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Scalable Construction of Approximate Multipliers With Formally
Guaranteed Worst Case Error
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Abstract— Approximate computing exploits the fact that many appli-
cations are inherently error resilient. In order to reduce power con-
sumption, approximate circuits such as multipliers have been employed
in these applications. However, most current approximate multipliers
are based on ad hoc circuit structures and, for automated circuit
approximation methods, large efficient designs are difficult to find due
to the increased search space. Moreover, existing design methods do not
typically provide sufficient formal guarantees in terms of error if large
approximate multipliers are constructed. To address these challenges,
this brief introduces a general and efficient method for constructing
large high-quality approximate multipliers with respect to the objectives
formulated in terms of the power-delay product and a provable error
bound. This is demonstrated by means of a comparative evaluation of
approximate 16-bit multipliers constructed by the proposed method and
other methods in the literature.

Index Terms— Approximate computing circuits and sys-
tems, circuit synthesis, circuits, computers and information
processing.

I. INTRODUCTION

Energy efficiency is a major challenge for current computer sys-
tems. Among various techniques, approximate computing exploits
the fact that many applications are inherently error resilient and
energy requirements can be traded off for the quality of results [1].
Much attention has been paid to the design of approximate arithmetic
circuits and, in particular, approximate multipliers, as multiplication
is a key operation in many applications.

Approximate implementations of multipliers are based on various
design principles (see a recent review in [1]). The major weakness of
the manual circuit design approach, which is clearly dominating in
this area, lies in providing only a few different circuit implementa-
tions for a given bit width. Many interesting and useful design points
thus remain unexplored. Hence, the automated search-based design
methods have been developed to provide many approximate designs
showing high-quality tradeoffs between key design parameters [2].

We are primarily interested in approximate circuits belonging to
the Pareto set that contains the so-called nondominated solutions.
Consider three objectives to be minimized, for example, the power-
delay product (PDP), the worst case error (WCE), and the area.
Circuit C1 dominates another circuit C2 if: 1) C1 is no worse than
C2 in all objectives and 2) C1 is strictly better than C2 in at least
one objective.

Search-based methods, however, usually deliver circuits of lim-
ited complexity, which especially holds for approximate multipliers.
In order to mitigate this issue, an efficient strategy is to compose
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complex approximate circuits using less complex but high-quality
approximate design modules.

For an approximate circuit, another challenge is to find an efficient
way to determine the quality (or error) of a design. While small
designs can be perfectly evaluated by means of an exhaustive sim-
ulation, this problem is not tractable for complex circuits. A circuit
simulation using a subset of all input combinations does not, in prin-
ciple, guarantee an accurate result. Hence, various formal methods
capable of determining the “exact” error have been developed in
recent years [3]–[5].

To address these challenges, this brief presents a general and
efficient method for constructing high-quality nondominated approxi-
mate multipliers with the aim to optimize the PDP and design quality.
A significant advantage of this method is the ability to analytically
provide formal guarantees in terms of the WCE for even complex
multipliers. The proposed method exploits the fact that more than
two thousands 8-bit approximate multipliers are available and they
can directly be employed to construct large approximate multipliers
showing various tradeoffs between the design objectives.

II. EVALUATION OF APPROXIMATE CIRCUITS

Various error metrics have been developed to evaluate the quality of
approximate circuits [2], for example, the WCE, sometimes denoted
as the maximum error distance, the worst case relative error (WCRE),
the average-case error, also known as the mean absolute error (MAE),
and the mean relative error (MRE).

The WCE of an n-bit approximate multiplier ˜M is defined as
the maximum difference between the outputs of ˜M and a precise
multiplier M

WCE
˜M = max∀a,b

| ˜M(a, b) − M(a, b)| (1)

where 0 ≤ a, b < 2n and M(a, b) = a × b. The WCE can be
important in time-critical and dependable systems on the one hand,
but also in image and signal processing on the other, where low
average error but excessive WCE can produce unacceptable results.
The WCRE is defined as

WCRE
˜M = max∀a,b

| ˜M(a, b) − M(a, b)|
M(a, b)

. (2)

Test vectors are usually applied to estimate the error (e.g., 107 input
vectors were used to evaluate 16-bit multipliers in [1]). Unfortunately,
the accuracy of the simulation-based error evaluation varies with the
number and quality of test vectors. This is especially noticeable in
the case of WCE, where completely different results may be obtained
for a different subset of input vectors.

Current computers only require a few minutes to exactly determine
the quality of arithmetic circuits with 16-bit operands. For higher
bit widths, a more sophisticated, typically formal, approach has to
be involved. The main advantage of the formal approach is that an
“exact” error or error bound can be obtained. Checking the WCE
can be done using Boolean satisfiability solvers as demonstrated
in [6]. Determining the error probability using binary decision
diagrams (BDDs) is a relatively straightforward task. For example,
Yu and Ciesielski [3] described a method based on BDDs that is
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Fig. 1. Hardware architectures of two 5-bit approximate multipliers.
(a) TM(5, 2). (b) BAM(5, 4, 2). Omitted cells are shown using dotted cells.
Note the inputs of the cells situated in the first row that are not shown are
implicitly connected to zero. The following cells are used in the illustration.
(c) One-bit full adder. (d) One-bit full adder processing a partial product.
(e) Empty (omitted) cell.

able to establish the error probability even for large 64-bit adders.
Chandrasekharan et al. [4] employed BDDs to determine the worst
case arithmetic error. Vasicek et al. [5] proposed a method for
determining the average-case arithmetic error.

III. APPROXIMATE MULTIPLIERS

Three stages can be identified in a multiplier: partial product
generation, partial product reduction, and final addition. Four main
methods are used for the design of approximate multipliers [1]:
1) approximation in generating partial products based on a simpler
structure; 2) approximation in the partial product tree by ignoring
some partial products (truncation), dividing the partial products
into several modules and applying an approximation in the less
significant modules, or composing complex approximate multipliers
from simple approximate multipliers; 3) using approximate adders,
counters, or compressors in the partial product tree to reduce partial
products; and 4) using search-based methods to perform approxi-
mation on the gate level or in more complex cells. In the sequel,
we briefly introduce the state-of-the-art approximate multipliers that
provide the best tradeoff between quality and other design parameters
such as power, delay, and area.

For truncated multipliers (TMs), the key idea is to remove k least
significant bits of the input operands. As a result, a smaller (n − k)-bit
multiplier is utilized instead of an accurate n-bit multiplier.
A 5-bit approximate multiplier is implemented as a truncated carry-
save adder array in Fig. 1(a). In general, an array multiplier consists
of n × n cells (i.e., the carry-save adder array) used to reduce partial
products, followed by a single n-bit merging adder (a ripple carry
adder in our example) for the final summation. Due to the truncation,
the cells associated with k least significant bits of the first operand
(i.e., the cells in the first k rows) and the cells associated with k least
significant bits of the second operand (i.e., k rightmost cells of each
row) are omitted. As a result, 2k least significant bits of the final
product are always zero.

The accuracy of a TM depends on the bit width (n) and the number
of truncated bits (k), where 0 ≤ k < n. The maximum difference
between the output of TM(n, k) and a precise multiplier is equal to

WCETM(n,k) = (2k − 1)(2n+1 − 2k − 1). (3)

In the broken-array multiplier (BAM), some of the carry-save
adders are removed from an array multiplier [7]. The omitted
cells are specified using two parameters: the horizontal break
level (h) and vertical break level (v), where 0 ≤ h < n and
h ≤ v < 2n. An example of a 5-bit BAM is shown in Fig. 1(b).

Fig. 2. Construction of a 2n × 2n multiplier from four n × n multipliers
denoted as M1, M2, M3, and M4. The principle is illustrated for n = 8.

In the case that the vertical break level is 2× of the horizontal break
level (i.e., v = 2h), a structure similar to TM with k = v is obtained.
As shown in our example, however, BAM preserves more carry-save
adder cells. Since the reduction of carry-save adders can be done
in both the directions, the accuracy of BAM(n, h, v) depends on
the three parameters. According to [7], the maximum difference is
given as

WCEBAM(n,h,v) = (2n − 1)

h−1
∑

i=0

2i + 2h
v−h−1
∑

i=0

(2v−h − 2i ). (4)

The maximum relative error is WCREBAM = 1. The MRE signifi-
cantly increases with increasing v [7].

Recently, a rich library of approximate 8-bit adders and 8-bit multi-
pliers containing hundreds of alternative implementations was intro-
duced [2]. The authors employed a general-purpose approximation
method for combinational circuits based on a multiobjective genetic
programming. The goal was to simultaneously minimize delay, power
consumption, and error to discover a set of approximate circuits along
a Pareto front. The basic version of the library contains 471 annotated
nondominated 8-bit approximate multipliers that are available for
download. Compared with other design methods, a search-based
method explores a larger design space, so it is likely to produce
approximate multipliers with better hardware characteristics.

Many other approximate multipliers have been proposed. A recent
survey of existing implementations can be found in [1]. Unfortu-
nately, the majority of these multipliers were optimized for a single
quality parameter only. When multiple quality metrics such as the
WCE, MAE, and MRE are considered, they typically show little
advantage in the overall performance over a truncated design [1].

IV. CONSTRUCTION OF LARGER APPROXIMATE MULTIPLIERS

In order to avoid the time-consuming design loop inherently related
with the search-based techniques, we propose to recursively construct
complex approximate multipliers, using smaller multipliers.

We employ a divide-and-conquer strategy for synthesizing a 2n-bit
multiplier from four n-bit multipliers (see Fig. 2). The operands are
divided into four n-bit chunks (each operand has a lower and higher
part) that are independently processed using four multipliers whose
outputs are reduced using two adders with one n-bit and one 2n-bit
operand each.

The key advantage of this method is that each constructed multi-
plier M has the following properties.

1) In the case that all the four n-bit multipliers (let us denote
them M1–M4) and adders are accurate, an accurate multiplier
is obtained.

2) If accurate adders are employed and some of the multipliers
are replaced with an approximate multiplier ˜M , the WCE is
equal to

WCEM = 22nWCEM4 + 2nWCEM3

+ 2nWCEM2 + WCEM1 (5)
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TABLE I

PROPOSED ARCHITECTURES OF 2n-bit APPROXIMATE MULTIPLIERS

where WCEMi = WCE
˜M iff Mi is replaced with ˜M and

WCEMi = 0 otherwise.
3) If accurate adders are employed and some of the multipliers

are replaced with different approximate multipliers, (5) gives
us the upper bound since the approximate multipliers can have
dependent inputs.

Clearly, the exact value of WCE
˜M can easily be obtained for a

reasonable n (in our case n = 8) using exhaustive simulation. The
question is, how to efficiently determine which multiplier Mi should
be replaced with an approximate multiplier and what approximate
multipliers should be used to obtain the best tradeoffs without
compiling and synthesizing all the possible design points. In general,
(na + ne)

4 possible solutions exist provided that na denotes the
number of nondominated approximate n-bit multipliers and ne is
the number of exact n-bit multipliers. As more than 2200 different
nondominated 8-bit multipliers are available at the extended version
of EvoApprox8 library and more than 60 different implementations
can be obtained using the approaches proposed in the literature, it is
practically infeasible to synthesize all possible implementations (more
than 1.4 × 1011 potential solutions exist).

Hence, we propose the following two strategies. In the first
strategy, a single approximate multiplier ˜M is chosen and M1–M4 are
successively replaced with ˜M (see A1–A4 in Table I). The advantage
of this approach is that it produces a relatively small number of
implementations that can easily be synthesized and evaluated. Due
to its simplicity, a similar scenario (i.e., some submodules are
replaced with a single approximate circuit) is typically employed
in quality configurable multipliers such as approximate Wallace tree
multiplier [8] or lpAClib [9].

Equation (5) suggests that much better results could be potentially
obtained when up to four different approximate 8-bit multipliers are
utilized in the 16-bit multiplier. Intuitively, M4 should produce the
lowest error since it has the largest impact on the quality of the
obtained multiplier. In order to reduce a huge number of design
alternatives that have to be synthesized, the second strategy is
proposed. In its first phase, we filter out all approximate 16-bit
multipliers that are dominated by some other multipliers. This can be
done relatively quickly and without using a professional design tool if
the precomputed circuit parameters [WCE calculated according to (5),
power consumption calculated as the sum of power consumption
of all 8-bit multipliers Mi , and estimated area calculated as the
sum of the multipliers’ areas] are used instead of “exact” values.
In the second phase, only the circuits identified in the first phase are
synthesized and thoroughly evaluated.

In the multiplier denoted as A6 in Table I, four differ-
ent approximate multiplier modules are utilized. For example,
if there are 258 different 8-bit approximate multipliers, there exist
2584 = 4, 430, 766, 096 different 16-bit approximate multipliers
using the A6 architecture. However, most of the 16-bit approxi-

Fig. 3. Measurements of various 8-bit multipliers synthesized using 45-
nm technology. The multipliers forming a Pareto set considering power, area,
and WCE are highlighted using filled markers. Normalized WCE (NWCE) is
calculated as NWCE = WCE/22n , where n is equal to 8. Measurements of
five different exact multipliers are provided as the points at WCE = 0.

mate multipliers are dominated by others and can be filtered out.
As a result, only 6753 multipliers remain for further evaluation.
To significantly reduce the number of 16-bit multipliers that have
to be investigated in the first phase, we also consider the architecture
A5 that contains only three different approximate 8-bit multipliers
(see Table I).

V. EXPERIMENTS AND SIMULATION RESULTS

Although the proposed method is applicable to an arbitrary bit
width, the construction of 16-bit multipliers is investigated because
the 16-bit multipliers can be evaluated by simulation that enables to
thoroughly evaluate the proposed method and compare the obtained
circuits with existing designs.

A. Evaluation of 8-bit Approximate Multipliers

First, we implemented all relevant 8-bit multipliers in Verilog Hard-
ware Description Language (VHDL) and synthesized them together
with multipliers from the EvoApprox8b library. Synopsys design
compiler with 45-nm PDK was employed for synthesis. Each VHDL
model was converted to an equivalent C code that was utilized for
quality analysis. Exact values of WCE, WCRE, error rate, MAE, and
MRE were determined by using all 216 input vectors. In this phase,
more than 2210 implementations were synthesized and analyzed. The
obtained results are shown in Fig. 3. The naming of the multipliers
corresponds with [1]. Only nondominated solutions are shown for
each architecture for clarity. The results show the advantages of TM,
BAM, and EvoApprox8b over the other designs when WCE and
circuit area or power consumption are considered. Considering WCE,
MAE, and MRE, EvoApprox8b designs outperform the other ones.
In addition to that, they fill the missing spaces that are unreachable
by truncation. Fig. 3 also contains the measurements of an accurate
multiplier implemented using the star operator in VHDL (see the
triangle at WCE = 0). Interestingly, many approximate multipliers
(some instances of AM1, AM2, and underdesigned multiplier) require
a larger area compared to the accurate multipliers.

B. Synthesis of 16-bit Approximate Multipliers

From the previous results, 258 nondominating design points were
identified (by considering WCE, PDP, and area only) and employed
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TABLE II

NUMBER OF NONDOMINATED MULTIPLIERS (ndom ) IDENTIFIED IN
THE FIRST/SECOND PHASE AND THE CORRESPONDING RUNTIME

(FILTRATION tfilt , SYNTHESIS tsyn , AND ANALYSIS tev) IN MINUTES

Fig. 4. Measurements of 16-bit approximate multipliers consisting of four
8-bit multipliers using the proposed approaches A1–A6. The implementations
lying on the Pareto set, determined for each method and each plot separately,
are shown using a line.

as ˜M or ˜Mi . This yields 4 × 258 = 1032 different implementations
of A1–A4. In addition to that, 4449 different implementations of
A5 and 6753 different implementations of A6 were produced in
the first phase. Then, the 16-bit implementations were synthesized
using synopsys design compiler and analyzed using a simulator
with 232 input vectors to obtain exact values of WCE, WCRE, MAE,
and MRE. The accurate carry lookahead adder was employed in all
designs. The runtimes for filtration, synthesis, and analysis are given
in Table II. After synthesis and analysis, 192 (respectively, 158,
158, 142, 810, and 1257) nondominated solutions1 were identified
for A1 (respectively, A2, A3, A4, A5, and A6). Measurements of the
nondominated designs are shown in Fig. 4. For illustration, we also
included dominated solutions.

The results validate our assumption regarding the quality of
approximate multipliers using the proposed architecture A6 compared
to the basic construction mechanisms A1–A4. Interestingly, there is
no significant difference between the multipliers using A5 and A6.
Considering this fact, A5 is a very efficient architecture for con-
structing multipliers of higher bit widths. Compared to A6, it requires
approximately 2× smaller computational power as shown in Table II.
Although only exact WCE is plotted due to the limited space,
this observation is valid for MAE and MRE too (see Fig. 5).
The remaining results can be found at our website.2

1Power, area, delay, WCE, and MRE were considered.
2http://www.fit.vutbr.cz/research/groups/ehw/approxlib/

Fig. 5. Comparison of the proposed 16-bit approximate multipliers (using
the A5 architecture) with multipliers from the literature across various quality
indicators. The multipliers on a Pareto set, determined for each plot separately,
are highlighted using filled markers. Parameters of exact multipliers are
provided as the points at WCE = 0.

For some instances, (5) provides the upper bound and the exact
WCE may be lower than the estimated one. Although this can-
not have a negative impact on a real application, knowledge of
the exact and estimated WCE offers an opportunity for a more
detailed analysis. Considering 6753 different implementations of A6,
the nonzero difference occurs in 85%. The mean (respectively, median
and maximum) difference is 2.8% (respectively, 2.2% and 16.6%).
Difference greater than 5% occurs in 13%.

C. Comparison With the State-of-the-Art Approaches

The detailed comparison of the proposed method with the state-
of-the-art designs is shown in Fig. 5. For evaluation with the typical
error metrics, we reimplemented the approximate multipliers that are
believed to provide the best results according to the latest review [1].
In total, 244 different 16-bit designs were created, synthesized,
and evaluated. For configurable architectures (AM, BAM, truncated
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array multiplier (TAM), approximate compressor-based multiplier,
and lpAClib), all meaningful configurations were considered. The
error metrics are evaluated accurately using all test vectors for all
considered designs.

The results are mostly consistent with the review [1], although
some multipliers exhibit lower quality (see TAM1). The differences
are probably caused by the fact that a different technology node gen-
eration is considered with a different cell library. We also determine
the errors exactly, whereas only a small fraction (0.2%) of all possible
input combinations is employed in the review to assess the quality of
the approximate multipliers. While the quality of particular designs
varies depending on the chosen error criteria, the truncated multipliers
(TM and BAM) exhibit stable performance and achieve excellent
design tradeoffs.

The multipliers constructed using the proposed method provide the
best tradeoffs except for the area versus WCE result, whereas BAMs
occupy smaller area. Despite the fact that only the WCE, power, and
area were considered to obtain nondominated designs, the obtained
multipliers perform well even under MAE and MRE. In fact, it is
shown that MAE strongly correlates with WCE.

In order to construct a database of 810 annotated 16-bit multipliers,
15 h (including quality evaluation taking more than 80% of the total
runtime) were required on an eight-core Intel Xeon CPU at 2.4 GHz.

VI. CONCLUSION

In this brief, a scalable recursive method for the construction of
large approximate multipliers with guaranteed WCE was proposed.
We demonstrated how to relatively quickly construct a high-quality
Pareto set of nondominated 2n-bit approximate multipliers provided
that we have a reasonable database of n-bit approximate multipliers.

We show that it is sufficient to construct a 2n-bit multiplier using
three different n-bit multipliers (in the architecture A5) without

sacrificing much quality of the obtained 2n-bit multipliers. This
method enables to reduce the design time to nearly one half of the
A6 architecture, in which four different 8-bit multipliers are selected.
The constructed designs show WCEs limited by a maximum error
bound that can be analytically obtained due to the proposed design
approach.
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