
Evolving Boolean Functions for Fast and Efficient Randomness
Testing

Vojtech Mrazek
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Brno, Czech Republic
imrazek@fit.vutbr.cz

Marek Sys
Masaryk University
Faculty of Informatics
Brno, Czech Republic
syso@mail.muni.cz

Zdenek Vasicek
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Brno, Czech Republic
vasicek@fit.vutbr.cz

Lukas Sekanina
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Brno, Czech Republic
sekanina@fit.vutbr.cz

Vashek Matyas
Masaryk University
Faculty of Informatics
Brno, Czech Republic
matyas@fi.muni.cz

ABSTRACT
The security of cryptographic algorithms (such as block ciphers
and hash functions) is often evaluated in terms of their output
randomness. This paper presents a novel method for the statistical
randomness testing of cryptographic primitives, which is based on
the evolutionary construction of the so-called randomness distin-
guisher. Each distinguisher is represented as a Boolean polynomial
in the Algebraic Normal Form. The previous approach, in which
the distinguishers were developed in two phases by means of the
brute-force method, is replaced with a more scalable evolutionary
algorithm (EA). On seven complex datasets, this EA provided dis-
tinguishers of the same quality as the previous approach, but the
execution time was in practice reduced 40 times. This approach al-
lowed us to perform a more efficient search in the space of Boolean
distinguishers and to obtain more complex high-quality distinguis-
hers than the previous approach.

CCS CONCEPTS
• Security and privacy→ Information-theoretic techniques;
•Computingmethodologies→ Searchmethodologies; •The-
ory of computation → Pseudorandomness and derandomization;

KEYWORDS
Boolean function, genetic algorithm, statistical randomness testing

ACM Reference Format:
Vojtech Mrazek, Marek Sys, Zdenek Vasicek, Lukas Sekanina, and Vashek
Matyas. 2018. Evolving Boolean Functions for Fast and Efficient Randomness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205518

Testing. In GECCO ’18: Genetic and Evolutionary Computation Conference,
July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3205455.3205518

1 INTRODUCTION
In past, evolutionary algorithms (EAs) have been applied in the
design, optimization and analysis of cryptographic algorithms,
such as block ciphers, hash functions and pseudo-random gene-
rators [9]. In this paper, we present a new application for evolu-
tionary computation – an evolutionary construction of Boolean
functions operating as simple, but high-quality distinguishers of
statistical (non)randomness in the data generated by cryptographic
algorithms.

Cryptographic algorithms always have to go through elaborate
testing by skilled experts. History contains many examples of seri-
ous flaws in cryptographic algorithms [8, 16, 17], that rise concerns
about the design and strength of the algorithms. These boost the
research in probing cryptographic algorithms for vulnerabilities,
finding design weaknesses or even hidden backdoors. Cryptanaly-
sis conducted by a skilled human cryptanalyst is by far the most
successful approach to asses overall security of an algorithm. Ho-
wever, some automation is possible in the first phases of a crypta-
nalysis, e.g., by using randomness testing suites such as the NIST
Statistical Test Suite (STS) [12] or Dieharder [1]. These tests can be
applied to check statistical properties of cryptographic algorithm
output, and to look for specific features indicating a deviation from
randomness. Such defect signalizes a potential flaw in the algo-
rithm design. Yet such testing suites are limited only to predefined
pattern testing for certain statistical defects, therefore others will
go unnoticed.

It is crucial from the security point of view that cryptographic
algorithms generate unbiased, statistically random data in target
applications.

In order to test this property, various cryptanalytic techniques
are usually combined with statistical testing. Common statistical
test suites such as NIST STS, Dieharder and TestU01 examine the

1302

https://doi.org/10.1145/3205455.3205518
https://doi.org/10.1145/3205455.3205518
https://doi.org/10.1145/3205455.3205518

GECCO ’18, July 15–19, 2018, Kyoto, Japan Vojtech Mrazek, Marek Sys, Zdenek Vasicek, Lukas Sekanina, and Vashek Matyas

correlation between the bits produced by a cryptographic primi-
tive. They compare statistics of the bits and expected statistics for
random bits using tens of empirical tests of randomness.

A recent paper [14] showed that a carefully constructed Boolean
functions can provide the same results, but much faster and using
lower data volumes in comparison with commonly used statistical
test suites. Boolean functions were represented in an Algebraic Nor-
mal Form (ANF), i.e., its logic terms were summed by means of the
exclusive-or operation. These Boolean functions were constructed
heuristically and optimized by means of a brute force search, where
the degree of the polynomial, the number of terms, and literals
forming each term were typically optimized. The quality of each
distinguisher was measured in terms of the so-called Z-score (see
Sect. 3.3) and evaluated by means of several complex datasets co-
ming from real cryptographic algorithms.

In this paper, we propose an evolutionary algorithm to con-
struct a statistical distinguisher (Boolean function) showing desired
properties. As suggested by [14], the target Boolean function is
represented by an ANF expression and encoded by means of a bit
string determining the number of terms and particular literals in
each term. We could use a genetic programming approach and
encode candidate Boolean functions as syntactic trees, but there
are several reasons for using ANF: (i) A simple polynomial is easier
to interpret. An understandable solution would help us to iden-
tify a real source of the bias present in a concrete cryptographic
primitive and possibly to create a better design of the primitive.
(ii) We can directly compare our results with [14]. (iii) A similar
work dealing with GP led to a significantly more computationally
intensive approach [13].

In addition to the evolution of Boolean functions in the ANF, we
also combined our EA with the brute force algorithm developed
in [14]. All the considered approaches were evaluated using several
instances of real-world data streams (10 MB and 100MB files) and
compared with commonly used statistical test suites. Finally, we
performed a statistical analysis of all tested algorithms to highlight
the contributions of employing the proposed evolutionary appro-
ach, which primarily lies in shortening the construction time of a
distinguisher and improving the quality of results in comparison
with [14].

2 PRELIMINARIES
A Boolean function of n variables can be viewed as a map from
Fn2 into F2, where Fn2 is the vector space of n-tuples over the field
F2 with the usual addition operation (denoted by ⊕). The set of
all Boolean functions of n variables Bn forms a linear space of
dimension 2n over F2, so |Bn | = 22

n
. Hence every Boolean function

f ∈ Bn can be represented by its truth table, i.e. the binary sequence
(f (0), f (1), . . . , f (2n − 1)) of length 2n , where i denotes the binary
expansion of the integer i over n bits. Truth table is a well-known
canonical representation of the Boolean functions that uniquely
identifies a given Boolean function. There exists, however, another
canonical representation. Every Boolean function f ∈ Bn can be
uniquely represented by a polynomial in n variables:

f (x1, . . . ,xn) =
⊕

I∈P(N)

aIx
I =

⊕
I∈P(N)

aI
∏
i ∈I

xi ,

where P(N) denotes the powerset of N = {1, . . . ,n}, n denotes the
number of variables, and aI ∈ {0, 1}. The polynomial is known as
Algebraic Normal Form and the product x I is denoted as monomial.
The algebraic degree of f , denoted by deg(f), is the maximum of the
degrees of the monomials of its ANF. Considering ANF represen-
tation and lexicographically ordered powerset P(N), every Bool-
ean function can uniquely be represented by the binary sequence
(a0,a1, . . . ,aN) of length 2n , where the coefficient a0 corresponds
with the empty set and aN corresponds to the set N . The polyno-
mial representation helps to easily determine some cryptographic
properties. For example, a Boolean function is an affine function if
its algebraic degree is at most 1.

Example 1. Let us consider a Boolean functionд of three variables:

д(x1,x2,x3) = x1x2 ∨ x2x3

This function is uniquely represented by truth table (0,0,1,0,0,0,1,1),
where the first item corresponds with the output value д(0, 0, 0)
and the last item corresponds with д(1, 1, 1). The given Boolean
function can be represented also by the ANF

д(x1,x2,x3) = x2 ⊕ x1x2 ⊕ x1x2x3

whose algebraic degree is deд(д) = 3 and which consists of three
monomials (|I | = 3). Considering this definition of ANF, each Bool-
ean function of three variables can be represented by a polynomial

f (x1,x2,x3) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ a12x1x2⊕
a13x1x3 ⊕ a23x2x3 ⊕ a123x1x2x3

To expressд, only three coefficients have to be set to one, namely a2,
a12, and a123. Hence, the Boolean function is uniquely determined
by I = {{2}, {1, 2}, {1, 2, 3}} ∈ P({1, 2, 3}) and it can be represented
as (a0,a1,a2,a3,a12,a13,a23,a123) = (0, 0, 1, 0, 1, 0, 0, 1) ∈ F82.

3 RELATEDWORK
Related work includes a relevant research on randomness testing
and employing evolutionary computation for purposes of crypto-
graphy and randomness testing.

3.1 Randomness testing
Each standard statistical test examines randomness of data by look-
ing at a specific feature (the number of ones, number of ones in
blocks, etc.). Test is defined by a function F that computes the distri-
bution (histogram) of a given feature within a data. Randomness is
evaluated by comparing the observed distribution with a reference
expected distribution precomputed for a truly random data. In fact,
each standard test checks whether its defining function F forms a
distinguisher.

A standard test examines randomness only according to this
function (feature). Tests are grouped to testing suites (also called
batteries) to provide more complex randomness analysis. NIST
STS [12], Dieharder [1] (an extended version of the Diehard) and
TestU01 [7] are the most commonly used batteries for statistical
randomness testing.

While test batteries consist of a set of tests, their testing ability
is quite limited since the function F is fixed for each test. However,
there are countless features for which randomness can be examined
and countless of distinguishers.

1303

Evolving Boolean Functions for Fast and Efficient Randomness Testing GECCO ’18, July 15–19, 2018, Kyoto, Japan

3.2 Evolutionary computation in cryptography
In the context of cryptography, EAs have been applied to solve
quite a different set of problems, yet all showing a common pro-
perty – they can be formulated as a search problem. Picek’s recent
tutorial [9] provides a list of tasks where EAs proved successful in
cryptology, namely: to rapidly check whether some concept (e.g.
formula) is correct, to assess the quality of some other method,
to produce “good-enough” solutions, and to produce novel and
human-competitive solutions. Due to the limited space, we provide
only a few examples.

Pseudo-random generators have traditionally been evolved by
the EA community (e.g., [15, 18]). One of the requirements for
their use for cryptographic purposes is a low implementation cost.
Cartesian genetic programming was employed to produce such
type of pseudo-random generators [11].

Boolean functions with specific properties (for example, highly
nonlinear, balanced, and correlation immune functions) are impor-
tant in cryptography because they provide a source of non-linearity
in building blocks of cryptographic algorithms such as S-Boxes. Ge-
netic algorithms (e.g., for S-Box generation [6]) as well as genetic
programming (e.g., for bent function [5] and high correlation im-
munity function [10] designs) were successfully applied, improving
the state of the art results. A general scheme for the design of block
ciphers by means of genetic programming was introduced in [4].

Hernandez-Castro and Barrero [3] proposed an approach that
is the closest one to our work. Using a genetic algorithm, they ge-
nerated a large number of pseudo-random numbers with different
degrees of randomness and used them to evaluate a popular rand-
omness test suite implemented in a software package named Ent. In
total, they evaluated seven statistics (entropy, compression, chisqua-
red, arithmetic mean, pierror, excess and correlation) associated
to five tests, resulting in an observation that studied statistics are
not completely independent and could be reduced to five statistics.
This analysis was based on data streams with a maximum string
length of 32 Kb.

3.3 Randomness testing using Boolean
functions

Empirical tests of randomness are typically based on the statistical
hypothesis testing. These tests evaluate the null hypothesis – “data
being tested are random”. Each test computes a specific statistic
of bits or block of bits. A test checks whether the observed test
statistic for analyzed sequence happens to be in the extreme (tail)
parts of the null distribution (distribution of test statistic of random
data). In such a case, the hypothesis is rejected, and data are con-
sidered as non-random. Formally, a test statistic is transformed to
a p-value (using the null distribution) representing the probability
that a perfect random number generator would have produced a
sequence “less random” (i.e. more extreme according to the analy-
zed feature) than the tested sequence [12]. A small p-value (below
0.01) is typically interpreted as the tested data not being random.

In general, the empirical tests of randomness are based on the
following steps. Firstly, a histogram of patterns for the given dataset
is computed by the test. Then the histogram is reduced into a single
value representing its “randomness” according to the analyzed

feature. Finally, p-value is typically calculated from the observed
test statistic using the null distribution.

Sys et al. [14] introduced an approach based on the construction
of Boolean functions that are able to distinguish a given data from
the random data. In particular, they looked for an empirical test of
randomness defined by a polynomial representing Boolean function
such that the test results in the smallest possible p-value (i.e., re-
jection of the hypothesis). The empirical test was constructed by
generalization of the Monobit test that counts the number of ones
(#1) and zeros (#0) in the analyzed binary sequences and exami-
nes whether the numbers are close to each other as it would be
expected for random data. The data to be analyzed are divided to
N non-overlapping blocks consisting of n bits. The blocks serve
as inputs for function f (x1, · · · ,xn). The sum #1 of results of f
when applied to the blocks, is computed. The #1 together with the
probability of evaluating f to one (denoted as p) is used to compute
so called Z-score. Z-score was employed as it normalizes a binomial
distribution of #1 [14]. In addition to that, it defines the statisti-
cal distance between observed and expected numbers of ones for
random data. The Z-score is defined as:

Z-score =
#1 − pN√
p(1 − p)N

. (1)

Sys et al. proposed to use the computed test statistic directly as
the measure of the strength of distinguishers. A bigger value of
observed statistic means stronger distinguisher and conversely.

4 EVOLUTION OF BOOLEAN FUNCTIONS
FOR RANDOMNESS TESTING

In this section, we briefly describe the algorithm we used to evolve
distinguishers for randomness testing based on Boolean functions
represented in ANF.

4.1 Encoding
As we have discussed in Section 2, an ANF of a Boolean function on
n variables can be uniquely represented by a binary string of fixed
length. Unfortunately, this representation is impractical for large n
because the number of bits grows exponentially with the increasing
number of variables. Hence, we propose a different encoding.

In this paper, we will consider deд(f) and |I | as input parameters.
For better clarity, let us denote these parameters as deд and k .
While k determines the number of monomials employed in the ANF,
deд limits their maximum acceptable degree. In order to encode a
distinguisher satisfying deд and k , we employ a string of integers
consisting of deд×k items. The items are divided into k tuples. Each
tuple is associated with a single monomial and defines its inputs. In
particular, the tuple contains deд items (α1,α2, . . . ,αdeд), where
1 ≤ |αi | ≤ n. The positive value of αi determines the index of
the input variable xαi . The negative value means that this item is
ignored as it does not contribute to the associated monomial. This
scheme enables to have a fixed string of integers (i.e. genotype)
on the one hand, but variable phenotypes on the other hand. The
monomials can have different degrees and some of them can be
even completely switched off depending on the progress of the
evolution.

1304

GECCO ’18, July 15–19, 2018, Kyoto, Japan Vojtech Mrazek, Marek Sys, Zdenek Vasicek, Lukas Sekanina, and Vashek Matyas

Example 2. Let us suppose the following parameters: n = 128,
deд = 2 and k = 3. Then, polynomial f (x1, . . . ,x128) = x78 ⊕

x5x120 ⊕ x27x63 can be encoded using three tuples as (5,120) (-12,78)
(63,27). The first tuple encodes monomial x5x120. The second tuple
contains only one positive element. Hence, it produces monomial
x78. Similarly to the first case, the last tuple also contains two
positive integers that give us x27x63.

4.2 Search method
For the search in the search space induced by the chosen represen-
tation, we developed an evolutionary algorithm with the following
properties. The population consists of a finite number of chromoso-
mes divided into two parts – parents (µ individuals) and offspring
(λ individuals). Each chromosome represents a candidate Boolean
function using the proposed encoding. At the beginning of evolu-
tion, the first population consisting of µ +λ individuals is randomly
generated and consequently evaluated. In order to create a new
population, the fittest µ chromosomes are selected as new parents.
New parents are deterministically selected from both the parents
and offspring sets. The new population of λ individuals is then
created by applying a point mutation. To avoid an additional para-
meter, we do not consider recombination. The steps of the evolution
loop are repeated in the next generations until either a satisfactory
solution is found, or a maximal generation count is reached.

The point mutation operator randomly changes up to h genes.
It can either invert the sign of a chosen gene or replace its value
by a randomly generated, but valid integer. Compared to the latter
case, the sign can be inverted with much lower probability. The
randomly generated integer must be within interval [1, n], where n
is the number of input variables. In addition to that, it is ensured
that all genes within a single tuple have different values (each input
variable occurs at most once).

4.3 Fitness function
The goal of the evolution is to find a distinguisher showing the
highest possible Z-score for a given sequence of data samples
T = (t1, . . . , tN), ti ∈ Fn2 , produced by a cryptographic function
whose randomness is investigated. Let p(f ,D) be the ratio of the
input samples from a dataset D for which a Boolean function
f (x1, . . . ,xn) evaluates to one:

p(f ,D) =
1
|D |

∑
(v1, ...,vn)∈D

f (v1, . . . ,vn) (2)

Then, the fitness value of a candidate Boolean function д (which
equals to the Z-score) is calculated as follows

fitness(д,T) =
√
|T | ·

|p(д,T) − ρ(д)|√
ρ(д) · (1 − ρ(д))

, (3)

where ρ(д) is the probability that д evaluates to one provided that
an indefinite truly random sequence is used as input of д.

Typically, a random sequence R = (r1, . . . , rN), ri ∈ Fn2 , consis-
ting of the same number of elements asT is employed to determine
ρ(д). It means that the probability is replaced with the relative num-
ber of samples and ρ(д) = p(д,R). Unfortunately, this simplification
can introduce a bias because the number of samples N is typically
significantly lower than 2n . In addition to that, it is nontrivial to

obtain a truly random sequence. Hence, we propose to calculate
ρ(д) exactly using Reduced Ordered Binary Decision Diagrams
(ROBDDs) [2]. Apart from the canonicity, the main advantage of
ROBDDs is the ability to efficiently represent Boolean functions.
Every library for ROBDD manipulation is typically equipped with
two basic operations – SatOne and SatCount. SatOne determines
whether there exists at least one input assignment a for which
f (a) = 1. SatCount computes the number of input assignments |A|
for which f (ai) = 1 where ai ∈ A. Let G denote a ROBDD which
represents a Boolean function д. Then, ρ(д) can be determined as
ρ(д) = 1

2n SatCount(G). The effect of the proposed BDD-based ap-
proach is twofold. Firstly, many operations over ROBDDs can be
performed in linear time with respect to the ROBDD size. This is
the case of SatOne as well as SatCount operation. As a consequence
of that, BDDs can significantly speedup the process of evaluation.
Secondly, this approach guarantees that all 2n input combinati-
ons are considered. As there is no bias, more accurate results can
obtained compared to the approach based on a random sequence R.
Example of fitness computation is given in Figure 1.

0 1 0

0 0

0

1

1 1 1

1 1

Simulator
of g(x)

1

1

0

0

0.5

BDD 0.375

Z-score: 0.516

Figure 1: Principle of determining the fitness function (Z-
score) of Boolean function д represented using ANF x2 ⊕

x1x2 ⊕ x1x2x3 and sequence T consisting of four samples.

5 EXPERIMENTAL SETUP
In order to fairly evaluate performance of the proposed evolutionary
approach, we considered five different strategies that are illustrated
in Figure 2.

Firstly, we implemented the heuristic approach based on the
brute force (BF) search proposed in [14]. As it is intractable to
determine Z-score of all 22

n
existing distinguishers, the authors

proposed to employ a two-phase strategy. The goal of the first
phase was to enumerate monomials whose degree is lower than
four, identify monomials that exhibit the best Z-score and create a
set of top 10/100/1000 monomials. In the second phase, more com-
plex distinguishers were constructed from these monomials. The
monomials were combined together to obtain a Boolean function
f = b1 ⊕ · · · ⊕ bk . Originally, k ≤ 3 was considered only. In this
paper, we extended this limit to k ≤ 20. Since the brute-force search
strategy is employed in both phases, we denote this approach as
BF/BF.

Secondly, we implemented the evolutionary method as described
in Section 4 (denoted as EVO). Compared to the BF/BF approach, it is

1305

Evolving Boolean Functions for Fast and Efficient Randomness Testing GECCO ’18, July 15–19, 2018, Kyoto, Japan

not necessary apply a two-phase approach because EVO can directly
encode more complex distinguishers. To define some bounds, we
considered ANFs consisting of up to 20 monomials whose degree
is less than 10. In addition to that, we implemented another three
variants of a two-stage design process which combines BF and EVO.
In the first variant, we replaced the second phase of BF/BF by EVO.
Compared to BF/BF, this modification denoted as BF/EVO enables
to consider more monomials. We employed up to 10000 monomials.
In the remaining two variants, we replaced the first phase by EVO.
The main advantage is that we can combine monomials of higher
degree. In the second phase, we employed either BF or EVO. The
difference is in the number of monomials since it is infeasible to
enumerate all distinguishers having k > 10. Hence, EVO/BF is
limited to k ≤ 10.

Figure 2: Five different strategies evaluated in this paper.
BF stands for Brute-force search, EVO denotes the proposed
evolutionary approach.

The method is evaluated on the data generated by means of the
stream cipher (RC4), block cipher (AES) and hash functions (SHA-
256, MD6, Keccak). In order to be able to find a distinguisher, we
intentionally limited the number of rounds of the hash functions
(SHA-256 - 3 rounds, MD6 - 8 and 9 rounds, Keccak - 3 rounds) as
well as AES (3 rounds). The test data were generated as the standard
keystream for RC4. For the remaining cases, a special stream consis-
ting of 128-bit blocks of minimal Hamming weight was employed at
the inputs. The Sequence starts with block B0 = ”00 · · · 0”. Each of
next 128 blocks consists of 127 bits "0" and one bit "1" on different po-
sitions i.e. B1 = ”00 · · · 01”,B2 = ”00 · · · 01”, · · · ,B128 = ”100 · · · ”.
Next blocks consist of 126 bits "0" and 2 bits of the value "1" etc.
The test data were generated as blocks of Sequence processed by
one of the functions (SHA-256, etc) separately. In addition to that,
a sequence of random data obtained form /dev/urandom is conside-
red. In all cases, 100 MB of data were generated which corresponds
with |T | = 6.25 · 106 test samples.

The parameters were chosen as follows: µ = 1, λ = 4, up to 5
genes are mutated. The goal was to find a distinguisher for n = 128
input variables. The evolution was terminated when the maximal
number of evaluations дmax = 104 was exceeded. This setting
corresponds with approx. 25 minutes of evolution on Intel Xeon
CPU running at 2.4 GHz for the most complex problem (i.e. deд=10,
k=20). For each deд and k , 10 independent runs were executed. A
highly-optimized 64-bit parallel simulator was employed to deter-
mine response of a candidate distinguisher to given input data.

The evolution used in the second phase was executed with a
different mutation operator. Instead of mutating a particular gene(s),
the whole tuple was replaced by a monomial randomly chosen from
the set of available monomials.

6 RESULTS
6.1 Performance of the BDD-based fitness
In the first experiment, we evaluated the performance of the BDD-
based fitness with respect to a näive implementation based on a
simulator and a set of random vectors R. In order to simplify the
problem, we employed Monte-Carlo simulation producing the same
number of random vectors as used inT . In both cases, we measured
the total time needed to determine the fitness, i.e. Z-score. The
results are shown in Figure 3.

As the time required to determine the fitness score grows with
increasing k as well as with increasing deд, we can use the product
deд×k as a complexity indicator. Figure 3 shows that the BDD-based
method is substantially faster. Compared to the simulation, the time
of evaluation increases only slightly with the increasing complexity.
In addition to that, the variation in time of BDD evaluation is
substantially lower. The time of simulation varies significantly even
for the same deд and k .

The proposed BDD-based approach not only scales better but
also provides accurate and unbiased results. For the most complex
challenging combination deд × k , the average speedup is better
than 3x.

0 5 10 15 20 25 30 35
Complexity of evaluation (deg × k)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
of

 e
va

lu
at

io
n

[s
]

BDD Simulation

Figure 3: The average time required to evaluate fitness for a)
BDD-based fitness and b) simulation obtained from 10 inde-
pendent evolutionary runs. The maximum as well as mini-
mum time is depicted using the solid area.

6.2 Searching for monomials having deд ≤ 3
In the second experiment, we investigated the efficiency of the
evolutionary approach compared to the brute-force approach em-
ployed in the first stage. In order to do that, we took the results
discovered by EA executed for k = 1 and deд ∈ {1, 2, 3}. The results
are shown in Figure 4. Due to the limited space, only four data sets
are presented.

Since it is possible to enumerate and evaluate all possible distin-
guishers consisting of exactly one monominal of degree lower than
4 (there exists 349 632 different distinguishers), we can easily iden-
tify Z-score of the best distinguisher. In addition to that, we are able
to calculate the distribution of Z-score of all distinguishers. Figure 4
is showing that the distribution is very similar independently of the
chosen dataset. More than 99.79% of distinguishers exhibit Z-score
worse than half of the highest possible Z-score. This indicates a
complex and nontrivial search space. Interestingly, the proposed
evolutionary approach produces solutions whose Z-score is in the
second half of the range (see the bottom part of Figure 4). This is also
evident from the convergence curves that are shown in the upper

1306

GECCO ’18, July 15–19, 2018, Kyoto, Japan Vojtech Mrazek, Marek Sys, Zdenek Vasicek, Lukas Sekanina, and Vashek Matyas

100 101 102 103 104

Generation

0

1

2

3

4

Fi
tn

es
s v

al
ue

 (Z
-s

co
re

)

Keccak(3) - 100 MB

0 1 2 3 4
Z-score

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

Fr
eq

ue
nc

y
(B

F)

Keccak(3) - 100 MB

 0%

 5%

 10%

 15%

 20%

 25%

 30%

Fr
eq

ue
nc

y
(E

VO
)

100 101 102 103 104

Generation

0

1

2

3

4

Fi
tn

es
s v

al
ue

 (Z
-s

co
re

)

Random - 100 MB

0 1 2 3 4
Z-score

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

Fr
eq

ue
nc

y
(B

F)

Random - 100 MB

 0%

 5%

 10%

 15%

 20%

 25%

 30%

Fr
eq

ue
nc

y
(E

VO
)

100 101 102 103 104

Generation

0

1

2

3

4

Fi
tn

es
s v

al
ue

 (Z
-s

co
re

)

RC4 - 100 MB

0 1 2 3 4
Z-score

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

Fr
eq

ue
nc

y
(B

F)

RC4 - 100 MB

 0%

 5%

 10%

 15%

 20%

 25%

 30%

Fr
eq

ue
nc

y
(E

VO
)

100 101 102 103 104

Generation

0

10

20

30

40

50

60

70

Fi
tn

es
s v

al
ue

 (Z
-s

co
re

)

SHA-256(3) - 100 MB

0 20 40 60
Z-score

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

Fr
eq

ue
nc

y
(B

F)

SHA-256(3) - 100 MB

 0%

 5%

 10%

 15%

 20%

 25%

 30%

Fr
eq

ue
nc

y
(E

VO
)

EVO BF

Figure 4: Design of monomials having deд ≤ 3. The convergence curves of the proposed evolutionary method (top) and the
distribution of Z-score (bottom) of the discovered distinguishers. Z-score of the worst/ best candidate solutions is shown using
solid line, the average fitness value calculated from 10 independent evolutionary runs is shown using dash line.

part. Z-score of the distinguishers discovered by EA is nearly the
same as the best known one. In case of random data and Keccak(3),
however, the evolution was unable to find the optimal solution. We
analyzed this issue and discovered that there exists only two dis-
tinguishers that have higher Z-score compared to the best evolved
solution. These results are encouraging because the overall time of
computation was reduced 8.7x. Note that the brute-force approach
required to evaluate nearly 35 · 104 candidate distinguishers while
the EA was terminated after 104 generations which corresponds
with 4 · 104 evaluations. In most cases, only approx. 102 generations
were in fact required as visible on convergence curves in Figure 4.

6.3 Searching for distinguishers having k = 3
We took the monomials obtained in the previous experiment and
identified those exhibiting the best Z-score. In particular, we created
three sets: S10 consisting of top ten distinguishers, S100 and S1000
containing the best 100 and 1000 distinguishers respectively. As it is
nontrivial to directly compare the quality of distinguishers having
different degree and different k , let us restrict our analysis to a
single configuration, in particular, k = 3 and deд = 3. This configu-
ration enables the exhaustive BF search only on S10 and S100. There
exists 161700 distinguishers consisting of three distinct monomials
when we consider S100. Similarly to the previous experiment, we
are able to evaluate Z-score of all ANFs and identify the highest
Z-score that can be achieved. To fairly compare our approach to the
two-stage BF/BF approach, we run the EA for k = 3 and deд ≤ 3.
We used exactly the same setup as in the previous case, i.e. 104
generations. It means that the evolution is allowed to evaluate only

40000 candidate distinguishers which equals approximately to a
quarter of the number of evaluations that have to be considered du-
ring the second phase of BF. Please note that the first phase of BF/BF
requires itself another 35 · 104 evaluations. Hence, the evolution is
forced to use nearly 12.7 times less evaluations. As we have k > 1,
we can employ even the BF/EVO approach. For simplicity, the same
number of generations is utilized. The results are summarized in
Figure 5 showing the histograms with the distribution of Z-score
of the distinguishers for each method.

For the purpose of our comparison, we also included Z-score
of the top 100 monomials from S100. Interestingly, it can be obser-
ved that the combination of these monomials does not guarantee
that the obtained distinguisher will exhibit higher Z-score. With
exception of the SHA-256(3) (intentionally limited to execute only
three rounds), the monomials have the Z-score around 4. When we
combine three of these monomonials (the result of BF/BF), it might
happen that the value of Z-score doubles but the probability is very
low (typically 0.005%). In most cases, the Z-score is either slightly
better or substantially worse. We can observe two peaks – one peak
at Z-score around 4.42 and the second around 1.41. This analysis
confirms our previous observation related to the complexity of the
search space. There is a very low occurrence of high-quality soluti-
ons. For Keccak(3), for example, 85% distinguishers consisting of
three monomials have Z-score worse than the best monomial. If we
sort the distinguishers according to the Z-score, we can determine
that only less than 1.21% of all distinguishers (in average) are in the
quartile of Z-score representing best solutions. In the case of SHA-
256(3), there is only one peak and the disproportion is even worse.

1307

Evolving Boolean Functions for Fast and Efficient Randomness Testing GECCO ’18, July 15–19, 2018, Kyoto, Japan

100 101 102 103 104

Generation

0

1

2

3

4

5

6

7

Fi
tn

es
s v

al
ue

 (Z
-s

co
re

)

Keccak(3) - 100 MB

0 2 4 6
Z-score

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

Fr
eq

ue
nc

y
(B

F/
BF

, S
10

0)

Keccak(3) - 100 MB

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

20.0%

Fr
eq

ue
nc

y
(B

F/
EV

O,
 E

VO
)

100 101 102 103 104

Generation

0

1

2

3

4

5

6

7

8

Fi
tn

es
s v

al
ue

 (Z
-s

co
re

)

Random - 100 MB

0 2 4 6 8
Z-score

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

Fr
eq

ue
nc

y
(B

F/
BF

, S
10

0)

Random - 100 MB

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

Fr
eq

ue
nc

y
(B

F/
EV

O,
 E

VO
)

100 101 102 103 104

Generation

0

1

2

3

4

5

6

7

8

Fi
tn

es
s v

al
ue

 (Z
-s

co
re

)

RC4 - 100 MB

0 2 4 6 8
Z-score

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

Fr
eq

ue
nc

y
(B

F/
BF

, S
10

0)

RC4 - 100 MB

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Fr
eq

ue
nc

y
(B

F/
EV

O,
 E

VO
)

100 101 102 103 104

Generation

0

20

40

60

80

100

Fi
tn

es
s v

al
ue

 (Z
-s

co
re

)

SHA-256(3) - 100 MB

0 25 50 75 100
Z-score

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

Fr
eq

ue
nc

y
(B

F/
BF

, S
10

0)

SHA-256(3) - 100 MB

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Fr
eq

ue
nc

y
(B

F/
EV

O,
 E

VO
)

BF / BF BF / EVO EVO S100

Figure 5: Design of polynomials having k = deд = 3. The convergence curves of the proposed evolutionary method as well as
two-stage BF/EVO (top) and the distribution of Z-score (bottom) of the discovered distinguishers. The second stage of BF/BF
and BF/EVO selected the monomials from S100.

Less than 0.31% of all distinguishers occupy the first quartile. Even
in this case the evolution provides very good solutions that occupy
the last quartile. It seems that the two-phase approach BF/EVO is
able to deliver better results than the single-phase EVO. This is evi-
dent even on the convergence curves. However, we cannot directly
compare EVO and BF/EVO even though the convergence curves
for EVO and BF/EVO are shown in a single plot. It is necessary
to consider that BF/EVO is a two-stage process requiring substan-
tially more evaluations. EVO exhibits the worse performance on
the random data – there are 211 distinguishers having the Z-score
higher than the best-discovered one. In the case of RC4, the best
evolved solution is dominated by 29 other solutions. The Z-score
converges relative quickly. In average, 1.3 ·103 (2.3 ·103) generations
are required by EVO (BF/EVO) until the evolution sticks and stops
to improve the Z-score.

6.4 Evaluation on more complex instances
The goal of this section is to evaluate the quality of the discovered
solutions across the considered scenarios. For each scenario and
each setting, we determined the polynomials with the best Z-score.
As evident from Equation 1, Z-score increases with the increasing
number of test samples. This does not represent any problem be-
cause we are using the same data sets across all the experiments.
We observed, however, that the Z-score also increases with the
increasing degree. One possible explanation of this phenomenon is
as follows. It seems that the higher degree permits the evolution
to search for more complex distinguishers capable of discovering
more tricky dependencies among the bits.

Table 1: Z-score of the best discovered distinguishers having
degree deд ≤ 3. The best results are typed in bold.

Dataset EVO BF / EVO BF / BF
T S10 S100 S1000 S10000 S10 S100 S1000

kmax 20 10 20 20 20 10 3 2

Keccak(3) 9.5 5.3 7.8 8.9 8.7 5.3 7.3 6.6
MD6(8) 43.9 28.5 31.0 31.0 31.0 31.0 31.0 31.0
SHA-256(3) 126.3 91.4 100.6 107.7 111.1 91.4 100.6 93.8
RC4 9.8 6.2 8.0 8.9 8.8 6.2 7.7 6.6
MD6(9) 10.1 5.9 7.7 8.5 8.5 5.9 7.5 6.7
AES(3) 22.1 12.0 17.4 20.9 20.1 12.0 15.6 13.8
random 9.8 7.5 8.5 8.9 9.1 7.5 8.1 6.8

To fairly evaluate the method, we divided the results in two parts.
The first part consists of polynomials of small degree (deд ≤ 3) and
the second part of more complex ones (3 < deд ≤ 10). The results
are summarized in Table 1 and Table 2 . BF/BF does not scale well
even for the polynomials of the small degree. If we increase the
number of monomials that can be employed in the second phase, we
have to decrease k to be able to enumerate all the existing solutions
in a reasonable time. As a consequence of that, we can see that BF/BF
for S100 produces solutions that are even worse than those for S10
even though S10 is included in S100. This result indicates that higher
k leads to more efficient distinguishers. The same behavior can also
be observed for BF/EVOwhenwe look at the results for S10 and S100.
The key difference between those two settings is that k increased

1308

GECCO ’18, July 15–19, 2018, Kyoto, Japan Vojtech Mrazek, Marek Sys, Zdenek Vasicek, Lukas Sekanina, and Vashek Matyas

Table 2: Z-score of the best discovered distinguishers having
degree 3 < deд ≤ 10. The best results are typed in bold.

Dataset EVO EVO / EVO EVO / BF
T S10 S100 S10 S100

kmax 20 10 20 10 3

Keccak(3) 18.19 12.90 18.77 12.90 9.90
MD6(8) 54.08 38.53 39.75 38.53 39.10
SHA-256(3) 467.83 318.75 351.26 318.75 303.35
RC4 18.24 13.20 18.06 13.20 10.33
MD6(9) 18.12 11.75 17.83 11.75 9.55
AES(3) 37.66 27.77 36.92 27.77 24.99
random 17.95 11.97 17.10 11.97 9.93

from 10 to 20 since k is bounded by |Sx |. When we increase the
number of monomials, the Z-score increases but only slightly. In
contrast to these results, EVO discovered distinguishers that have
substantially higher Z-score. The average relative improvement of
Z-score is around 32%.

Similar observations can be made for the results summarized
in Table 2 . As there exists more than 2.5 · 1014 different monomi-
als having its degree equal to ten, it is intractable to perform the
exhaustive BF search and identify the best monomials. As a conse-
quence of that, is impossible to run BF/BF. Hence the table contains
only results discovered by the proposed evolutionary approach
and its two hybrids. Apart from Keccak(3) where the difference is
negligible, the proposed evolutionary approach produces the best
results. If we compare the results with those given in Table 1 (see
column EVO in both tables), it is evident that not only the higher k
but also the higher deд implies higher Z-score.

The obtained results are consistent with our expectation. We
know that three rounds of SHA-256 generate a very weak sequence
that is far from a truly random sequence. This fact was evident
even when we applied only monomials of a small degree. The
best Z-score on SHA-256 is much higher compared to the other
sequences (see Figure 4). Table 2 confirms this evidence. The Z-
score is about 25 times higher compared to the Z-score obtained on
the random sequence. In addition to that, it is apparent that neither
eight rounds of MD6 nor three rounds of AES generate random
data of high quality. The remaining sequences have the Z-score
comparable with random data.

The average time needed to complete a single run of EA (i.e.
10,000 generations across all settings of deд and k) is 14 min. (64
min. is the worst case) on a common CPU running at 2.4 GHz.
However, this setting was used to provide a sufficient time to study
the convergence properties of the EA. In fact, the average number of
generations to converge to a stable Z-score is only 1,300 generations,
i.e. 107 s (the worst case is 8 min.). The BF/BF needed more than
108 minutes for S1000 and 53 minutes for S100. In a real practice,
the proposed approach is thus capable of providing a good-quality
distinguisher 40 times (20 times for S100) faster than BF/BF.

7 CONCLUSIONS
We addressed a challenging problem of the statistical random-
ness testing of cryptographic primitives. Following the approach

in which randomness distinguishers are constructed as Boolean
functions in ANF, we developed an EA-based method capable of
discovering high-quality distinguishers in a short time. On seven
real-world datasets, the EA provided distinguishers of the same
quality as the previous brute force approach, but the execution
time was reduced by one order in the magnitude. Moreover, the
proposed method allowed us to construct more complex distinguis-
hers utilizing higher polynomial degrees which is intractable by
the brute force approach. Our future work will be focused on a de-
tailed evaluation of the proposed method on even more challenging
cryptography primitives with the ultimate goal of revealing their
potential weaknesses.

ACKNOWLEDGMENTS
This work has been supported by the Czech Science Foundation
project No. 16-08565S.

REFERENCES
[1] Robert G Brown, Dirk Eddelbuettel, and David Bauer. 2013. Dieharder: A random

number test suite 3.31.1. http://www.phy.duke.edu/~rgb/General/dieharder.php
(2013).

[2] R. Ebendt, G. Fey, and R. Drechsler. 2000. Advanced BDD Optimization. Springer.
[3] J. Hernandez-Castro and D. F. Barrero. 2017. Evolutionary generation and dege-

neration of randomness to assess the indepedence of the Ent test battery. In 2017
IEEE Congress on Evolutionary Computation (CEC). IEEE, 1420–1427.

[4] J. C. Hernandez-Castro, J. M. Estevez-Tapiador, et al. 2006. Wheedham: An
Automatically Designed Block Cipher by means of Genetic Programming. In 2006
IEEE Int. Conf. on Evolutionary Computation. IEEE, 192–199.

[5] Radek Hrbacek and Vaclav Dvorak. 2014. Bent Function Synthesis by Means of
Cartesian Genetic Programming. In Parallel Problem Solving from Nature - PPSN
XIII. Springer Verlag, 414–423.

[6] Georgi Ivanov, Nikolay Nikolov, and Svetla Nikova. 2016. Reversed genetic
algorithms for generation of bijective s-boxes with good cryptographic properties.
Cryptography and Communications 8, 2 (2016), 247–276.

[7] Pierre L’Ecuyer and Richard Simard. 2007. TestU01: A C Library for Empirical
Testing of Random Number Generators. In ACM Trans. Math. Softw., Vol. 33.
ACM, New York, NY, USA, Article 22.

[8] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek Matyas. 2017.
The Return of Coppersmith’s Attack: Practical Factorization of Widely Used
RSA Moduli. In Proc. 2017 ACM SIGSAC Conf. on Computer and Communications
Security (CCS ’17). ACM, New York, NY, USA, 1631–1648.

[9] Stjepan Picek. 2016. Evolutionary Computation and Cryptology. In Proc. 2016
Genetic and Evolutionary Computation Conference Companion. ACM, 883–909.

[10] Stjepan Picek, Claude Carlet, Sylvain Guilley, Julian F. Miller, and Domagoj
Jakobovic. 2016. Evolutionary Algorithms for Boolean Functions in Diverse
Domains of Cryptography. Evol. Comput. 24, 4 (2016), 667–694.

[11] Stjepan Picek, Dominik Sisejkovic, et al. 2016. Evolving Cryptographic Pseudo-
random Number Generators. In Proc. 14th Int. Conf. Parallel Problem Solving from
Nature. Springer, 613–622.

[12] A. Rukhin. 2010. A Statistical Test Suite for the Validation of Random Number
Generators and Pseudo Random Number Generators for Cryptographic Applica-
tions, Version STS-2.1. NIST Special Publication 800-22rev1a.

[13] Petr Svenda, Martin Ukrop, and Vashek Matyas. 2013. Towards Cryptographic
Function Distinguishers with Evolutionary Circuits. In SECRYPT 2013 - Proc. 10th
Int. Conf. on Security and Cryptography. SciTePress, 135–146.

[14] Marek Sýs, Dusan Klinec, and Petr Svenda. 2017. The Efficient Randomness
Testing using Boolean Functions. In Proc. 14th Int. Joint Conf. on e-Business and
Telecommunications (ICETE 2017) - Volume 4: SECRYPT. SciTePress, 92–103.

[15] M. Tomassini, M. Sipper, and M. Perrenoud. 2000. On the generation of high-
quality random numbers by two-dimensional cellular automata. IEEE Trans.
Comput. 49, 10 (2000), 1146–1151.

[16] Mathy Vanhoef and Frank Piessens. 2015. All Your Biases Belong to Us: Breaking
RC4 inWPA-TKIP and TLS. In 24th USENIX Security Symposium (USENIX Security
15). USENIX Association, Washington, D.C., 97–112. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/vanhoef

[17] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. 2005. Efficient Collision Search
Attacks on SHA-0. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–16.

[18] Y. Wang, H. Wang, A. Guan, and H. Zhang. 2009. Evolutionary Design of Random
Number Generator. In 2009 International Joint Conference on Artificial Intelligence.
IEEE, 256–259.

1309

http://www.phy.duke.edu/~rgb/General/dieharder.php
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related work
	3.1 Randomness testing
	3.2 Evolutionary computation in cryptography
	3.3 Randomness testing using Boolean functions

	4 Evolution of Boolean functions for randomness testing
	4.1 Encoding
	4.2 Search method
	4.3 Fitness function

	5 Experimental setup
	6 Results
	6.1 Performance of the BDD-based fitness
	6.2 Searching for monomials having deg3
	6.3 Searching for distinguishers having k=3
	6.4 Evaluation on more complex instances

	7 Conclusions
	Acknowledgments
	References

