
Chapter 9

Automated Search-Based Functional

Approximation for Digital Circuits

Lukas Sekanina, Zdenek Vasicek, and Vojtech Mrazek

9.1 Introduction

This chapter deals with an automated design method that has been developed for

functional approximation of digital circuits. The method is based on an iterative

technology-independent modification of a given implementation of a combina-

tional circuit. The circuit approximation problem is, in fact, transformed to a

multi-objective optimization problem and solved by means of the state-of-the-art

optimization method based on genetic programming.

Genetic programming (GP) is an evolutionary computation technique that auto-

matically solves design problems without requiring the user to know or specify the

form or structure of the solution in advance [22]. GP evolves computer programs,

traditionally represented in memory as tree structures or sequences of instructions.

In order to design and optimize digital circuits, a special version of GP, Cartesian

GP (CGP), has been developed and applied outside the approximate computing

area [14].

There are several reasons why the CGP approach is especially useful for

the circuit approximation. Existing automated circuit approximation methods are

usually constructed as heuristic methods trying to provide the best tradeoff(s)

between key design parameters, typically involving the error, power dissipation, and

delay. CGP is an advanced search-based heuristic method which naturally provides

such a multi-objective optimization scenario. In addition to providing many design

alternatives, there are no restrictions in terms of constraints on target circuits (i.e.,

candidate circuits do not have to obey a predefined form such as, e.g., an and-inverter

graph), except those specified by the user. The evaluation procedure, assessing the
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quality of candidate approximations, can contain formal verification mechanisms of

selected properties in order to provide formal guarantees in terms of error or other

parameters. Finally, GP can operate at the gate and register-transfer (RT) levels and

it can easily be integrated into a standard circuit design flow.

An obvious disadvantage is a limited scalability of CGP because many candidate

approximate circuits have to be generated and evaluated. However, recent works

have shown that the scalability problem can be eliminated and CGP can provide

high-quality tradeoffs between key design parameters even for complex circuits such

as 32-bit approximate multipliers [1], complex approximate sorting and median

networks [26], or image operators [24].

The rest of the chapter is organized as follows. Section 9.2 introduces the

principles of CGP and its utilization for the purposes of circuit approximation.

Three approximation strategies based on CGP are introduced. In Sect. 9.3, a special

attention is given to various approaches developed for the evaluation of candidate

circuits. In particular, the error calculation using simulation and formal verification

techniques is presented. This is followed by introducing a light approach to

estimation of circuit parameters (such as the area, delay, and power dissipation).

Case studies dealing with approximate implementations of arithmetic circuits and

image operators are presented in Sects. 9.4 and 9.5. Conclusions are given in

Sect. 9.6.

9.2 Genetic Programming for Circuit Design and

Approximation

After introducing the principles of GP, the rest of this section is devoted to

CGP and its utilization for circuit design and approximation. In particular, three

approximation strategies based on CGP are presented.

9.2.1 Genetic Programming

Genetic programming, like any other evolutionary computation method, operates

the so-called population (i.e., a set of candidate solutions). The first population

is usually randomly generated, but it can also be seeded using existing designs

if it is useful. This is often the case of approximate circuit evolution in which

the initial population typically contains the original circuit and, if possible, its

various different implementations. The candidate solutions are represented in GP

in different ways, for example, as syntactic trees or sequences of instructions.

An example of the circuit representation based on directed acyclic graphs will be

discussed in Chap. 9.2.2.
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Each solution belonging to a given population is evaluated with the so-called

objective (or fitness) function. For example, if the objective is to minimize the

error probability, the fitness function is just the error probability determined for

the candidate circuit. If there are two or more fitness functions, reflecting not only

the error but also the area or delay, we speak about a multi-objective optimization.

Driven by the fitness function(s), GP performs a parallel search in the space

of all possible candidate designs. New candidate circuits are generated from the

current population by means of genetic operators such as selection, crossover, and

mutation. These operators work at the level of circuit representation (see examples

in Chap. 9.2.2). The process of generating new populations of candidate circuits

(i.e., one run of GP, or evolution, in short) is terminated when a desired solution is

discovered or the available time is exhausted.

The result of a single-objective evolution is usually only one solution; that

is, the solution showing the best fitness score. A multi-objective evolutionary

algorithm should produce a set of solutions showing the best tradeoffs between

target objectives. We are primarily interested in the solutions belonging to the

Pareto set which contains the so-called non-dominated solutions [5]. Consider three

objectives to be minimized, for example, the area, the worst case error, and the delay

in the case of digital circuit approximation. Circuit C1 dominates another circuit C2

if the following conditions hold:

• C1 is no worse than C2 in all objectives, and

• C1 is strictly better than C2 in at least one objective.

Modern GP methods integrate this concept of dominance into their selection

mechanisms and try to find all solutions belonging to the Pareto optimal front.

9.2.2 Cartesian Genetic Programming

Cartesian genetic programming grew from a method of evolving digital circuits

developed by Miller et al. in 1998 [15]. CGP especially differs from other GP

branches in: (1) the solution representation and (2) the search mechanism. The

key ingredients of CGP are briefly introduced in the following paragraphs. Detailed

description is available in [14].

9.2.2.1 Circuit Representation

From a hardware designer point of view, every candidate circuit is represented as a

special netlist containing a constant number of components (N ). These components

are (virtually) organized in a two-dimensional grid of nc columns and nr rows (N =

nc · nr ). The number of primary inputs and outputs is denoted ni and no. Type of

components depends on the level of abstraction used in modeling, where logic gates
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Fig. 9.1 A combinational circuit represented in CGP with parameters: ni = 5, no = 2, nc = 4, nr

= 3, na = 2, nb = 2, Γ = {xor (encoded with 0), and (1), or (2), nor (3), not_1 (4), add (5)}. Three

nodes are inactive

and RT-level components are naturally supported. Every component has up to na

inputs and nb outputs.

A unique address is assigned to all primary inputs and to the outputs of

all components to define an addressing system enabling circuit topologies to be

specified. The primary inputs are labeled 0 . . . ni − 1 and the components’ outputs

are labeled ni, ni + 1, . . . , ni + nb · nc · nr − 1. As no feedback connections are

allowed in the basic version of CGP, only combinational circuits can be created.

Figure 9.1 shows a gate-level 5-input/2-output circuit consisting of nine gates and

having four logic levels on the longest input–output path. This circuit is represented

in the CGP grid with nc = 4 and nr = 3 and the outputs of its components are

labeled 5 . . . 28. There are 3 unused components.

Each component is represented using na + 1 integers in the netlist, where na

integers specify destination addresses for its inputs and one integer is a pointer to the

table Γ containing all supported functions. A component placed in the j -th column

can obtain its input values either from primary inputs or from the components

placed in previous columns. The whole circuit is then represented using the so-

called chromosome (i.e., simplified netlist) consisting of:

Ng = nc · nr · (na + 1) + no integers. (9.1)

The last part of the chromosome contains no integers specifying either the nodes

where the primary outputs are connected to or logic constants (“0” and “1”) which

can directly be connected to the primary outputs.
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The main feature of this encoding is that while the size of the chromosome is

constant (for a given no, na , nr , and nc), the size of circuits represented by this

chromosome is variable (from 0 to nc · nr components can be involved) as some

components can remain disconnected. This redundancy has been identified as a

crucial property of the efficient search in the space of digital circuits [14].

9.2.2.2 Search Method

Every chromosome represents one design point in the design space. In CGP, new

designs are created by introducing small random modifications to the chromosome.

This operation is called the mutation and it typically modifies h integers of the

chromosome. All randomly introduced modifications must lead to valid circuits,

i.e., only valid function codes and connections can be created.

Algorithm 1 presents the search method usually used for the single-objective

circuit approximation by means of CGP [14]. The initial population P is seeded by:

(1) the original circuit (p), (2) alternative (accurate) implementations of p (if they

are available), and (3) circuits created from p by mutation. The total population size

is 1 + λ individuals. After evaluating the initial population, the following steps are

repeated until the termination condition is not satisfied: (1) a new parent is selected,

(2) λ offspring circuits are created from the parent by means of mutation, and (3)

the population is evaluated.

One mutation can affect either the component function, the component input

connection, or the primary output connection. A mutation is called neutral if it does

not affect the circuit’s fitness. If a mutation hits a non-used part of the chromosome,

it is detected and the circuit is not evaluated because it has the same fitness (i.e.,

quality) as its parent. Otherwise, the fitness is calculated. For further details about

CGP and its extensions and parameters setting, please see [14].

Algorithm 1: CGP

Input: CGP parameters, fitness function, original circuit p

Output: The highest scored individual and its fitness

1 P ← CreateInitialPopulation(p);

2 EvaluatePopulation(P );

3 while 〈terminating condition not satisfied〉 do

4 α ← SelectHighest-scored-individual(P );

5 if fitness(α) ≥ fitness(p) then

6 p ← α;

7 P ← {p} ∪ {λ offspring of p created by mutation};

8 EvaluatePopulation(P );

9 return p, fitness(p);

f it.vutbr.cz



180 L. Sekanina et al.

9.2.3 CGP in Circuit Approximation

CGP can evolve high-quality implementations of digital circuits from scratch,

only on the basis of a behavioral description provided [14, 33]. CGP can also

be employed to optimize existing designs, for example, to reduce the number of

gates [28]. In the context of approximate computing, three approximation strategies

have been developed.

9.2.3.1 Resources-Oriented Method

Let us suppose that M is the minimum number of components (gates) that are

needed in order to construct a fully functional circuit. In the first approximation

strategy, CGP is used to minimize the error criterion under the assumption that only

mi components (gates) are available and mi < M . This can be easily achieved when

CGP is intentionally employed with insufficient resources (mi = nc · nr ). In order

to obtain different tradeoffs between the error and the number of components, CGP

is executed several times with different mi as the parameter. The main advantage is

that the user can control the used area (and power consumption) precisely by means

of mi . The method was employed to approximate small multipliers and 9-input and

25-input median circuits operating over 8 bits [30].

9.2.3.2 Error-Oriented Method

In the error-oriented method, the target error level emax (e.g., the average error

magnitude) is specified by the user. Two different error-oriented approaches have

been developed. In both cases, CGP is initialized with a precise implementation and

employed (with sufficient resources) to modify the initial implementation to exhibit

the target error emax provided that the number of components is reduced as much

as possible. If various tradeoffs between the error and the number of components

are requested, CGP is executed several times with emax as the parameter. The

error-oriented approach tends to be less computationally demanding than the

resources-oriented method.

The first approach is based on a two-phase design procedure and represents

a natural way how to perform approximation of digital circuits. The goal of the

first phase is to modify the initial implementation to exhibit the target error emax.

After obtaining a circuit satisfying this requirement, the fitness function is changed.

The objective is now to minimize the number of components (or another criterion)

providing that emax is left unchanged (is within a predefined interval). The two-stage

error-oriented method was applied to design various adders and multipliers [23, 29].

Another option is to employ a single-phase CGP where the target error serves as

a constraint. The goal of CGP is to minimize the number of components providing

that the error is not worse than emax. As the search is forced towards more compact
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solutions, the error is implicitly forced to be as close as possible to the target error

value. By means of the single-phase error-oriented method, approximate multipliers

showing specific properties were evolved for artificial neural networks implemented

on a chip [18].

9.2.3.3 Multi-Objective CGP

In the multi-objective method, the error and other key circuit parameters (area, delay,

and power consumption) are optimized together by a multi-objective CGP [19]. The

multi-objective CGP represents candidate circuits using CGP encoding. The new

candidate circuits are created by means of a point mutation operator. The search is

not conducted by Algorithm 1, but a multi-objective extension of CGP has to be

taken. Mrazek et al. [19], for example, used a modified variant of Non-dominated

Sorting Genetic Algorithm (NSGA-II). NSGA-II sorts individuals according to the

dominance relation into multiple fronts. The first front contains all non-dominated

solutions along the Pareto front. Each subsequent front is constructed by removing

all the preceding fronts from the population and finding a new Pareto front.

The multi-objective CGP is the most promising approach because it reconstructs

the Pareto front in each CGP generation and tries to cover all possible compromise

solutions. However, in real-world applications, we are typically interested in only

several (predefined) design targets; for example, approximate implementations have

to be developed for a few error levels known in advance. Then, it is usually

computationally less expensive to execute a single-objective CGP optimizing a

given parameter several times and having the remaining ones as the constraints.

9.2.4 Properties of the CGP-Based Approximation Method

There are no constraints imposed on circuits that can be obtained by means of

CGP except those specified by the user. A suitable setting of CGP thus enables

to constrain the size and maximum delay of all candidate circuits and restrict the set

of supported functions, which is useful when one needs, for example, to avoid using

certain gates in approximate circuits because they are expensive (such as exclusive-

ORs). If there is a specific requirement, for example, in the case that an approximate

multiplier is evolved, but the exact result is requested for some predefined subset of

inputs (see [18]), the fitness function will consider this requirement. If a candidate

circuit satisfies this requirement, it can be evaluated in terms of error and other

parameters. Otherwise, the worst possible score is immediately assigned to that

circuit.

CGP is known for its high computational requirements because many candidate

circuits (often in the order of millions) have to be generated and evaluated in a

single run. However, with widely available parallel computer clusters and fast fitness
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evaluation based on parallel simulation and formal methods, CGP is now highly

competitive even when circuits such as 32-bit multipliers are approximated [1].

The CGP-based approximation can easily be integrated into a conventional

design flow. For example, when a gate-level approximation is conducted, CGP

starts with the netlist representing the original (exact) circuit and outputs another

netlist representing the approximate circuit. The resulting netlist is then used in the

standard design flow.

9.2.5 Other Approximation Methods Based on Evolutionary

Computation

Except the CGP-based methods, evolutionary computation has only infrequently

been used in approximate circuit design. For example, Lotfi et al. performed the

sensitivity analysis to find safe-to-approximate variables in OpenCL kernels [12].

The objective was to optimize the precision of these variables by means of

the genetic algorithm with the aim of minimizing the resource utilization on

FPGA while meeting the target quality. Nepal et al. presented ABACUS method

introducing approximate operations on abstract syntax trees representing behavioral

register-transfer level descriptions of digital circuits. They applied a multi-objective

approximations conducted by means of a non-dominated sorting genetic algorithm

(NSGA II) [21].

9.3 Evaluation of Candidate Designs

In each iteration, it is necessary to evaluate to what extent a given candidate

approximate circuit satisfies functional and nonfunctional requirements imposed

by the specification. While there are common approaches on how to evaluate the

electrical parameters (area, delay, and power consumption), determining the quality

of a candidate approximation is in general a nontrivial problem. The evaluation in

a target application is typically time consuming. For the search-based synthesis,

it is crucial, however, to perform the checking as quickly as possible because this

procedure is employed in iterative design process. Hence, an alternative approach

that does not require a direct interaction with a target application is typically

employed. Typically, an error metric is used to assess the quality of a given

approximation. Such a metric should be carefully chosen so that it reflects the

performance of a given approximation considering the target application. For small

problem instances, exhaustive simulation represents a viable option because the

current CPUs enable to evaluate up to 256 input combinations in parallel. For

more complex instances, we can adopt techniques of formal equivalence checking.

But, the nature of the approximate circuits involves to replace the strict formal
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equivalence checking with more advanced methods that enable to perform the so-

called relaxed equivalence checking, i.e., checking that two circuit designs are equal

up to some bound. Compared to the formal equivalence checking, only little has

been done in this area and the relaxed equivalence checking still represents an open

and challenging problem.

9.3.1 Quality of Approximate Circuits

The functionality of approximate circuits is typically expressed using one or several

error metrics. In addition to the error rate, the average-case as well as the worst-case

situation can be analyzed. Among others, mean absolute error (MAE) and mean

square error (MSE) are the most familiar metrics that are based on the average-

case analysis. Selection of the right metrics is a key step of the whole design.

When an arithmetic circuit is approximated, for example, it is necessary to base

the error quantification on an arithmetic error metric since the error magnitude

could have a significant impact on target application. For general logic, where

no additional knowledge is available and where there is not a well-accepted error

model, Hamming distance or error rate is typically employed.

Let f : Bn → B
m be an n-input m-output Boolean function that describes correct

functionality (specification) and f̂ : B
n → B

m be an approximation of it, both

implemented by two circuits, namely F and F̂. The following paragraphs summarize

the error metrics that have been employed in the literature to quantify the deviation

between the outputs produced by a functionally correct design and an approximate

design.

9.3.1.1 Arithmetic Error Metrics

The worst-case arithmetic error, sometimes denoted as error magnitude or error

significance [2], is defined as:

ewce(f, f̂ ) = max
∀x∈Bn

| nat(f (x)) − nat(f̂ (x))| (9.2)

where nat(x) represents a function nat : B
m → Z returning a decimal value of

the m-bit binary vector x. Typically, a natural binary representation is considered,

i.e., nat(x) =
∑m−1

i=0 2ixi . The worst-case error represents the fundamental metric

that is typically used as a design constraint that helps to guarantee that the

approximate output can differ from the correct output by at most ǫ (i.e., the condition

ewst (f, f̂ ) ≤ ǫ is satisfied during the whole design process).

Rather than the absolute worst-case error, relative worst-case error is employed
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ewcre(f, f̂ ) = max
∀x∈Bn

| nat(f (x)) − nat(f̂ (x))|

nat(f (x))
(9.3)

to constrain the approximate circuit to differ from the correct one by at most a certain

margin. Note that a special care must be devoted to the cases for which the output

value of the original circuit is equal to zero, i.e., the cases when the denominator

approaches zero. This issue can be addressed by either omitting test cases when

nat (f (x)) = 0 or biasing the denominator as employed in [19].

The average-case arithmetic error (mean absolute error) is defined as the sum

of absolute differences in magnitude between the original and approximate circuits,

averaged over all inputs:

emae(f, f̂ ) =
1

2n

∑

∀x∈Bn

| nat(f (x)) − nat(f̂ (x))| (9.4)

When we replace the expression in the sum by the equation for relative error

distance, we can calculate the mean relative error:

emre(f, f̂ ) =
1

2n

∑

∀x∈Bn

| nat(f (x)) − nat(f̂ (x))|

nat(f (x))
. (9.5)

9.3.1.2 General Error Metrics

In addition to the arithmetic error metrics, there are metrics that are not related to

the magnitude of the output of the correct or approximate circuit.

Error rate referred to as error probability represents the basic measure that is

defined as the percentage of inputs vectors for which the output value differs from

the original one:

eprob(f, f̂ ) =
1

2n

∑

∀x∈Bn

[f (x) �= f̂ (x)] (9.6)

In many cases, it is worth to consider also the Hamming distance between f (x)

and f̂ (x). The worst-case Hamming distance denoted also as bit-flip error [4] is

defined as:

ebf (f, f̂ ) = max
∀x∈Bn

(

m−1
∑

i=0

fi(x) ⊕ f̂i(x)

)

(9.7)

and gives the maximum number of output bits that simultaneously outputs a wrong

value.
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The average number of changed output bits denoted as average Hamming

distance can be expressed as follows:

emhd(f, f̂ ) =
1

2n

∑

∀x∈Bn

m−1
∑

i=0

fi(x) ⊕ f̂i(x) (9.8)

Note that eprob(f, f̂ ) = emhd(f, f̂ ) when applied to single-output functions, i.e.,

when m = 1.

9.3.1.3 Problem-Specific Error Metrics

In some cases, neither the common metrics (e.g., error rate) nor the arithmetic

metrics provide a satisfactory assessment of the quality of approximate circuits.

Hence, various problem-specific error metrics have been introduced. For example,

distance error was proposed to evaluate the quality of approximate median and

sorting circuits [17, 26]. The common problem of the previously mentioned metrics

is that they are data dependent. To model the error introduced by the approximations

of median and sorting networks, the authors proposed to measure the distance

between the rank of the returned element and the rank expected by the specification.

Two additional metrics can be inferred from the distance error: average distance

error defined as the sum of error distances averaged over all input combinations

producing an invalid output value and worst case distance error defined as the

maximal distance error calculated over all the input combinations.

Chandrasekharan et al. [3] analyzed the behavior in sequential circuits that

contain approximate combinational components. Although the worst case can be

computed for the approximate component in isolation, the accumulated worst case

in the sequential circuit may differ significantly [3]. The sequence of successive

input patterns for the approximate component depends on the sequential logic

and composition of the overall circuit. Hence, accumulated worst-case error and

accumulated error rate have been introduced.

9.3.2 Error Analysis Based on Simulation

In order to evaluate the quality of the approximate circuits, a common approach is

to employ a circuit simulator that calculates responses for all input vectors. This

step involves the interpretation of a CGP genotype for each vector. One of the

key features of CGP encoding is that it can directly be used as an intermediate

code that is processed by an interpreter [32]. To maximize efficiency of the

interpreter, a common approach for the gate-level CGP is to employ a bit-level

parallel simulation [14]. The idea of parallel simulation is to utilize bitwise operators

operating on multiple bits in a high-level language (such as C) to perform more
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than one evaluation of a gate in a single step. This approach benefits from the fact

that the modern processors are equipped with specialized SIMD instructions. For

example, the widely available Advanced Vector Extension (AVX) instruction set

allows us to operate with 256-bit operands. It means that every circuit with eight

inputs can completely be simulated in one pass by applying a single 256-bit test

vector at each input. Therefore, the obtained speedup is 256 against the sequential

simulation. When more complex circuits need to be evaluated, multiple 256-bit

vectors are applied sequentially. In general, the obtained speedup is w on a w-bit

processor (assuming 2n ≥ w). In practice, the speedup typically varies depending

on the number of CGP nodes due to the overhead introduced by the interpreter itself.

As shown in [32], the performance of the simulator can be substantially improved

if the interpreter is avoided and replaced by a native machine code that directly

calculates the responses. Despite of that, the number of input combinations grows

exponentially with respect to the number of primary inputs.

For example, the exhaustive simulation of a circuit having 32 inputs and 1500

gates takes about 5 min using an interpreted 256-bit parallel simulator executed on

a Xeon CPU operating at 2.6 GHz. From a practical point of view, the error analysis

method whose runtime requires more than few seconds is unattractive for the search-

based synthesis because it leads to enormous overall runtime. Hence, an alternative

and more scalable technique is requested. Many authors simplify the problem and

evaluate the functionality of approximate circuits by applying a subset of the set of

all input vectors. Monte Carlo simulation is typically utilized to measure the error

of the output vectors with respect to the original solution [9, 20, 35]. The number of

randomly generated vectors required for a given confidence level is determined ad

hoc or analytically by means of an equation which reflects the number of primary

inputs, confidence level, and the margin of error [36]. Unfortunately, this approach

provides no guarantee on the error and makes it difficult to predict the behavior of an

approximate circuit under conditions different from those used during simulation.

9.3.3 Formal Approaches in Error Analysis

In order to overcome limitations of the simulation, various formal approaches can

be employed [25]. Determining whether two Boolean functions are functionally

equivalent represents a fundamental problem in formal verification. Although the

functional equivalence checking is an NP-complete problem, several approaches

have been proposed so far to reduce the computational requirement for practical

circuit instances. State-of-the-art verification tools are based on Reduced Ordered

Binary Decision Diagrams (ROBDD) and satisfiability (SAT) solvers. ROBDDs

have been traditionally used to solve the equivalence checking problem due to

their canonical property. The decision procedure is trivial and reduces to pointer

comparison. However, it is the requirement for canonicity that makes ROBDDs

inefficient in representing certain classes of functions. It is a well-known fact that

the size of BDD is sensitive to the chosen ordering of the variables and the variable
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ordering should not be chosen randomly [25]. There are functions whose BDD size

is always polynomial in the number of input variables (e.g., symmetric functions).

On the other hand, there are functions for which the BDD size is always exponential,

independent of variable ordering. It has been proven that not only multipliers but

also integer division, remainder, square root, and reciprocal exhibit exponential

memory requirements for any variable ordering [25].

Currently, the SAT solver-based (or simply SAT-based1) equivalence checking

represents a method of the first choice. Modern SAT algorithms are very effective

at coping with large problem instances and large search spaces [25]. The basic

principle is to translate the problem of functional equivalence of two combinational

circuits to the problem of deciding whether a Boolean formula given in conjunctive

normal form (CNF) is satisfiable or not. This can be done using a miter which

contains the combinational circuits whose corresponding outputs are connected via

XOR gates and whose outputs are feed into a single OR gate. To prove functional

equivalence, it is necessary to prove that the output of the miter (i.e., the OR gate)

is always false.

Most formal verification approaches that employ testing exact equivalence are

not directly extendable for relaxed equivalence checking; however, the ideas behind

efficient testing of exact equivalence can serve as a basis for developing efficient

methods for checking relaxed equivalence. A common approach to error analysis

is to construct an auxiliary circuit referred to as approximation miter. This circuit

instantiates both the candidate approximate circuit and the accurate (reference)

circuit and compares their outputs to quantify the error. The comparison is typically

ensured by means of an error computation block. The structure of the approximation

miter is shown in Fig. 9.2. For arithmetic error metrics, a two’s complement

subtractor followed by a circuit which determines absolute value is employed. Such

a block determines the absolute difference as requested by the equations defined

in Sect. 9.3.1.1. For Hamming distance and error rate, XOR gates connecting the

corresponding outputs are sufficient. If we want to prove whether the error is

bounded by some constant, the output of the error computation block is feed into a

decision circuit which compares the error with a predefined bound.

For computing the worst-case error, SAT-based solver can be employed. The

approximation miter is converted to a CNF formula and the resulting formula is

used together with an objective function as input of the SAT solver. Worst-case error

analysis is typically based on an iterative approach. Usually, a variant of binary

search is applied. It starts with the most significant bit and gradually determines

the exact value of each bit. A much simpler task is to check whether a predefined

worst-case error is violated by the candidate approximate circuit. The common SAT-

based error checking performs much faster than the SAT-based worst-case error

analysis since it does not require iterative processing. CNF of the approximate

1Note that the SAT problem can be solved using a solver based on ROBDDs. By a SAT-based

solver, we mean a variant of SAT algorithm typically based on DPLL backtracking operating at the

level of CNF.
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Fig. 9.2 Approximation miter for the average-case and worst-case error analysis. Implementation

of the error computation block for: (a) arithmetic error, (b) Hamming distance, and (c) error rate

miter is submitted to a SAT solver which gives us the answer. Although the

SAT-based combinational equivalence checking performs poorly for some problem

instances, e.g., for multipliers, the SAT-based error checking was used to design

32-bit approximate multipliers and 128-bit adders providing high-quality trade-off

between the worst-case arithmetic error and area [1]. The authors modified CGP

to drive the search towards promptly verifiable approximate circuits. The key idea

was to introduce a hard time-limit for a chosen SAT solver which causes that all

candidate circuits violating this limit are discarded.

While violating the worst error can be detected, no practically useful method

capable of establishing the average-case error, error rate, and total Hamming

distance using a SAT-based solver has been proposed up to now. The common

feature of these metrics is that it is necessary to determine the number of input

assignments that evaluates output of an approximation miter to true. This problem

generalizes the SAT problem and is known as the model counting problem or simply

#SAT. The model counting represents a challenging problem since it has been

demonstrated that #SAT is extremely hard even for some polynomial-time solvable

problems [25]. As a consequence of that, the available #SAT solvers are able to

handle only small instances in reasonable time.

The ROBDDs seem to be the only viable option how to calculate this type of error

metrics. One of the main advantages of ROBDDs is the possibility to efficiently

perform many of the operations needed for the manipulation of Boolean functions.

For example, the ROBDDs enable to efficiently determine the number of satisfying

assignments. This can be done in linear time with respect to the number of BDD

nodes by calling the SATcount operation.
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The Hamming distance computed using BDDs was introduced in [31] in the

context of CGP-based approximation of general logic. The computation of the

average-case Hamming distance is relatively straightforward (see Eq. (9.9)). The

average-case Hamming distance can be obtained by converting the miter (shown in

Fig. 9.2b) to corresponding ROBDD and calling SATcount operation for each XOR

gate. Finally, we sum the obtained results and divide them by the total number of

input assignments.

emhd(f, f̂ ) =
1

2n

∑

∀x∈Bn

(m−1
∑

i=0

fi(x) ⊕ f̂i(x)

)

=
1

2n

m−1
∑

i=0

(

∑

∀x∈Bn

fi(x) ⊕ f̂i(x)

)

=
1

2n

m−1
∑

i=0

SATcount(fi ⊕ f̂i). (9.9)

A similar approach can be employed to determine error rate (see Eq. (9.10)). The

error rate is defined as the percentage of input vectors for which the approximate

output differs from the original one. The output is classified as invalid even if only

one bit is different. It means that it is sufficient to apply SATcount operation on the

output of a common miter (shown in Fig. 9.2c) as the miter is constructed in such a

way that it evaluates to true if and only if a certain input assignment yields an invalid

response.

eprob(f, f̂ ) =
1

2n

∑

∀x∈Bn

[f (x) �= f̂ (x)] =
1

2n

∑

∀x∈Bn

(

∨

0≤i<m

fi(x) ⊕ f̂i(x)

)

=
1

2n
SATcount

(

∨

0≤i<m

fi ⊕ f̂i

)

(9.10)

Recently, a BDD-based method for arithmetic worst-case and average-case error

analysis was developed [34]. The computation of the average-case arithmetic error

using BDDs is derived in Eq. (9.11). In order to determine the average-case error, we

can create an auxiliary miter consisting of the combinational circuits whose outputs

are feed into subtractor followed by a circuit which computes the absolute value

(shown in Fig. 9.2a). The average-case arithmetic error can be then obtained by

several calls of SATcount operation, one per each bit of the circuit producing the

absolute value. The obtained numbers are weighted by appropriate powers of two

and summed up. The average-case arithmetic error can be determined as:

emae(f, f̂ ) =
1

2n

∑

∀x∈Bn

e
f,f̂

(x) =
1

2n

∑

∀x∈Bn

(m−1
∑

i=0

Ei(x) · 2i

)
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Table 9.1 The worst recorded time needed to perform error analysis of approx. unsigned adders

16-bit adder 20-bit adder 32-bit adder

Approach eprob ewce emae emre eprob ewce emae emre eprob ewce emae emre

Parallel

simulation

40 s 41 s 42 s 46 s 386 s 390 s 392 s 408 s n/a n/a n/a n/a

BDD 1 us 1 ms 1 ms n/a 17 us 7 ms 9 ms n/a 0.2 ms 9 ms 18 ms n/a

SAT n/a 2 ms n/a n/a n/a 4 ms n/a n/a n/a 7 ms n/a n/a

=
1

2n

m−1
∑

i=0

(

2i
∑

∀x∈Bn

Ei(x)

)

=

m−1
∑

i=0

2i−n · SATcount(Ei), (9.11)

where e
f,f̂

(x) = | nat(f (x))−nat(f̂ (x))| denotes the absolute error expressed using

m bits and E(x) = nat−1(e
f,f̂

(x)) is the binary expansion of e
f,f̂

(x).

9.3.4 A Brief Comparison of the Error Analysis Methods

To make a picture about the efficiency of the various approaches, we applied the

256-bit parallel simulation, BDD-based approach, and SAT-based approach on a

set of 5 × 106 randomly generated approximate adders and measured the runtime

required to perform error analysis. To determine the runtime, 16-bit, 20-bit, and 32-

bit approximate adders (i.e., circuits with 32, 40, and 64 inputs, respectively) were

chosen as a benchmark. Because the time varies with the actual error (especially

in the case of the SAT-based approach), the worst recorded runtime is reported

in Table 9.1. The measurement was conducted at Intel XEON E5-2670 running at

2.6 GHz. In the case of SAT, the binary search strategy was used to determine the

exact value of ewce.

The parallel simulation represents a universal method which is able to calculate

virtually every error metric but its bad scalability is the main limiting factor. The

BDD-based error analysis is a very efficient approach which scales very well on

non-pathological cases of circuits, but it cannot be applied to calculate arbitrary

error, e.g., the relative error requires division which is hard to implement. The

SAT-based method also scales very well, but it is applicable to the worst-case error

analysis only.

9.3.5 Electrical Parameters

Since the typical goal is to obtain energy-efficient approximate circuits, it is

necessary to integrate this requirement into the fitness. Unfortunately, we cannot
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afford to run a time-consuming synthesis by means of a professional design tool

for each generated candidate circuit. Hence, the electrical parameters are typically

estimated during the evolution. The most elementary approach is to base the search-

based synthesis on the optimization of the number of gates or area on the chip. The

reasons are as follows. Firstly, the power consumption of combinational circuits is

usually highly correlated with these parameters [30]. Secondly, this method does

not introduce any overhead since both parameters can easily be determined in linear

time with respect to the number of gates of a candidate circuit. This simplification,

however, may lead to unsatisfactory results especially for circuits consisting of few

gates exhibiting high switching activity. For this reason, Hrbacek et al. employed

a more precise power estimation technique based on the switching activity [6]. In

general, the power consumption of a digital circuit consists of dynamic and static

power component. Hrbacek et al. estimated the dynamic part according to the total

load capacitance of the output and switching activity. Because the static part of

the power consumption only depends on a function of the logic gate, the total

static power consumption was based on summing static leakage for all gates of the

candidate circuits. In addition to the power, the authors also considered delay that

was calculated as a delay of the longest path. Delay of a gate and its leakage power

and capacitance of its inputs were determined according to the liberty file available

for the given semiconductor technology.

9.4 Case Study 1: Approximate Arithmetic Circuits

The first case study is devoted to the automated design of approximate arithmetic

circuits. We restrict our attention to approximation of two arithmetic circuits—

multipliers and adders. These circuits play a prominent role in practice since they

are extensively used in many real-world systems for machine learning as well as

signal processing. Not only the efficient implementation of digital filters (e.g., FIR,

and IIR) and various transformations (e.g., DCT, and DFT) but also artificial neural

networks, for example, profit from the extensive usage of adders and multipliers.

Those applications are typically built on top of the familiar multiply-and-accumulate

principle and exhibit a high degree of error resilience. Unfortunately, multipliers—

due to their complex structure—represent one of the most difficult arithmetic

circuits from the perspective of both approximation and verification. Despite of

that, we show how to approximate even complex problem instances such as 32-bit

multipliers without sacrificing the guarantee on the error.

9.4.1 Library of 8-Bit Approximate Adders and Multipliers

This chapter deals with the designing of EvoApprox8b library which is a rich

and well-focused publicly available library of approximate components that can be
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immediately used in various applications or for benchmarking of circuit approx-

imation methods. It contains hundreds of 8-bit alternative implementations of

approximate adders and multipliers.

In order to develop the library, the authors employed a general-purpose approxi-

mation method based on the multi-objective CGP (see Sect. 9.2.3.3). CGP operates

at the level of standard cells such as one bit adder and two and three input gates. The

authors used a subset of components from a 180-nm technology library. The cells

have one, two, or three inputs (e.g., full adder) and one or two outputs depending on

the function. Some of the functions (e.g., BUF, and INV) have multiple sizes which

differ in the maximum output load, area, power consumption, and delay. During the

evaluation, a proper size is selected depending on the output load of the gate.

The goal is to simultaneously minimize delay, power consumption, and error to

discover a set of approximate circuits along a Pareto front. The error is determined

using an exhaustive simulation. The evaluation of the fitness consists of two steps.

At the beginning, active nodes are identified in the CGP chromosome. Then, only

the active nodes are evaluated by means of a 256-bit parallel circuit simulator. Power

consumption is estimated by means of the switching activity analysis. The delay of a

candidate circuit is calculated as the sum of the delays on the cells along the longest

path. The delay of a cell is modeled as a function of its input transition time and

capacitive load on the output of the cell.

The CGP parameters are set as follows: h = 5%, na = 3, nb = 2, nr = 1, λ =

500 individuals in the population, 5 × 106 generations. The number of columns is

nc = 200 in the case of the adders and nc = 1000 in the case of the multipliers. The

set of functions Γ includes 15 functions that reflect common standard cells available

in technology libraries. In addition to the common two-input gates, the following

cells are selected: NAND3 (3-input NAND), NOR3 (3-input NOR), MUX2 (2-to-

1 multiplexer), AOI21 (3-input AND/NOR), OAI21 (3-input OR/NAND), FA (full

adder), and HA (half adder).

In order to avoid a possible bias preventing discovery of some implementations,

the initial population was seeded by various conventional implementations. The

authors utilized 13 different adders and 6 different multipliers ranging from the

basic implementations such as Ripple-Carry Adder or Ripple-Carry Array Multi-

plier to advanced architectures such as Higher Valency Tree Adder and Wallace

Tree Multiplier. These accurate circuits were described in Verilog language and

synthesized using Synopsys DC and 180 nm technology. The resulting netlists were

directly converted to the corresponding CGP netlists and used as the members of

the initial population. The goal of the evolution was to design approximate adders

and multipliers having MRE less than 10%. In addition to that, the search was

constrained so that ewce could be at most 5% of the output range and ewcre could

not be worse than 1000%. All candidate solutions violating these requirements were

discarded.

Figure 9.3a shows parameters of the evolved approximate adders. In total, 430

Pareto optimal 8-bit approximate adders were obtained from the initial population of

13 conventional adders. The electrical parameters (power and delay) are expressed

relatively to the Ripple-Carry adder (RCA) which is considered as 100% in the
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Fig. 9.3 Pareto fronts of the evolved 8-bit approximate adders and multipliers. (a) 8-bit adders.

(b) 8-bit multipliers

figure. RCA is optimal in terms of power consumption among the conventional

architectures, but significant savings can be achieved when relaxing the requirement

of perfect functionality (see the orange and green points). On the other hand, the

Tree Adder with Sklansky architecture exhibits best performance considering the

maximum operating frequency. Two times higher area on the chip and 2.5 times

higher power consumption is the cost we have to pay when we need to reduce delay

by 40%. There are approximate adders that exhibit the same or even better delay but

having substantially lower power consumption (see the purple and blue points). The

best evolved low-power adders do not have MRE higher than 3%.

Figure 9.3b shows parameters of the 471 Pareto optimal 8-bit approximate

multipliers that were evolved from 6 conventional implementations. The electrical

parameters are related to the Ripple-Carry Array Multiplier (RCAM) architecture

which represents 100%. RCAM architecture is the most efficient exact multiplier

when considering the power. Wallace Tree multipliers, however, enable us to reduce

the delay to 48% of RCAM at the cost of a slightly higher power consumption and

area. The overhead is relatively low. The power increases by 22% and the area by

22%. Since the 8-bit multiplier is a more complex circuit compared to the 8-bit

adder, the power consumption as well as delay decreases with increasing MRE. For

10% MRE, the approximate multipliers exhibit 60% power reduction. The results

suggest that even higher reduction can be achieved if larger error is allowed.

To evaluate the performance of the proposed multipliers, we synthesized the

evolved netlists using Synopsys DC for 45 nm technology. In addition to that,

we implemented 58 approximate multipliers created by means of two analytical

methods that are considered as state-of-the-art solutions (see, e.g., the comparative

evaluation [9]). We applied the common truncation (bit-width reduction) technique

as well as a more advanced truncation scheme proposed by Mahdiani et al. [13]

to the Array multiplier consisting of Carry-Save adders. The common truncation

is rather limited—only 7 instances can be implemented over 8 bits. The remaining

cases are the result of advanced truncation. For comparison, we also implemented

the 8-bit multiplier built using 2-bit approximate multipliers as proposed by
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Kulkarni et al. [11]. Kulkarni’s multiplier is one of the first approximate multipliers.

The parameters of the synthesized circuits are summarized in Fig. 9.4. Despite of

the fact that the EvoApprox8b library was optimized for 180 nm, the multipliers

perform well even at 45 nm. Kulkarni’s multiplier is extremely inefficient. Even

the truncated multipliers exhibit significantly better parameters for the same MRE.

Note that the MAE of the Kulkarni’s multiplier is 1.54% which is out of the shown

range. Considering MRE, MAE but also WCE and WCRE, EvoApprox8b designs

outperform the other approaches. Moreover, they fill the missing spaces that are

unreachable by truncation.

9.4.2 Approximating Complex Arithmetic Circuits

Highly competitive 8-bit approximate circuits were obtained by means of the multi-

objective CGP, but there may be applications that require larger bit-widths and

higher dynamic range. One possibility is to use the approximate 8-bit compo-

nents as building blocks of more complex approximate adders and multipliers as

demonstrated, for example, in [11]. The recursive construction of larger approxi-

mate multipliers from smaller approximate building blocks unfortunately does not

provide the optimal results. The parameters of the obtained circuits are far from the

optimum especially if the building blocks are small. This is illustrated in Fig. 9.4.

The approximate circuits designed for a target bit-width exhibit substantially better

parameters.

In order to approximate complex arithmetic circuits, Ceska et al. proposed

a method which integrates a SAT-based approach for approximate equivalence

checking into the CGP-based circuit optimization algorithm [1]. The principle is

as follows. The goal is to gradually modify the original circuit and obtain an

approximate circuit whose WCE is as close as possible to the predefined value and

whose size represented by the number of gates is as small as possible. A single-

Fig. 9.4 Parameters of 8-bit multipliers synthesized using 45 nm technology with Vcc = 1 V
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objective CGP is employed. The set of various trade-offs between WCE and other

parameters is obtained when we execute this algorithm several times with different

target error levels as the parameter.

In order to avoid calculation of the exact value of WCE which may be time

consuming especially for hard instances such as multipliers, the authors formulated

the problem as follows. As proposed by Mrazek et al. in [18], the predefined error

level is used as the constraint instead of being considered directly in the fitness

function. If a candidate solution violates this constraint, it is discarded. One of the

properties of the approximate circuits is that the error increases with increasing the

number of removed gates. If we consider this fact and construct the fitness function

to force the search towards more compact solutions (circuits having the minimal

possible number of gates for a given target error level), WCE of the candidate

circuits will be implicitly forced to be as close as possible to the target value.

To compute whether the WCE is violated, the concept of approximation miter

illustrated in Fig. 9.2a is adopted. Instead of the direct usage of this scheme, an

alternative approach is proposed which utilizes the fact that the target error level

is a constant value. This observation enables to avoid a circuit determining the

absolute value which leads to long carry chains. The optimized miter consists of

the inspected approximate candidate circuit, the original circuit, a subtractor for

error computation, and a decision block which checks whether the error introduced

by the approximation is greater than a given threshold. The decision block is

implemented as a comparator which performs one of two comparisons depending

on the sign at the output of the subtractor, i.e., a comparison for either positive or

negative difference is executed. The key feature of the comparator is that it can

be implemented using simple AND/OR gates. The second trick introduced in [1]

is a limit for the SAT solver which helps to avoid excessive run times. The SAT

solver is given a predefined amount of time that can be used to decide whether the

resulting CNF is satisfiable or not. When the runtime exceeds this limit, the SAT

solver is terminated and the corresponding candidate solution is discarded. This

strategy drives the search towards promptly verifiable candidate solutions and thus

provides scalable approximation of complex circuits.

The approach is implemented as a new module in state-of-the-art academia

synthesis tool ABC. The scalability is evaluated on large adders and multipliers. The

most complex circuits are 32-bit multiplier and 128-bit adder. The CGP parameters

are set as follows: h = 5, na = 2, nb = 1, nr = 1, λ = 5. The Array multiplier

and Ripple Carry adder implemented using 2-input gates are employed as the initial

solution for CGP. nc corresponded with the number of gates. The set of functions

counted six common two-input logic gates, the buffer, and the inverter. CGP was

executed for 2 h for adders and up to 6 h for 32-bit multipliers. The fitness function

reflects only the area estimated as the sum of the relative areas of active gates.

Fifteen target error levels were considered for each benchmark. The worst-case error

analysis was implemented as follows. Firstly, a candidate solution was converted to

AIG representation. Then, the approximate miter was created. Finally, SAT solver

available in ABC was called. The maximal number of conflicts (20 K for 32-bit

multipliers) was used as a termination condition for the SAT solver.
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In the case of approximate adders, the SAT-based worst case checking is

extremely fast and many non-dominated implementations were discovered (for a

more detailed analysis, please see [1]). The reason is that the adders are structurally

less complicated than multipliers and the number of outputs is lower. In addition

to that, the adders do not imply huge search spaces due to the excessive number of

CGP nodes. While the exact 128-bit adder consists of 1000 gates, 32-bit multiplier

requires over 6300 gates.

Depending on the structural similarity, several hours may be required to prove

equivalence of 32-bit multipliers by means of the most advanced techniques of

combinational equivalence checking. Despite of that, over one thousand of different

approximate 32-bit multipliers were discovered within a given amount of time

by means of the proposed approach. Interestingly, only 37% of SAT calls were

terminated due to the resource limit. To demonstrate quality of discovered solutions,

we will discuss only the 16-bit multipliers as we can perform an additional

error analysis and investigate the parameters that were not considered during the

evolution. For the sake of clarity, only the parameters of the non-dominated 16-bit

multipliers are shown in Fig. 9.5. The first plot shows the results for MAE, power,

and delay. The second plot does the same, but for WCE. The 16-bit multipliers

directly created by CGP exhibit better trade-offs not only for WCE but also for

other error metrics. The 16-bit multipliers constructed from the best 8-bit multipliers

of the EvoApprox8b library provide substantially worse results. These multipliers

consume more power for the same error level and their delay is extremely large. In

addition to that, the 16-bit approximations created by CGP cover the wider range

of the WCE/MAE axis. Figure 9.5 also depicts the properties of 16-bit Kulkarni’s

multiplier. The construction from 2-bit multipliers gives even worse results than the

construction from 8-bit multipliers. The power consumption of Kulkarni’s multiplier

is only by 20% better compared to the accurate 16-bit tree multiplier.

Fig. 9.5 Parameters of various 16-bit multipliers synthesized using 45 nm technology with Vcc =

1 V
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9.5 Case Study 2: Approximate Image Filters

The following case study is devoted to the automated design of approximate

implementations of image filters, in particular shot noise filters. Its main purpose is

to demonstrate that by means of a suitable CGP setting, a completely different class

of circuits (with respect to the circuits presented in Sect. 9.4) can be approximated

with CGP. In the case of image filters, CGP operates at the level of more complex

components (such as 8-bit adders, minimum and maximum blocks) and uses the

fitness function based on evaluating candidate circuit response in the application-

specific context. We will compare the quality of filtering and electrical parameters of

conventional image filters, approximate versions of these conventional image filters

obtained by CGP and image filters evolved by CGP from a randomly generated

initial population. All filters will operate with grayscale images in which every pixel

is encoded on 8 bits.

9.5.1 Median Filter and Its Extension

Conventional implementations of shot noise elimination filters are usually based on

calculating the median over the pixels belonging to the filtering window (i.e., the

kernel). The median filter (MF) can be implemented in several different ways [7]. In

high-performance image and video processing systems, a pipelined implementation

is often used to meet challenging performance constraints. The elementary com-

ponent of such the pipeline is a compare-and-swap (C&S) operation which is in

fact a small 2-input sorting network producing a sorted sequence by outputting the

minimum and maximum of the input values. When properly arranged, the median

value of a 9-item input vector (i.e., from the 3 × 3 pixel kernel) can be obtained

using 19 C&S operations with latency of 9 stages [24]. The implementation of a 25-

input median circuit then requires 99 C&S operations. The center weighted median

filter (CWMF) represents a special extension of MF in which the central value of the

window is counted with additional weight [10]. Compared to the median filter, this

modification can preserve more details along the horizontal and vertical directions

while suppressing additive white and/or impulsive-type noise.

In addition to the removal of noisy pixels, the median filters often remove

desirable details from the image. In order to address this problem, adaptive

median filter (AMF) is constructed as a multilevel filter which tries to detect and

subsequently replace corrupted pixels only [8]. At each level, filtering windows of

different sizes are utilized. Usually, two levels working with the 3 × 3 and 5 × 5

filtering window, respectively, are sufficient to obtain a very good image quality.

A hardware implementation of AMF consists of two median filters, circuitry that

determines minimal and maximal values for each filter window, and delay buffers

to compensate different latency of median filters and simple logic (Fig. 9.6a).
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Fig. 9.6 Extensions of the conventional median filter. (a) Adaptive median filter. (b) Bank of

filters

Another straightforward extension of the median filter was proposed in [27]. If

k relatively simple, but different image filters are available, they can be employed

to perform the filtering task over a given kernel in parallel (Fig. 9.6b). The resulting

value is then determined from their outputs, for example, using the k-input median.

This approach will be called the bank of filters in the rest of this chapter.

9.5.2 Approximate Median Filters

A transistor-level approximation of the C&S operation was proposed for median

filters in [16]. In our case study, two CGP-based approximation strategies (AS1 and

AS2 according to [24]) working at the level of C&S operations are implemented

and compared.

AS1: In order to approximate MF with CGP, the resources-oriented method

is employed. CGP tries to minimize the error of a candidate solution which is

composed with up to m 8-bit C&S operations, where m is insufficient for creating a

fully functional MF. The quality of a candidate approximate median function with

n = 2k+1 inputs was determined using the so-called distance error de = |j−k+1|,

which is the distance of the item chosen as the output value (i.e., j th lowest value)

from the true median (i.e., the k + 1th lowest value) [26]. Approximate CWMFs are

obtained using the same techniques, but the size of the input vector increases as the

central pixel value appears several times in the input vector. The approximate AMFs

were constructed by replacing the exact 9-input median and 25-input median with

their selected approximate implementations evolved by means of CGP. The rest of

the AMF circuitry remained unchanged.

AS2: If a training image pair consisting of noisy image and noiseless (golden)

image is available, a suitable image filter can be evolved with CGP from scratch

as shown in [33]. The filter is composed of two-input elementary functions such as

the addition, minimum, maximum, and various logic functions operating over 8-bit

operands and producing 8-bit outputs. The error is measured by means of the mean
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absolute error (MAE) between the outputs Of produced by a candidate filter and

reference (golden) outputs Og for a given training image pair, formally:

MAE =
1

Z

Z
∑

i=1

|Of (i) − Og(i)|, (9.12)

where Z is the number of filtered pixels.

CGP typically produces many structurally different implementations showing

very similar filtering properties. Evolved filters of this type will be denoted EVO.

Three selected EVO filters are employed to form a bank of filters (BNK).

9.5.3 Experiments and Results

All conventional filters were described in VHDL and synthesized using Synopsys

Design compiler with 45 nm PDK. The goal of the synthesis was to produce

pipelined implementations operating at frequency at least 1 GHz. The basic com-

ponent of all these filters, the 8 bit compare-and-swap operation, was implemented

using an 8-bit magnitude comparator and two 8-bit multiplexers. In summary, we

obtained the following implementations: median filter operating on 3 × 3 (5 × 5)

kernel denoted as MF9 (MF25), center weighted median filter operating on 3 × 3

pixels with the weight equal to 3 (CWMF9), and adaptive median filter (AMF25)

with the kernel size 5 × 5 pixels.

In order to obtain approximate median filters in the resources-oriented scenario

(AS1), CGP was seeded with the known implementation of an n-input median

network exhibiting the minimal number of C&S operations and a corresponding

n-input approximate implementation of the median network was evolved. CGP

operated with ni = n, no = 1, na = 2, nb = 2, λ = 20, h = 5, and 107 (6.105

respectively) generations were produced for 9-input (25-input, respectively) circuits.

The function set Γ contained 8-bit C&S functions and identity function.

In total, several hundreds of approximate implementations were produced by

CGP for n = 9, 11 and 25. We identified ten Pareto-dominant solutions for each

n and synthesized them using Synopsys Design compiler to obtain their electrical

parameters. More than 75% of power budget is due to switching activity of registers

which were inserted to evolved designs in order to meet the performance constraint.

Approximate adaptive median filters were composed of evolved approximate MF9

and MF25 implementations. The approximate versions of common filters are

denoted by α #β, where α represents the conventional filter and β is the identifier

of the obtained approximation, for example, AMF25 #19 denotes the 19th version

of the approximate adaptive median filter with the 5 × 5 pixel kernel.

In order to evolve image filters from scratch (AS2), CGP started with a randomly

generated initial population and used two-input 8-bit functions (such as minimum,

maximum, addition, absolute difference, and conditional assignment) and other
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Fig. 9.7 Mean PSNR and power consumption of selected image filters

settings (ni = 25, no = 1, nc = 7, nr = 9, na = 2, nb = 1, λ = 7, h = 15)

according to [33]. All filters were evolved using fitness function given in Eq. (9.12)

and appropriate training and golden images consisting of 384×256 pixels. The input

training image was corrupted with 20% salt and pepper noise.

For the following comparisons, we selected two evolved filters representing two

completely different design corners—low-cost EVO #1 and high-cost BNK #1. Both

filters operate with the filter window consisting of 5 × 5 pixels. EVO #1 consists of

27 8-bit components (including 17 min/max functions) and occupies approximately

the same area as MF9 but consumes about 50% more power. This is an interesting

result because it operates on nearly three times higher number of inputs. BNK #1

was assembled from three different evolved filters. It shows very high quality of

filtering especially for high noise intensities.

Figure 9.7 compares the quality of filtering and power consumption of all

considered filters. The quality of filtering was evaluated using a set of 30 images

and measured as the mean peak signal-to-noise ratio (PSNR) for three noise

intensities (1%, 15%, and 30% pixels corrupted by salt&pepper noise). The mean

PSNR indicates that filters evolved in AS2 mostly outperform other filters. AMF

performs well, but it is a very expensive solution. Approximate AMFs are still

very good in terms of PSNR, but they significantly reduced power consumption

of the original AMF. However, power consumption of EVO#1 is 37% with respect

to AMF25#19 and the quality of output images produced by EVO #1 is significantly

higher. Approximate MFs and CWMFs should be used only if a very inexpensive

implementation is required and lower filtering quality is acceptable.

We can conclude that, in this particular application, it is better to evolve

image filters from scratch rather than to introduce approximate implementations

to conventional median-based filters.
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9.6 Conclusions

We have shown in this chapter how the problem of functional approximation of

combinational circuits can be formulated as a multi-objective optimization problem

and solved using Cartesian genetic programming. We focused on an efficient

computation of error metrics because it is the main performance bottleneck if

many candidate approximate circuits have to be generated and evaluated in one

CGP run. Evolved approximate circuits were compared with available approximate

implementations created by conventional techniques. Our comparison revealed

outstanding quality of evolved approximate circuits.

The automated approximation approach conducted by means of CGP can be

used not only for obtaining particular approximate implementations but also for

generating a huge library contacting millions of approximate designs. Then, for

purposes of a particular application, the user can quickly select an appropriate

solution by means of a suitable user interface. Such a library would significantly

accelerate the whole design process and integrating approximate circuits into a wide

spectrum of applications.
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