrasonic imaging.

3D Ultrasound Computed Tomography (USCT) data can
be reduced with a compression method based on discrete
wavelet transform [4]. Many techniques have been applied
to process 1D ultrasonic signals (e.g. Matching Pursuit,
1-D discrete cosine transform (DCT), Walsh-Hadamard
transform (WHT)) [5], [6]. Radio frequency (RF) signals
after analog to digital conversion before beamforming are
compressed with techniques such as peak gates (PG), trace
compression (TC), largest variation (LAVA), linear predic-
tive coding (LPC), or also with well-known ZIP, JPEG or
MPEG [7], [8]. Some of the mentioned techniques should be
applied to the HIFU simulation data; however, they are not
focused on the on-the-fly parallel data compression during
the large-scale simulations.

Methods designed for on-the-fly data compression are
audio codecs. We tried some best-known state-of-the-art
codecs, such as MP3, MPEG-4 ACC, OGG, FLAC, OPUS
and ADPCM, but most of these methods had worse com-
pression ratio under comparable peak signal-to-noise ratio
(with the settings of the best possible quality), than the
proposed method for HIFU data. The main reason for this

2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

978-1-5386-4662-5/17/$31.00 ©2017 IEEE

232

is that some of these methods are based on discarding
irrelevancies and redundancies in signal by applying the
psychoacoustic features of human perception that tolerates
loss of some signal features. However, this is inapplicable
on HIFU ultrasound signals.

III. PROPOSED METHOD

A typical HIFU simulation output contains two basic
types of datasets - 3D spatial data, e.g. maximum pressure at
defined grid points, and 4D spatial-temporal datasets with
time-varying pressure series at defined grid points. In 3D
datasets, its aggregated values are stored (min, max, rms)
or its final values across the whole simulation domain. In
case of time-varying 4D datasets, acoustic pressure, acoustic
velocity and intensity can be stored across the defined set
of locations (sensor mask).

Our compression method is focused on time-varying
signals and designed to 1D. Since the sensor mask can be
an arbitrary and sparse set of locations, we are not dealing
with spatial coherence. Moreover, by treating every spatial
gridpoint independently, there is no need for additional
communication on distributed clusters. The goals of the
compression method are low memory complexity and high
computation speed. Small errors are not so significant. These
are the main features that differ from other state-of-the-art
compression approaches.

The input signal is emitted from a transducer into the
modeled tissue where it interacts with the tissues. Multiple
intersecting beams of ultrasound are concentrated on a
target. Some phenomena such as attenuation, time delay,
scattering or non-linear distortion may occur during the
propagation. HIFU simulations inputs are always defined by
a known harmonic function of a given frequency, usually a
pressure sinusoid of 1-2 MHz.

We can assume that the time-varying quantities such as
pressure and velocity at every grid point have a harmonic
character as well with only small amplitude and phase
changes. They are usually amplitude modulated and they can
be composed of the basic and several harmonic frequencies.
The number of harmonics depends on simulation grid size
and the coefficient of nonlinearity. At this time, we have up
to 5-6 harmonics for real simulations which corresponds to
HIFU in thermal mode. However, for histotripsy, as many
as 50 harmonics may be needed.

A typical sampled pressure signal recorded at one grid
point is shown in Figure 1. An output signal, contain-
ing, eg. time-variable acoustic pressure, can be divided on
three stages according to the amplitude magnitude and its
changes. In the first stage, the signal has a character of noise
with the amplitude close to zero. The length of this stage
depends on the distance of the sampled grid point from the
transducer. The second stage has a big amplitude rise (an
incoming edge). This transient stage is usually very short,
approx 4 % of the total simulation length. The third stage

has a relatively steady amplitude. This part of signal is the
most important part to calculate heat deposition. The steady
stage usually starts at the moment when all waves emitted
from the transducer have arrived at the focus point.

0.95 1 1.05 1.1 1.15 1.2

Time step ×104

-4

-2

0

2

4

P
re

s
s
u
re

 (
P

a
)

×105

Fig. 1. The illustration of a HIFU simulation signal at one point in 3D
space.

The proposed approach is to model an output signal such
as a decomposition of a 1D signal (one point in 3D space) to
sum of overlapped exponential basis multiplied by a window
function. Each base is defined by its complex coefficients
(amplitude and phase respectively). We decided to use com-
plex exponential basis because such basis can well represent
base harmonic function including phase changes as well as
its higher harmonics, and window functions whose sum is
constant if they are half-overlapped, because of on-the-fly
processing by parts of signal.

It is important that the input frequency emitted by the
transducer is known and can be used by the compression
algorithm. A complex exponential function with the angular
frequency ω can be defined for one time step n as

f(n) = e−jhωn (1)

where h is number of harmonic frequency (wave number),
that can be generated by nonlinear wave propagation. By
multiplying by a window function w (e.g. Triangular win-
dow or Hann window) defined as

w(n, a)

{
0 ad > n > ad+ 2d

w0(n− ad) otherwise
(2)

where d is half-width of the window, we obtain a linearly
independent sliding window basis of width 2d

b(n, a) = f(n)wa(n, a) (3)

where a is the basis (frame) index. The half-width d
should be an integer multiply of the input period (1/f)
because typically leads to more precise results. The whole
reconstructed signal can be expressed as

s(n) =

N/d∑
i=0

b(n, i)k̂(i) (4)

where N is the length of the signal, I is the number of
complex frames (I = floor(N/d)), and k̂(i) are desired
complex coefficients.

2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

233

An example of three half-overlapped windows and the
real part sum of window functions with 2d = 4/f is shown
in Figure 2.

50 100 150 200 250 300 350 400

Time step

-2

-1

0

1

2

A
m

p
lit

u
d

e

Three Hann windows

Sum of windowed basis

Fig. 2. The illustration of three Hann window bases.

The complex coefficients are computed approximately by
correlation (dot product) of the original signal x and the
windowed exponential basis for a selected frame i as

k̂(i) =

N/d∑
i=0

b(n, i)x(i)) (5)

The coefficients for other harmonic frequencies can be
computed independently (as they are linearly independent)
and are summed in reconstruction phase.

Every point in 3D space can be processed separately and
in parallel within both encoding and decoding phase.

Within the coding phase, two dot products are gradually
computed for one time step (one signal sample), because of
two overlapped window basis components. The amount of
memory c (the number of single precision floating numbers),
necessary for computing interim results in one step depends
on number of harmonics H and it can be evaluated as

c = 4H (6)

because we need two complex numbers for every harmonic.
Within the decoding phase, the amount of memory is

the same as in the encoding phase We need two complex
coefficients for every harmonic frequency, but the decoded
samples are computed independently, which can be useful
e.q. for fast data visualization.

The compression ratio of the presented method is com-
puted as

CR = length(x)/(length(k̂)2H) (7)

and it is linearly dependent on width 2d of the overlapping
basis.

This method of signal modeling yields in a very small
error for the steady part of signal where the error depends
only on the number of harmonic frequencies considered. In
the transient part of the signal the error is bigger.

IV. IMPLEMENTATION

We currently implementation in Matlab intended for
experiments with 1D signals only, and in C++ version
for processing large 4D datasets. For now, both versions
processes the simulation data sequentially and offline by
reading HDF5 datasets. Parallel on-the-fly implementation
is planned as a future step.

The Matlab version was developed especially for process-
ing 1D data (time series at a single grid point). It mediates
simple ways for the compression method debugging, com-
parison with other coding methods (e.g. audio codecs) and
the visualizations of processing steps and results.

The C++ version differs from the Matlab in processing
of large amount of 4D data. Individual HDF5 datasets are
loaded by 3D blocks depending on the main memory size.
Output coefficients are stored into new datasets for every
harmonic frequency.

For the moment, both implementations are tested on a
desktop computer with 24 GB DDR4 RAM, Intel Core i5-
6500 CPU and ASUS Z170 PRO GAMING motherboard.
For experiments with extensive HDF5 files, the Salomon
cluster with 128 GB DDR4 RAM, 2 × Intel Xeon E5-
2680v3 processors and Lustre shared storage space with
maximal theoretical throughput 6 GB/s for one computing
node is used. Our source codes are multiplatform. We will
provide the link to the source codes on request by email.

We are planning to deploy the compression algorithm in
parallel environment during a HIFU simulation. The main
advantage will be the possibility to avoid storing the whole
output simulation data, that will save much storage space of
a lot of time required IO operations.

V. EXPERIMENTS AND RESULTS

Two sets of experiments were performed. The first set was
focused on testing the compression method on 1D signals
while the the second type of experiments were made with
large 4D datasets. A Triangular window was used as a
window function for all the experiments. The main purposes
of the experiments were to get the peak signal-to-noise ratio
(PSNR) with respect to the compression ratio (CR), and
to compare the proposed method with other compression
methods, especially with 1D audio codecs.

For 1D signals Matlab compression tests, 6 different sig-
nals were selected from 5 different HDF5 files. We always
chose a 1D signal with the maximal absolute amplitude
within the whole dataset. The schematic overview of test
signals is shown in Table I.

The signals differed mainly in the simulation size, sensor
mask size, number of sampled simulation steps, input period
and type of the simulation. The sensor mask was always de-
fined within the highly focused HIFU area where the highest
amplitude and the most harmonics are observed and was not
sparse in these examples. The signal named S15 SC1 ux
contains particle velocity for x-axis, other signals contain

2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

234

TABLE I
THE TYPES OF MATLAB TESTING SIGNALS

Name Description Simulation size Sensor mask size Time steps Period

Linear Linear (1 harmonic), acoustic pressure 256×256×350 55×55×82 3301 15

S15 SC1 Nonlinear (max cca 2 harmonics), acoustic pressure 512×384×384 101×101×101 10105 35

S15 SC1 ux Nonlinear (max cca 2 harmonics), particle velocity 512×384×384 101×101×101 10105 35

S15 SC5 Nonlinear (max cca 6 harmonics), acoustic pressure 1536×1152×1152 101×101×101 30604 106

Non-realistic Nonlinear (max cca 6 harmonics), acoustic pressure 192×192×128 172×172×108 1945 65

TABLE II
TESTED CODECS AND THEIR SETTINGS

Codec Settings

ADPCM Input: 16-bit WAV, ffmpeg adpcm ms

FLAC Bits per sample: 24, lossless

MP3 Bit rate: 320

MP4 Bit rate: 192

OGG Quality: 100

Opus Input: 16-bit WAV

HCM Multiple of overlap size: 1

HCM16bit Multiple of overlap size: 1, compression
output converted to 16-bit values

acoustic pressure. The signal named Linear is the output of
a linear simulation, thus there are no harmonics. The other
signals are the outputs from nonlinear simulations and the
number of harmonics depends, among other things, on the
simulation resolution. Thus, e.g. a realistic simulation that is
a representative of the clinical situation with heterogeneous
tissue with simulation grid size 1536×1152×1152 contains
about 6 significantly strong harmonics (named S15 SC5).
The same simulation (named S15 SC1), but with a smaller
simulations grid size (512×384×384), has only 2 harmon-
ics. We also generated a smaller simulation non-linear data
with higher number of harmonics (named Non-realistic) for
testing purposes.

The Matlab compression experiments compare the re-
sults of the proposed compression method (HCM) with
several audio codecs, specifically with ADPCM (ffmpeg
adpcm ms), FLAC (lossless), MP3, MP4, OGG, Opus and
WAV. All of the codecs were set to the best compression
quality. The settings of the codecs including the proposed
method is shown in Table II. The mentioned coding methods
were selected for the comparison only. None of them have
the appropriate computational properties for implementation
in parallel distributed environment, possibly apart from
ADPCM.

Since several audio codecs require the signal to be nor-
malised on 〈0, 1〉 interval, we used the maximal absolute
signal value for the normalization. In some cases, the input
signal had to be first saved as a 16-bit WAV file before the
codec could be applied (ADPCM, Opus). This conversion

ADPCM FLAC MP3 MP4 OGG Opus HCM HCM16bit

Compression method

0

20

40

60

80

100

P
S

N
R

0

5

10

15

C
o
m

p
re

s
s
io

n
 r

a
ti
oCR (:1) PSNR

Fig. 3. PSNR and CR for different methods with Linear 1D signal.

TABLE III
RESULTS FOR LINEAR 1D SIGNAL.

ADPCM FLAC MP3 MP4 OGG Opus HCM HCM16bit
CR (:1) 6.1 1.7 2.8 4.2 2.5 4.5 7.5 15.1

Mean error (%) 1.7 0.0 0.0 0.1 0.5 0.2 0.0 0.0
Max error (%) 7.6 0.0 5.8 2.3 1.7 6.5 1.9 1.9

MSE 8.2e+09 2.2e-02 3.4e+07 7.3e+07 5.8e+08 1.8e+08 2.6e+07 2.6e+07
PSNR (dB) 32.0 147.7 55.9 52.6 43.6 48.7 57.0 57.0

was performed with the use of maximum 16-bit integer
value and 16-bit integer cropping.

The Measured PSNR with gained CR for signal named
Linear is shown in Figure 3 and complete measured values
are in Table III. The peak signal-to-noise ratio reaches
comparable values for all methods except ADPCM, which
is significantly worse. Our proposed (HCM) method has the
best compression ratio.

We can get better compression ratio with the proposed
method by setting the multiple of overlap size (MOS) to
higher values. PSNR and CR with MOS 1, 2, 3, and 4 are
shown in Figure 4. PSNR decreases almost with the third
power.

The results for nonlinear simulation signals are slightly
different from the Linear signal. In Figure 5, PSNR and CR
for S15 SC1 signal is shown. Complete measured values
are in Table IV. We measured a little bit worse PSNR for
the proposed method and better CR for OGG. It is probably
because of more harmonics.

We have achieved similar results in case of S15 SC1 ux
signal. This signal contains particle velocity values and has
a very small range of values (ca. from -0.4 to 0.4).

In the case of the S15 SC5 signal (bigger simulation

2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

235

1 2 3 4

MOS

0

20

40

60

80

100

P
S

N
R

0

10

20

30

40

C
o
m

p
re

s
s
io

n
 r

a
ti
oCR (:1)

PSNR

Fig. 4. Different MOS with Linear 1D signal.

ADPCM FLAC MP3 MP4 OGG Opus HCM HCM16bit

Compression method

0

20

40

60

80

100

P
S

N
R

0

5

10

15

C
o
m

p
re

s
s
io

n
 r

a
ti
oCR (:1) PSNR

Fig. 5. PSNR and CR for different methods with S15 SC1 1D signal.

grid size and about 6 harmonics), the proposed method
gives similar results to the previous cases. ADPCM has
comparable PSNR and is slightly worse in CR than the
proposed method. OGG has considerably better CR. Very
good CR and PSNR gives the MP4 method. These results
are shown in Figure 6 and Table V.

A short part of 1D S15 SC5 original signal, signal
reconstructed by HCM and their difference with MOS 1
is shown in Figure 7. We can see the maximal error in a
part with the very non-steady signal values.

TABLE IV
RESULTS FOR S15 SC1 1D SIGNAL.

ADPCM FLAC MP3 MP4 OGG Opus HCM HCM16bit
CR (:1) 7.7 2.6 3.8 7.5 7.4 6.0 8.8 17.6

Mean error (%) 0.6 0.0 0.0 0.0 0.5 0.1 0.0 0.0
Max error (%) 3.1 0.0 7.7 0.2 1.7 8.4 4.5 4.5

MSE 8.1e+08 1.7e-02 1.6e+07 3.5e+06 4.6e+08 5.3e+07 6.9e+07 6.9e+07
PSNR (dB) 40.5 147.2 57.5 64.0 43.0 52.3 51.1 51.1

ADPCM FLAC MP3 MP4 OGG Opus HCM HCM16bit

Compression method

0

20

40

60

80

100

P
S

N
R

0

5

10

15

C
o
m

p
re

s
s
io

n
 r

a
ti
oCR (:1) PSNR

Fig. 6. PSNR and CR for different methods with S15 SC5 1D signal.

TABLE V
RESULTS FOR S15 SC5 1D SIGNAL.

ADPCM FLAC MP3 MP4 OGG Opus HCM HCM16bit
CR (:1) 7.4 3.9 4.4 9.6 17.2 6.9 8.9 17.8

Mean error (%) 0.2 0.0 0.0 0.1 0.4 0.3 0.0 0.0
Max error (%) 1.3 0.0 2.4 0.5 1.6 3.1 3.9 3.9

MSE 1.3e+08 2.2e-02 1.0e+06 1.0e+07 6.1e+08 2.4e+08 7.4e+07 7.4e+07
PSNR (dB) 50.9 148.6 71.9 61.9 44.1 48.1 53.3 53.3

0.95 1 1.05 1.1 1.15

×104

-2

0

2

4

P
re

s
s
u

re
 (

P
a

)

×106 Original signal

0.95 1 1.05 1.1 1.15

×104

-2

0

2

4

P
re

s
s
u

re
 (

P
a

)

×106 Decoded signal

0.95 1 1.05 1.1 1.15

Time step ×104

-2

0

2

4

P
re

s
s
u

re
 (

P
a

)
×106 Difference

Fig. 7. Illustration of the S15 SC5 1D original, reconstructed and
difference signals with MOS equals 1.

The Non-realistic signal testing results are shown in Fig-
ure 8. Here, we have got very poor PSNR results compared
to other methods. The main reason is input simulation
parameters that are not typical of HIFU.

Experiments with higher MOS values with the mentioned
non-linear signals S15 SC1, S15 SC1 ux, and S15 SC5
showed similar results as in Linear signal case.

We also made compression experiments with two 4D
datasets. The tested signals were S15 SC1 and S15 SC5
and all the points stored in the sensor mask were compressed
(101×101×101×10105 points for S15 SC1 4D signal and

ADPCM FLAC MP3 MP4 OGG Opus HCM HCM16bit

Compression method

0

20

40

60

80

100

P
S

N
R

0

5

10

C
o
m

p
re

s
s
io

n
 r

a
ti
oCR (:1) PSNR

Fig. 8. PSNR and CR for different methods with Non-realistic 1D signal.

2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

236

1 2 3 4

MOS

0

20

40

60

80

100

P
S

N
R

PSNR, 1D signal

PSNR, 4D signal

Fig. 9. PSNR for different MOS with S15 SC1 1D and 4D signal.

1 2 3 4

MOS

0

20

40

60

80

100

P
S

N
R

PSNR, 1D signal

PSNR, 4D signal

Fig. 10. PSNR for different MOS with S15 SC5 1D and 4D signal.

101×101×101×30604 points for S15 SC5 4D signal). The
proposed compression was tested with setting of MOS to
values 1, 2, 3, and 4.

We have got interesting results for the S15 SC1 case
(Figure 9). The PSNR values for the 4D signal were about
20 dB better than for the 1D signal.

In case of S15 SC5 signal, the results were little bit dif-
ferent (Figure 10). The PSNR values for the 4D signal were
about 13 dB better than for the 1D signal. This phenomenon
is probably caused by a three times larger simulation grid
size in S15 SC5 case, but the same size of sensor mask.
We could have made the experiments with a corresponding
higher sensor mask size (e.g. 301×301×301) and expect
results similar to S15 SC1 case, but we would have needed
more than 3 terabytes of data for the testing dataset and a
time for offline compression would be enormous.

The overall results indicate useful properties of the pro-
posed method. The maximal errors are occurred in short
non-steady parts of signals and PSNR of the whole sig-
nals has comparable values with the state-of-the-art audio
codecs. The errors in the steady parts are negligible. We
can expect better PSNR with higher sensor mask sizes and
MOS.

It is important to say that we haven’t had any optimization
of the basis and window functions yet, that could reduce
the errors in non-steady signal parts. We also have not
applied any follow-up compression algorithms to computed
coefficients, thus higher compression ratios are real.

CONCLUSIONS

An efficient compression algorithm for HIFU simulation
data has been proposed and the first offline experiments
have been performed. We have showed that our method
produced very useful results. The important steady parts of
the simulation signals are compressed with very small errors
(0.1 %) with compression ratios over 80 %. The very short
transient parts of signals are compressed with acceptable
errors and possible improvements are planned for the future.

The main future work is to apply our compression
algorithm to the existing implementation of the k-Wave
simulation toolbox, especially to provide the possibility to
save storage space and also the time necessary for writing
large HDF5 files during simulations. The fast visualizations
of the simulation data should be the next possible utilization
of compressed data. We also want to use our approach to
efficient computations of heat propagation from pressure
values without a time-consuming computation of intensity.
Important future steps will be the evaluation of applications
compressed and decompressed simulations data from the
point of view of users (scientists or doctors) and utilization
of the computer resources.

ACKNOWLEDGMENT

This work has been supported by the Technology Agency
of the Czech Republic (TA CR) Competence Centres
project V3C Visual Computing Competence Center (no.
TE01020415) and the European Union’s Horizon 2020
research and innovation programme H2020 ICT 2016-2017
under grant agreement No 732411 and is an initiative of the
Photonics Public Private Partnership.

REFERENCES

[1] J. Jaros, P. A. Rendell, and E. B. Treeby, “Full-wave nonlinear
ultrasound simulation on distributed clusters with applications in
high-intensity focused ultrasound,” The International Journal of High
Performance Computing Applications, vol. 2015, no. 2, pp. 1–19, 2015.

[2] J. Jaros, F. Vaverka, and E. B. Treeby, “Spectral domain decomposition
using local fourier basis: Application to ultrasound simulation on a
cluster of GPUs,” International Journal of Supercomputing Frontiers
and Innovations, vol. 3, no. 3, pp. 39–54, 2016.

[3] V. Suomi, J. Jaros, B. Treeby, and R. Cleveland, “Nonlinear 3-D
simulation of high-intensity focused ultrasound therapy in the kidney,”
in 2016 38th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Aug 2016, pp. 5648–5651.

[4] R. Liu, “Data compression in ultrasound computed tomography,” Ph.D.
dissertation, 2011.

[5] M. d. A. Freitas, M. R. Jimenez, H. Benincaza, and J. P. von der Weid,
“A new lossy compression algorithm for ultrasound signals,” in 2008
IEEE Ultrasonics Symposium, Nov 2008, pp. 1885–1888.

[6] G. E. Blelloch, “Introduction to data compression,” Computer Science
Department, Carnegie Mellon University, 2013.

[7] P.-W. Cheng, C.-C. Shen, and P. C. Li, “Ultrasound RF channel data
compression for implementation of a software-based array imaging
system,” in 2011 IEEE International Ultrasonics Symposium, Oct
2011, pp. 1423–1426.

[8] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compres-
sion with SZ,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2016, pp. 730–739.

2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

237

