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ABSTRACT
The paper presents advances in the ANaConDA framework for
dynamic analysis and testing of concurrent C/C++ programs. ANa-
ConDA comes with several built-in analysers, covering detection
of data races, deadlocks, or contract violations, and allows for an
easy creation of new analysers. To increase the variety of tested
interleavings, ANaConDA offers various noise injection techniques.
The framework performs the analysis on a binary level, thus not
requiring the source code of the program to be available. Apart from
many academic experiments, ANaConDA has also been successfully
used to discover various errors in industrial code.
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1 INTRODUCTION
Nowadays, multi-threaded software can be found in nearly all ap-
plication areas, including embedded systems. As a result, the pro-
grams now contain not only program-logic-related errors but also
various kinds of synchronisation-related errors caused by the non-
deterministic nature of multi-threaded computation. These errors
are not only easy to cause but also very hard to discover.

While static analysis has made huge progress, it still suffers from
false alarms and scalability issues, especially when dealing with
concurrent programs. This is mainly due to the huge number of
thread interleavings and complex program data to be analysed.
Static analyses thus usually abstract the interleavings and data,
which causes imprecision and false alarms. Therefore, testing and
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dynamic analysis are still widely used. They scale better as they
analyse concrete executions, and seeing the data the program uses
allows them to be more precise. However, common testing is not
sufficient to discover rarely occurring concurrency-related errors
since it will typically not cover sufficiently many thread interleav-
ings. To cope with this problem, special approaches are necessary.
Notably, dynamic analyses such as [8, 16] extrapolate the witnessed
behaviour and warn about possible errors even though they did
not happen in the given execution. Noise injection [3] inserts in
a randomised way various context switches, delays, or additional
synchronisation into the run of a concurrent program to stimulate
rare (but legal) interleavings that may yield so far undiscovered
errors. Other alternatives then include systematic testing [14] or
coverage-based testing [18] briefly mentioned below.

In this paper, we discuss the ANaConDA framework for dynamic
analysis and testing of concurrent C/C++ programs, which was first
introduced in [6]. ANaConDA comes with several predefined analy-
sers for common concurrency problems (e.g., deadlocks, data races,
atomicity violations) and is designed to simplify the development
of further extrapolating dynamic analysers. ANaConDA also offers
a wide range of noise injection techniques. It is built on top of Intel
PIN [13], a framework for dynamic binary instrumentation, and
thus the analysis is done on a binary level. This has several advan-
tages. ANaConDA does not require the source code of the program
or its libraries and it can handle self-generating, self-modifying, and
assembly code. ANaConDA1 is open source, runs both on Linux
and Windows, and supports various concurrency libraries.

Since its introduction in [6], ANaConDA was extended with
several noise heuristics [4], a support for monitoring transactional
memories [5], and a capability of detecting violations of contracts
for concurrency [2]. Moreover, we newly added hierarchical filters
allowing one to exclude various functions from the analysis (mo-
tivated by an industrial application of ANaConDA), several new
analysers implementing detectors originally developed for Java pro-
grams, construction of precise backtraces for diagnostic purposes,
support of C++11 concurrency extensions, as well as automation
scripts simplifying the installation and usage of the framework.

Related work. The closest tools to ANaConDA are IBM Con-
Test [3] and RoadRunner [9]. Both are able to monitor the execu-
tion of multi-threaded Java programs and notify analysers built
on top of them about important events. The analysers available
over these frameworks differ: an analyser so far unique to the ANa-
ConDA framework is the detector of violations of contracts for
concurrency. IBM Contest supports noise injection too—though not
the read/write noise of ANaConDA. For monitoring multi-threaded
C/C++ programs, the options are much more limited. The closest
tool to ANaConDA in this area is Fjalar [10]. However, its purpose is
to simplify access to various compile-time andmemory information.
It does not provide any concurrency-related information.
1http://www.fit.vutbr.cz/research/groups/verifit/tools/anaconda
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An alternative to noise-based testing is systematic testing [14],
exploring all schedules up to some bound (e.g., in the number of con-
text switches). It offers higher guarantees of discovering concur-
rency errors, but it is less scalable and has problems with some pro-
gram constructions (user input, networking, etc.). Another ap-
proach is coverage-driven testing [18] that influences thread sched-
uling to maximize coverage of several important synchronization id-
ioms. However, it does not support some kinds of errors, and, some-
what like noise injection, it is partially based on randomisation.

2 FEATURES AND USAGE OF ANACONDA
ANaConDA allows one to readily use several predefined detectors
of common concurrency errors—namely, AtomRace, Eraser, Fast-
Track, and GoodLock. AtomRace [11] is a simple detector of data
races that does not report any false alarms since it looks for two
unsynchronized memory accesses (with at least one being a write
access) to be ready to execute in two threads at the same time. To
make such scenarios show up more likely, noise injection is used.
Eraser [16] and FastTrack [8] are well-known extrapolating data
race detectors, originally developed for Java. GoodLock [1] is an
extrapolating deadlock detector.

ANaConDA also offers an original detector of violations of con-
tracts for concurrency [2]. These contracts can specify that the exe-
cution of some sequences of function calls, called targets, must not
be mutually interleaved with other sequences of calls, called spoilers.
For instance, a test of the presence of some element in a collection
followed by its modification must not be interleaved with a removal
of the element. This detector covers as special cases various classes
of errors such as atomicity violations or order violations.

Further, ANaConDA allows its users to easily define new dy-
namic analysers by simply listening to selected concurrency-related
program events (memory accesses, locking, unlocking, etc.).

ANaConDA can also be easily configured to work with different
concurrency libraries by simply specifying which functions are used
to implement various synchronisation operations and what the
roles of their parameters are. Currently, ANaConDA supports the
pthread library, Win32 API, and C++11 concurrency extensions.

ANaConDA allows one to increase chances of finding rare thread
interleavings, which are more likely to hide concurrency-related
errors, by inserting various kinds of noise into the execution. In
particular, the following kinds of noise are available: sleep noise that
suspends a thread for some time, yield noise that gives up the CPU
several times, the busy-wait noise that actively loops for some time,
and the inverse noise that suspends all threads but one for some time.
The noise is parametrized by frequency, the probability to insert
some noise, and strength, the intensity of the noise. The strength is
given in milliseconds for the sleep, busy-wait, and inverse noise;
and in the number of applications for the yield noise. Finally, the
user may also specify where to put the noise—be it before every
monitored event, before shared variables only, before read/write
accesses, or into some specific sequences (patterns) of accesses.

An important feature of ANaConDA (compared, e.g., with Con-
Test [3]) is a support of read/write noise [7], i.e., insertion of different
kinds of noise at different memory accesses, which turns out to be
very efficient in practice, especially when detecting data races. In
particular, one can inject a strong noise before the rarer type ofmem-
ory accesses and a much weaker noise before the other accesses.

The analyser then checks the rare accesses against a large number
of potentially conflicting accesses from other threads which are not
delayed by the strong noise. Moreover, the fine-grained noise has
recently been extended to functions, allowing specific noise to be
inserted before specific functions. This functionality is useful when
detecting contract violations as it can prolong the execution of
specific sequences of function calls to increase the window during
which they can be violated by functions from other threads.

As monitoring many memory accesses can significantly slow
down the analysis, ANaConDA was recently extended by hierarchi-
cal filters allowing the user to specify that all memory accesses from
some library or all accesses from some functions should be ignored.
The introduction of such filters was motivated by an industrial ap-
plication of ANaConDA where it was applied on code heavily using
memory-access-intensive encryption and communication libraries.
To facilitate the use of such filters, ANaConDA newly provides
means to collect statistics about the number of memory accesses
performed by each function to pinpoint the problematic functions.

To aid diagnosis of discovered errors, ANaConDA can provide on-
demand backtraces. A problem is that this requires the program to
properly create stack frames, which nowadays programs rarely do
for performance reasons. Alternatively, the user may use the newly
added precise backtraces that are created by tracking all function
calls in the program. To keep such backtraces valid, ANaConDA
needs to track returns from functions and pair them with the corre-
sponding calls in order for the function calls to be removed from
the backtraces. Unfortunately, not all functions return. A typical
example is that of trampolines, stub functions whose only goal is
to redirect the call to an external library where the called function
is located. To deal with such functions, ANaConDA allows one to
specify functions that will not be tracked for backtrace creation.

Using the recently added automation scripts, ANaConDA can
be easily installed both on Linux and Windows using the script
tools/build.sh from its distribution. As ANaConDA is primarily
a command-line tool, all of its functionality is either available from
the command line or via configuration files (using a specialised
simple syntax for describing new detectors, concurrency libraries,
or filters). The simplest way to run ANaConDA is to use the script
tools/run.sh <analyser> <program> [<program-params>]
where <analyser> is the chosen analyser and <program> the pro-
gram to be analysed. ANaConDA also supports repeated testing
via the tools/test.sh script. It allows one to specify the number
of test runs or the amount of time to repeat the tests, saving the ob-
tained output (and configuration used) for each test run performed.

3 ARCHITECTURE
We now explain the architecture of ANaConDA and discuss its
functioning during an analysis. An overview of the architecture is
shown in Fig. 1. The top left part shows a fragment of assembly
code (compiled from a C code) of two threads being analyzed: one
of the threads increments a variable i under a lock L, while the
other increments it without the lock held.

An important part of the architecture is a set of available anal-
ysers (top right of Fig. 1). When ANaConDA is invoked, it first
initialises the chosen analyser (e.g., AtomRace) and lets the anal-
yser register which events in the run of an analysed program it
is interested in, out of those supported by the monitoring layer.
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000000000000087c <update1>: # i++ (with lock)
 87c: lea  rdi,[rip+0x2007bd]           # L
 883: call 8ba <_ZNSt5mutex4lockEv>
 888: mov  eax,DWORD PTR [rip+0x2007da] # i
 88e: add  eax,0x1
 891: mov  DWORD PTR [rip+0x2007d1],eax # i
 897: lea  rdi,[rip+0x2007a2]           # L
 89e: call 8e8 <_ZNSt5mutex6unlockEv>
00000000000008a3 <update2>: # i++ (no locks)
 8a3: mov  eax,DWORD PTR [rip+0x2007bf] # i
 8a9: add  eax,0x1
 8ac: mov  DWORD PTR [rip+0x2007b6],eax # i
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Figure 1: Overview of the architecture of ANaConDA

It can be informed, e.g., that a thread in the monitored program
is before/after reading/writing some variable v , that the thread is
before/after locking/unlocking a lockm, and likewise for other syn-
chronisation operations. (In fact, the monitoring works with binary
addresses a of memory locations, synchronisation primitives, etc.;
but the framework then strives to convert the binary information
back to the names of variables v , locksm, and so on.)

The program to be analysed is then loaded into memory and
instrumented using the Intel PIN framework [13]. The instrumenta-
tion inserts only the code that is needed to extract the information
requested by the analyser and to inject noise generation at some
instructions. The latter is done only if the user decides that some of
the available noise generators should be applied. This fine-grained
instrumentation reduces the slowdown of the analysed program
caused by ANaConDA. The in-memory instrumentation also allows
ANaConDA to transparently analyse libraries used by the given
program without affecting other programs using the same libraries.

Once the program is instrumented, the framework executes it.
If noise injection is enabled, noise is inserted at various points in
the execution based on the generators, their parameters, and filters
used. For example, Fig. 1 illustrates insertion of random sleep
noise at accesses to the address a2 corresponding to the variable
v = i. The instrumented code generates events that are send back
to the framework, associated with binary data about the particular
event—e.g., memory access events carry the size of the accessed
data and their address (e.g., a2 in our figure), the lock acquire events
carry the address of the synchronization primitive (e.g., a1), etc.
The framework processes this data and refines it.

The refinement depends on the type of event. For synchronisa-
tion events, the name of the function encountered determines the
synchronisation operation performed (e.g., pthread_mutex_lock
triggers the lock acquired operation). Based on the type of opera-
tion, the address of the synchronisation primitive is transformed
to a platform-independent identifier (e.g., a lock identifier for lock
operations). This is done using the hooks and mapper objects which
are declared when instantiating ANaConDA for a particular con-
currency library. This way, the detectors become independent on

the concrete concurrency library used. If debugging information is
available, a conversion to the corresponding program identifiers is
possible too (e.g., transforming the address a1 to the lockm = L).

For memory access events, if there is debugging information, the
address of a memory access is converted to the name of the variable
residing on this address (e.g., instead of the address a2, the analyser
is informed about the variablev = i). Moreover, the data type of the
variable and the program location of the instruction performing the
access are also available. As obtaining such information is expensive,
it is done only if the analyser requests this during its initialisation.

The refined data are sent to the analyser, which performs the anal-
ysis and outputs the results (e.g., providing a backtrace for the data
race between the unsynchronised accesses to i in our example).

4 EXPERIMENTS AND APPLICATIONS
The first works on ANaConDA [6, 7] included a number of exper-
iments with the AtomRace detector that discovered a number of
errors in student projects as well as (previously unknown) errors
in real-life software: namely, the unicap libraries for video pro-
cessing (40 KLOC). Later, in [2], we used ANaConDA to detect
(previously known) atomicity violations even in a program as large
as the Chromium browser (7.5 MLOC). Moreover, together with
a major international producer of home automation (whose name
we are, unfortunately, not allowed to reveal), we used ANaConDA
to discover a very rarely occurring order violation in a component
of a cloud-connected thermostat (1.5 KLOC) used for managing
parallel task processing that common testing was unable to identify.

After the extension of ANaConDA by further detectors, we per-
formed new experiments targeted at their evaluation. In particular,
we first evaluated our implementation of AtomRace, Eraser, and
FastTrack on the benchmark suite DataRaceBench [12], compar-
ing the detectors with the well-known Helgrind data race detector
of Valgrind [15] and the LLVM/Clang ThreadSanitizer data race
detector [17]. The benchmark suite is designed to evaluate the effec-
tiveness of data race detection tools. It includes microbenchmarks
either manually written, extracted from real scientific applications,
or automatically generated optimization variants. It also defines
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Table 1: Results of the DataRaceBench benchmark.

Detector TP TN FP FN P R A
AtomRace* 102 108 0 123 1.00 0.45 0.63
FastTrack* 184 72 36 41 0.84 0.82 0.77
FastTrack 213 3 105 12 0.67 0.95 0.65
Helgrind 213 3 105 12 0.67 0.95 0.65
ThreadSanitizer 213 3 105 12 0.67 0.95 0.65

metrics for effectiveness and efficiency of data race detection tools
based on the ratio of false-positives (FP ), false-negatives (FN ), true-
positives (TP ), and true-negatives (TN ). Concretely, the metrics
for Precision P = TP/(TP + FP ), Recall R = TP/(TP + FN ), and
Accuracy A = (TP +TN )/(TP +TN + FP + FN ) are defined. The
precision reflects the confidence that a reported positive is a real
one. The recall shows an ability of a tool to find an existing data
race. The accuracy summarises correctness of all the reports. The
bigger the value of P , R, and A, the better.

The results are shown in Table 1, aggregating results from 80
different microbenchmarks (median 18 LOC) tested with different
variations in the number of threads (3, 45, 256) and, for array mi-
crobenchmarks, the size of the array it operates on (32, 128, 1024).
Results for Eraser are not shown as they are almost identical to Fast-
Track. The lines marked with “*” use noise, which is necessary for
AtomRace. FastTrack is examined with and without noise. Table 1
shows that AtomRace can find many races while not reporting any
false alarms. Helgrind and ThreadSanitizer can find more races but
are plagued by many false alarms, which is a problem in practice.
FastTrack without noise gives the same results as Helgrind and
ThreadSanitizer. With noise, some races are missed but the preci-
sion is improved, yielding a compromise between the other results.
(We also see that noise can hide some errors too, which happens
in particular for the relatively simple microbenchmarks where the
extrapolating power of FastTrack is by itself strong enough.)

Next, we performed new analyses on the complete implementa-
tion of the thermostat software (145 KLOC) mentioned above. First,
we looked for data races using the AtomRace and Eraser analysers.
Compared with detectors from Valgrind, Eraser reported many
more data races. While some of them were real errors, a majority
were just false alarms. AtomRace reported a few data races only,
a subset of those found by Eraser, but all of them were real errors.
Interestingly, when helped by the read/write noise, both analysers
reported a data race causing a segmentation fault that Valgrind
failed to find due to its rare occurrence. However, nobody paid
attention to the warning raised by Eraser as it was hidden among
hundreds of false alarms. Only when AtomRace forced the problem
to manifest and precisely localized it, the error was corrected.

We also used ANaConDA to find a blocked thread error. While
there is no dynamic analysis targeting this type of errors, just
executing the program with the right noise forced an execution
leading to the error, causing the whole program to be irrecoverably
stuck. This demonstrates that one does not always need to perform
a dynamic analysis: simple noise-based testing may suffice.

Finally, we used ANaConDA to detect missing synchronisation
between a thread disposing locks and threads using these locks.
This problem was very specific to the target program, but, in about
2 hours, we were able to write a simple analyser checking the
operations on these locks and reporting a use of disposed locks. The

analyser provided us with backtraces, making it easy to localize
the issue and fix it. This nicely illustrates how the ANaConDA
framework can be used to detect application-specific issues.

The slowdown of programs running under ANaConDA is hard
to quantify as it depends on many aspects. The base slowdown
imposed by Intel PIN is about 5 times. Next, if monitoring function
calls, e.g., for detecting contract violations [2], the slowdown is
about 10 times. However, if memory accesses need to be monitored
too, the slowdown can go up to 100 times, for data-intensive func-
tions even up to 1000 times. In such a case, hierarchical filters are
usually needed to exclude such functions frommonitoring and keep
the slowdown on a reasonable level. The process of injecting noise
has a negligible impact on the slowdown, but onemust keep in mind
that the injected noise itself may delay the execution considerably.

5 FUTUREWORK
As a part of further improvements of ANaConDA, we are now
working on indexing data about functions, instructions, and vari-
ables to speed up repetitive work with them. ANaConDA is also
being ported to Mac OS. Another planned extension is to support
trace processing, allowing ANaConDA to analyse executions of pro-
grams written in any language and/or running on systems unable to
run ANaConDA directly, e.g., ARM-based systems or systems with
specialized operating systems. Another open question is a support
for a different backend beside Intel PIN that would ideally be less
intrusive in regards of the slowdown of the execution.
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