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14.1 Introduction

Vulnerability of any given security system is an important aspect that needs to be
carefully analyzed during design phase. When dealing with biometric systems, one
important source of such vulnerability that needs to be especially considered is its
tendency to deception by spoofs. Since a high enough quality spoof can become
indistinguishable from the original biometric characteristic by human eye, we may
need additional methods of spoof recognition. In this chapter, we will investigate
several approaches used as an antispoofing method, with emphasis on approaches
utilizing the liveness detection (antispoofing).

14.2 Fingerprint recognition

There was no need for a special hardware for acquiring fingerprint images in the
past, because fingerprints were kept on dactyloscopic cards using black ink or other
dye. These images then could be digitized via a scanner; this method is called
off-line sensing [1].

For live-scan sensing, there is no need for the ink; a person just needs to place
his/her finger near the electronic fingerprint scanner. The first generation of on-line
sensors was based on optical technology [2], but others such as solid-state or
ultrasound were invented.

Fingerprints are physiological characteristic, which means that they can be
damaged. A user may (un)intentionally harm his finger and make the recognition
impossible [3]. There are also sccurity issues. Most users arc not observant to the
fact that they leave their latent fingerprints on many places such as glasses, doors,
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etc. Such latent fingerprints can be used to create artificial fingertip to fool the
sensor and to obtain unauthorized access to a system.

Therefore, there is no wonder that many researchers put a lot of effort in spoofing
fingerprint systems and at the same time, developing antispoofing mechanisms.

14.3 Liveness detection on fingers

The capability of a biometric system to detect whether the provided biometric
sample is alive or not is denoted as liveness detection [2], and its main purpose is to
detect spoofing.

Liveness detection methods can be divided into three categories [1]:

Using only data collected for biometric purposes.

Using further-processed information collected in order to generate dis-
criminating features or by sensing the biometric sample in time.

3. Using additional hardware.

N =

Liveness detection uses acquired data to determine whether the input biometric
characteristic is alive. Properly performed liveness detection should reject all
nonbiologic spoofs and majority of the remaining ones, increasing the security of
the system during an acquisition stage.

Basic principle of liveness detection and its role in biometric system can be
seen in Figure 14.1. The acquisition of liveness data as well as biometric data
should ideally be simultaneous and performed on the same part of the biometry in
question; otherwise, the attacker can perform separate attack on the individual
parts of the system making the task less complex, as the data would only need to
meet the liveness requirement at some time/place and be a match to the template at
other, creating a possible vector of attack [4]. There are two ways how to
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Figure 14.1 Biometric system with liveness detection
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determine whether a presented biometric sample is alive or not—liveness detection
focuses on unique properties of human body parts and nonliveness detection
focuses on typical properties of materials used to fool the system. To discourage
potential attackers from presenting a fake finger (i.e., an imitation of the fingertip
and the papillary lines) or, even worse, to hurt a person to gain access, the system
must be augmented by a liveness detection component [5,6].

Various methods that are used for liveness detection will now be introduced.

14.3.1 Perspiration and sweat pores based detection

One of the several liveness detection methods without any additional hardware is
using natural perspiration behavior of skin. Human skin in general, but fingertips
especially are covered by sweat glands that excrete sweat fluid. The presence of the
pores and of sweat fluid can be used as a mark of a liveness. For the sweat fluid
detection, both the optical, chemical and capacitive approach had been explored
[7-9]. In Figure 14.2, principle of determining liveness based on perspiration is
shown. The spoof incapable of producing sweat fluid would fail to have any change
in perspiration measured.

For the pore detection, the systems require, the resolution be high enough to
acquire the necessary detail, its viability has been demonstrated as well [8].

14.3.2  Temperature and temperature stimuli based detection

Unlike artificial spoof, which will retain a room temperature without external heat
source, human extremitics will regulate its own body temperature. The temperature
of extremities depends on outside conditions, biological state and stimuli; this
temperature will vary in between approximately 25 and 37 °C and can be measured
using thermal camera, for example, as can be scen in Figure 14.3.

By measuring this temperature, we can, to an extent, claim that the object in
detector is part of human body. However, this method may be compromised, if the
hand is undercooled or the room temperature is similar to body temperature. It is
also viable to add an active heating element to the spoof, thus bypassing this
security feature.

To increase the reliability of this method, we may use additional stimuli. The
human skin will react to a stimulus by changing the blood flow to regulate the

.
= .:‘“\h\
.& \
L '._'a\.l_

Figure 14.2  Temporal perspiration pattern extracted from capacitive sensor [9]
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Figure 14.3  Thermographs of human hand showing temperature variation in
human finger [10]

temperature. By detecting this change and determining the appropriateness of this
change, we may determine the likeliness that observed reaction is that of a human
tissue. The downside of this approach is a reaction time. As the stimuli cannot be
dangerous, or cause of discomfort, which might compromise the measurement by
voluntary or involuntary movement of the subject, the time for change to be
observable will be in order of seconds.

14.3.3  Pulse and blood oxygenation based detection

Longitudinal blood pressure wave generated during systolic phase of cardiac
cycle, also known as pulse, changes the volume of the blood vessels that can be
observed even on the surface of the skin. Observation can be performed by
measuring the periodic change in position of human skin [7], or by the minute
change in color that occurs due to periodic increases and decreases in the oxygen
level of blood.

14.3.4 Multimodal approach

Using additional biometric modalities increases the difficulty to attack the
biometric system at the sensor-level [11]. It is more demanding for the attacker,
because it needs to elicit additional biometric data from the valid user and create
an additional artificial sample, which must be accepted by the attacked biometric
system.

14.3.5 Material identification based detection

Human skin, like any material, may undergo various measurements of physical
properties due to its nature; these properties may be different from materials used to
create a spoof. Electrical properties can be measured, such as resistivity or con-
ductivity, which varies from other materials due to perspiration and salt content in
sweat fluid. Reflection of ultrasound presents other source of material analysis, as
the ultrasound will penetrate the topmost parts of skin and is then scattered at
different frequency, this change can then be measured.

Another approach is to measure the optical characteristics of human skin. This
will be investigated in upcoming parts of the chapter.
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14.4 Finger vein recognition

There are several ways [11] how to acquire an image of human blood vessels, such
as using X-ray, magnetic resonance imaging, ultrasound, far-infrared light, near-
infrared (NIR) light or thermal approach [12]. The NIR light approach is used most
often in biometrics due its trade-off between cost, power supplement requirements,
size of the sensor and quality of resulting image.

The two types of hemoglobin (Hb, HbO,) have different absorption spectra.
Experiments have proved that the permeability of human tissue is high for elec-
tromagnetic radiation in the range from 600 to 1,300 nm [11,13]; this range is often
called optical window. Especially in the range between 750 and 950 nm [11], the
radiation can penetrate deep enough into the skin to reach the superficial arteries
and veins, and as a consequence it is absorbed in blood vessels, due to higher
absorption coefficient blood. This effect can be captured by a camera on the image
that shows where blood vessels are located, are darker. Even though the described
method can not only capture veins, but also arteries, this method for capturing
blood vessels will be further denoted as a vein characteristic.

There are two main methods of acquiring an image of blood vessels of a finger
with NIR approach-reflection and transmission.

14.4.1 Reflection method

The finger is illuminated by NIR light, and the partially reflected radiation is
captured by a CCD camera, which is located on the same side of the finger as the
light emitter. Because veins are closer to the skin than arteries, veins are usually
captured on a resulting image. Simplified schema of a finger vein sensor using
reflection method can be seen in Figure 14.4(a).

The main advantages of this approach are the sensor size, compactness and
possibility to easily extend existing (fingerprint) systems with finger vein recog-
nition system.

14.4.2  Transmission method

The transmission method is usually used only in finger vein recognition, because
fingers are generally thin enough to allow the light to pass through the tissue. The
NIR light emitter is in such case located on the opposite side of the finger than the
camera. Although the transmission method is leading in finger vein sensing, it must
be mentioned that the device itself is usually larger than the one using reflection
method. On the other hand, the quality of resulting image is more high-contrasted
in comparison to reflection approach [14]. Simplified schema of a finger vein
sensor using reflection method can be seen in Figure 14.4(b).

14.4.3  Wavelength of light emitters

The range, where the permeability of human tissue is high, is very wide from 600 to
1,300 nm [11]. The absorbency of hemoglobin also differs. Until today, it has not
been proven, which wavelength is generally the best suitable for transmission and
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Figure 14.4  Two main approaches for acquiring finger vein pattern using NIR
light: (a) refection method and (b) transmission method

reflection method. Yang and Shi [15] describe a finger vein sensor using 760 nm
LEDs with declaration that this is the optimal light source wavelength to
capture veins.

14.5 Spectral analysis approach to spoof detection

Hand-basced biometric systems may have antispoofing methods based on scveral
approaches. One of the approaches is liveness detection, which can be realized with
parts of hand. Although it is possible to perform lifetime detection based on skin
temperature, clectrical resistance, electrical conductivity or bio-impedance, these
methods are not reliable [16]. However, there are more reliable methods to help
determine if spoofing has occurred.

Like other parts of the human body, heartbeat can be detected in the hand.
When heart pumps oxygenated blood to veins, there are volume changes in the
veins and vessels. Therefore, the pulse can be detected on the skin of finger. With a
very accurate laser rangefinder, these changes can be recorded to determine
whether spoofing has taken place or not.

Another aspect that affects the skin’s properties is the actual blood flow, which
can vary depending on many factors, c¢.g., body temperaturc. By analyzing the
image obtained by illuminating the skin of different wavelengths, it is possible to
get a picture of the different parts beneath the surface of the skin and verify that it is
really human skin. It is possible to use several light sources of different wave-
lengths for a single exposure [17]. This is the basis for multispectral analysis of the
human skin. The main advantage is the ability to use multispectral analysis based
on image data to assess the health condition epidermal layer of the skin or detect
spoofing.

With biometric system using a multispectral analysis, it is very difficult to
perform a spoofing attack because homogeneous materials cannot be used.

Human skin is a multilayered organ. Every layer, fulfilling different functions,
has different properties; these differences can become evident during optical ana-
lysis. There are two major methods to this approach. Either the light directly
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Figure 14.5 Depth of skin penetration based on wavelength [18]

reflected from the skin is analyzed, or the system analyzes the dispersed light
generated after its propagation through the skin.

14.5.1 Using the dispersed light

Due to different composition of different layers of the skin, various wavelengths
will experience different absorption rate at different layers. In Figure 14.5, we can
see an example of such differences. The image outlines the average penetration
distance into the skin based on the wavelength of a chosen light.

Based on these properties, an innovative approach to liveness detection can be
proposed. This system will use the variation in absorption as a function of wave-
length. For the system to work, a source of light is required and photosensitive parts
that will record the rate and characteristics of absorption.

In Figure 14.6, the prototype developed for verifying the hypothesis is presented.
It supports placement of light-emitting diodes of various wavelengths, wide spectrum
photodiodes for overall absorption rate information and RGBW (Red Green Blue
White) detectors, to analyze the absorption at individual color channels [17].

The range of wavelengths has been investigated, such as infrared LEDs of
wavelengths 740 and 940 nm, ultraviolet LED with wavelength of 400 nm and
RGB LED with dominant wavelengths of 650, 520 and 460 nm.

Via experimentation, it has been determined that measuring the characteristics
of dispersion from RGB LED and 740 nm IR LED is a viable method of liveness
detection. At these wavelength ranges, the characteristics were distinguishable
from the most common materials used for spoof construction.

To attack this antispoof method, a nonhomogeneous, multilayer spoof would
need to be developed, and to the knowledge of the authors, no research has been
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Figure 14.6 Liveness detector—prototype
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Figure 14.7 Liveness detection based on spectral characteristics [20]

performed in this area of hand spoof development. The UV light presented mixed
results, the spectral characteristics of dispersed light was differentiable from most
spoofs, but the interclass variability was too large, influenced by a skin pigmenta-
tion. Further research needs to be performed in this area.

This method however presents a disadvantage, as the analyzed hand needs to
be in contact with the device, to eliminate the effect of reflected light. By forming a
seal around the chosen LED, the only source of light that reaches the sensors is the
light that propagates through the skin and tissue. This prevents the construction of
the touchless biometric system using this technology. To overcome this limitation,
another approach to spectral analysis needs to be used. Viable alternative comes in
the form of analysis of reflected light.
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14.5.2  Using reflected light

In Figure 14.7, the difference between reflection and dispersion is outlined.
Whereas the dispersion utilizes only the light that has penetrated the skin, the
sensors based on reflection use the directly reflected light and dispersed. The
observed characteristics of various wavelengths reaching the detector are then used
for the liveness detection [19]. Using this principle, the biometric sensor may be
touchless.

To determine liveness based on reflected light properties, an appropriate
wavelength must be chosen. To enable this system more for integration into current
technologies, the wavelengths in ranges used by current cameras used in a bio-
metric sensor are preferred; for that reason, wavelengths of 400, 410, 470, 525, 550,
570, 590, 635, 700 and 800 nm have been investigated. In Figures 14.8 and 14.9,
we can see a finger illuminated using some of these wavelengths.

Liveness detection can be then performed in the following steps:

e During acquisition, a skin sample is sequentially illuminated using chosen
wavelengths and the images are being acquired

The image is blurred to eliminate glares and unwanted artifacts

Pixels/pixel ranges are extracted in a repeatable manner as features

Feature vector is constructed

Classification is performed

Figure 14.8 Fingertip illuminated using LED of 400 (left), 470 (middle) and
525 nm (right)

Figure 14.9 Fingertip illuminated using LED of 550 (left), 635 (middle) and
700 nm (right)
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Figure 14.10 Fingerprint acquisition device [21] (left) and hardware
modification for liveness detection (right)
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Figure 14.11 ROC of liveness detection based on optical properties using various
machine-learning algorithms

As was indicated, the advantage of this approach lies in ease of integration into existing
systems. Any optical based biometric system only needs to integrate the light source of
chosen wavelengths into itself. As we can see in Figure 14.10, existing biometrics
solution can be simply modified to support this method of liveness detection.
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Due to feature vector being constructed from potentially large amount of data,
an appropriate machine-learning method needs to be utilized to prepare a strong
classifier.

Figure 14.11 shows performance of classifiers, constructed using various
machine-learning approaches, with strongest being created using the support vector
machine with radial basis function kernel.

From the figure we can also see that the underlying principle is valid, but
further research needs to be performed to perfect this approach.

14.6 Hematoma (improvement of antispoofing methods in
the presence of hematoma)

Hematoma, popularly called bluish or bruise, is caused by bleeding from damaged
blood vessels under the skin. The word comes from the Greek words hema and
soma, which means blood and body. There are many cases of hematoma; the
hematoma is primarily due to trauma. It is caused by a strong pressure and/or a
stroke that causes damage to the bloodstream. After it, the blood leaks from vessels
and veins to interstitial space. The human organism has mechanism to stop blood
leakage and is based on vessels contraction and hemostatic substances. As a result
of these circulatory system mechanisms, the human organism can protect itself
against a large loss of blood. In this case, hematoma almost disappears from
organism after some time. In some cases, the large hematomas need to be removed
surgically.

The other cause of the formation hematoma is fragile meningococcal
meningitis, autoimmune diseases such as congenital and acquired disorders
blood clotting, absence of vitamin K, liver disease, bone marrow disorders and
low blood platelet counts, e.g., thrombocytosis [22]. The hematoma is a common
problem encountered by every human. In the field of medicine, hematoma is
named by localization on the human body. Accordingly, examples of some
hematomas:

o  Subdermal hematoma is hematoma located below skin (commonly called
bruise)

o  Subgaleal hematoma is boundary accumulation of blood between Epicranial
aponeurosis and periosteum [23]

o  Cephalohematoma is boundary accumulation of blood under the periosteum
that covers most of the cranial bone in hairy head [23]

o  Epidural hematoma is local accumulation of blood between cranial bones and
dura mater [24]

o  Subdural hematoma is hematoma beneath the dura of skull or in the spinal
cord [24]

o  Subarachnoid hemorrhage is extravasation of blood into the subarachnoid
space [24]

o  Auricular hematoma is boundary accumulation of blood located between skin
and cartilage of ear [25]
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o  Monocular hematoma occurs when soft tissue is injured or the bones of face
are fractured [26], while the binocular hematoma occurs around the fractured
bones

Perianal hematoma is acute thrombosis of the anal blood vessels
Intermuscular hematoma occurs between muscles

Intramuscular hematoma occurs into muscle

Subungual hematoma occurs under nail [27]

Of these types of hematomas, the subdermal hematoma can be used as part of
antispoofing solution. The subungual hematoma is visible too, but multispectral
properties are affected by nail, which overlaps the hematoma. For capturing, mul-
tispectral properties are using the devices described in the previous section.

14.7 Hematoma stages

The human body contains a lot of chemical substances; in the case of blood, it is the
same too. After a hematoma formation, chemical reactions between the blood
components and other chemicals of the human organism begin. Therefore, the
properties of hematoma change over time. Time evolution of the hematoma can be
divided into five stages according to the hemoglobin conversion. From a multi-
spectral point of view, hemoglobin is an important chemical substance that has a
significant influence on light absorption. The color of hemoglobin depends on iron
atoms and oxygen [28]. The following stages are divided by hemoglobin conver-
sion to other chemical substances [29]. For us, however, it is important that bruise
color is different in each stage [30].

In the biometrics field, multispectral scanning can be used for extraction
distribution on veins and vessels. Since the different types of hemoglobin
have different absorption coefficient, veins and vessels image can be extracted
separately. Since the distribution of veins exhibits a high degree of variability,
this can be used as biometrics. The vein authentication device convert image
with vessel lines into binary image and then compare with template from the
database.

14.7.1 Stage—oxyhemoglobin

After the trauma, the red blood cells (RBCs) are extravasated from the bloodstream
into the interstitial space. If trauma causes subdermal hematoma (bruise), a red or
blue spot appears on the skin. In the stage, the extravasated hemoglobin (oxyHb) in
RBCs can still carry oxygen; therefore, the spot has color depending on the ratio of
oxygenated and deoxygenated hemoglobin (deoxyHb). The edges and area of
bruise look according to location and how much the blood vessels have been
damaged [31]. The oxyhemoglobin has at the beginning of the NIR spectrum
(around 700 nm) a lower rate of absorption coefficient than deoxyhemoglobin,
shown in Figure 14.12. In the stage, it can be determined whether this is a venous or
vascular bleeding by NIR light and photo sensor.
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Figure 14.12  Absorption spectra of hemoglobin—Hb, deoxyhemoglobin;, HbO,
oxyhemoglobin; H,0, water [2]

14.7.2  Stage—deoxyhemoglobin

After 1-5 days, almost all molecules of hemoglobin do not contain oxygen.
According to one plausible theory, when the oxygen is not bound in hemoglobin,
the color is less red than then color of oxyhemoglobin, and therefore the hemo-
globin absorbs redder spectrum [32]. If the red wavelengths are subtracted, the blue
spectrum is more predominate; therefore, skin has bluish color [33]. This phe-
nomenon is called cyanosis. Therefore, the color of bruise gradually turns shades of
blue. According to previous information, deoxyhemoglobin has different spectral
properties against the oxyhemoglobin.

For hematoma detection, the stage provides best conditions, because color
difference between area without and with hematoma is the biggest of all stages, as
shown in Figure 14.13.

14.7.3  Stage—biliverdin

The hemoglobin breakdown process begins 5 days later. First, the molecule of
deoxyhemoglobin is divided into molecules of globin and molecules of heme. Then
the molecules of heme are split by enzyme on hemoxygenase and molecule of
oxygen into tetrapyrrole, which is called biliverdin. During the process, the equi-
molar amount of ferro cation (Fe*") is relaxed too [34]. Because the biliverdin
contains conjugated double bond, the biliverdin has a green color.

14.7.4  Stage—nbilirubin

After 7 days, the bruise changes color from shades of green to shades of yellow.
This is caused by conversion of biliverdin to bilirubin. Conversion from biliverdin
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Figure 14.13 Hematoma in the second stage
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is carried out using a coenzyme nicotinamide adenine dinucleotide phosphate that
occurs as part of the metabolism of organisms. Because bilirubin is the main pro-
duct of heme degradation, it participates most in the resulting color of the hema-
toma at this stage [34,35]. According to Figure 14.14, the bilirubin has different
spectral characteristics than biliverdin, the greatest difference being in the range
from 300 to 364 nm wavelength.

14.7.5 Stage—hemosiderin

After that, all the RBCs may be resorbed, and the skin resumes its normal color. In
some cases, ferro cation (Fe>*), which is product of heme catabolism, is taken up
by macrophages and degraded into hemosiderin [36]. This causes the coloring of
bruise from yellow to brown. The main disadvantage of hemosiderin is that it can
cause pigment stains which can last a long time.

However, the stages of hemoglobin conversion may seem unimportant in
terms of antispoofing, the opposite is true. The stages of hematoma can be
useful information for liveness detection, since spectral properties of hemo-
globin and hemoglobin products are quite unique. When hematoma is detected
on the hand, we can use multispectral analysis for precision liveness detection.
For this reason, hematoma localization is important for the possibility of further
evaluation.

14.8 Hematoma detection

The success of hematoma detection depends on the shape, shade of hematoma color
and skin color. In the stages 1-4, hematoma has more intense color than normal
skin of europoid (light skin). However, when the human has dark skin, it can be
assumed that the detection based on skin color will be inaccurate. The process of
hematoma detection on light skin can be divided into five stages, shown in
Figure 14.15.

Image resize
y >

N Image preprocessing 9| Segmentation [ Mask transformation [ Multispectral analysis
color conversion

Figure 14.15 Hematoma detection process

14.9 Image resize and color conversion

For faster hematoma segmentation, it is advisable to downscale the size of the input
image. If the image has low resolution, this step can be skipped. Most algorithms
for hematoma detection are faster with the downscale image than with original
image. In the last step, all coordinates of edges of hematoma must recalculate with
scale coefficient. The coefficient is determined from the aspect ratio of the original
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and the reduced image. Almost all images are saved in the RGB color representa-
tion; but for some algorithms, it is better to use Hue Saturation Value (HSV)
representation [37]. Therefore, color conversion is the useful step for next image
processing. Saturation between areas is useful information for hematoma
segmentation.

14.9.1 Image preprocessing

During image processing, it is often needed to remove high-frequency arcas from
the image. In the other words, the noise needs to be reduced. One way to remove
noise is to use the convolution mask that represents selected function, e.g.,
Gaussian function.

14.9.2 Segmentation

After editing the image, the objective is to get a binary image consisting of two
arcas. Onc arca is made up of an object of interest (hematoma), and the other
consists of a background. This part of algorithm is the most important, but also it is
the most difficult to implement. The simplest method is thresholding based on the
difference in brightness. However, the method has bad performance when the skin
color is dark. Advanced methods can be based on texture analysis and thresholding
multiple color channels.

In some cascs, the binary arca, which represents arca without hematoma,
contains small enclosed areas. Areas that do not belong to the hematoma are
scattered across the area, so it is advisable to remove them using a morphological
operation [38]. These disadvantages can be removed by morphological operation
Open. After the operation is used, the binary mask has smooth and straight con-
tours, and background mask does not contain noise.

14.9.3  Scale and border extraction

If edges of hematoma for advanced algorithms are needed, they should be extracted
from binary mask. The morphological operation erode is using for creation edges of
hematoma. The resulting contour is obtained by subtracting the mask after applying
the erosion filter from the input binary mask, as shown in Figure 14.16. If the input
image was downscaled, the mask must be upscaled by the ratio from the first step.
The output mask defined localization of hematoma and can be used for accuracy
liveness detection.

—
—
Binary image Erode image Outline image

Figure 14.16 Outline extraction
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14.10 Multispectral analysis

After localization, the hematoma is analyzed. The easiest solution is creating his-
togram for all hematoma stages and comparing them. This approach is strongly
affected by various hematomas; therefore, it is not as good as antispoofing solution.
Enhancements should be achieved using histogram-based feature vectors from
different color representations, such as RGB 4+ HSV. A better method can be based
on spectral analysis. According to previous information, the hematoma (bruise) has
different absorbance across an electromagnetic spectrum in individual phases. This
feature can be used to determine whether it is a fake hand or none. Histogram-based
algorithms may not detect fake based on artificially created color spot; therefore,
the multispectral approaches are better. Among the problems of this detection are
the effects of other chemical substances on the body and probably the possibility to
use a hand several hours after death. After death, however, hemoglobin degrades
to other substances, but conversion from oxyhemoglobin to deoxyhemoglobin is
the same from living to dead tissue. Unfortunately, the bruises are affected by other
chemical substances and physical phenomena. For example, about 20 hours after
death, the pH of blood decreases to 5.5, which affects other chemical processes in
the decomposition of the body [39]. Real use of the postmortem hand for spoofing
will have to be verified by other experiments.

Despite everything, the multispectral analysis of hematoma to improve the
accuracy of antispoofing methods is an unconventional but interesting approach.
However, multispectral skin analysis has a great benefit for liveness detection.

14.11 Liveness detection system based on finger vein pattern

The liveness detection can be perceived from a different point of view. The main
task is to distinguish presented biometric samples between living and nonliving
classes. The requirements on the proposed system are as follows:

e The system is divided into two separated subsystems acquisition of images and
image processing.
The first subsystem is built using existing fingerprint sensor.
The second subsystem must be hardware independent, and fully automated input
image is automatically classified as live or nonlive without any user input.

e The second subsystem supports a “recognition” mode, which, instead of
classification into live or nonlive category, verifies registered users.

14.11.1 Image acquisition

First step in liveness detection on fingers is the acquisition of a presented finger.
For our experiments in the laboratory, we selected a TBS fingerprint sensor and
extended it with liveness detection based on finger vein pattern (Figure 14.17),
however this solution is suitable for any touchless fingerprint reader.
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Figure 14.17 Designed architecture of a proposed system

14.11.2  Touchless biometric systems fingerprint sensor

Commercial device TBS 3D-Enroll is a three-dimensional touchless sensor for
enrollment and generation of fingerprint templates. There are three cameras inside
the sensor as can be seen in Figure 14.10 and several LEDs of various colors. It
should be mentioned that the sensor is designed to acquire only a fingertip and
therefore a user inserts only this part of the finger into the box. The sizes of both
veins and arteries decrease with the distance from heart. For vein recognition,
usually the most interesting are parts of finger areas near the middle and proximal
phalanges. The blood vessels near distal phalanx are hardly visible, but only image
of this finger part is acquirable using this device.

14.11.3  Extension of an existing sensor

Two different methods of sensing are reflection and transmission.

The main disadvantages of transmission method are the size of the device and
that a user must put his finger into a “black box.” On the other hand, it seems that
the transmission method gives images, where the finger veins are more visible and
casily distinguishable in comparison to reflection method. Since all these dis-
advantages are already present in a TBS sensor, the transmission method was chosen
to obtain a more high-contrast images. A decision to utilize only the middle camera
for this prototype was made; but in future, all three cameras could be used to
reconstruct the 3D model of blood vessels of the finger. A board was constructed that
five NIR LEDs could be mounted to the top of the fingerprint sensor and the con-
struction allowed effective changing of LEDs and the voltage. The board is powered
from the sensor’s main power supply, so no additional power supply is needed.

LEDs are connected in parallel to allow one to set different levels of intensity
for each LED, because the fingertip thickness and tissue characteristic varies for
everyone.

Many finger vein solutions [14,40,41] use automatic brightness control to
climinate such individual variations; thus, the system can be extended with this
automated approach. This solution was not incorporated in this work, because it
increases both hardware and software demands. After several experiments, we
decided to give the resistor R; higher resistance in comparison to others (R, = R; =
R4 = Rs) (Figure 14.18).
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Figure 14.18 Proposed solution of finger vein sensing: (a) overall view and
(b) wiring diagram of the extension circuit

The various thicknesses of a finger make it difficult for choosing a general
camera setting. As can be seen in Figure 14.19, when a thin (top row) finger is
captured, a shorter exposure time is needed in comparison to thicker ones (bottom
row). A possible software solution combines images of the finger with different
exposure times using high dynamic range imaging (HDR) technique, which pro-
duces a single-HDR image with greater dynamic range of luminosity. A different
solution is to capture several images with various exposure times and then to use
quality cvaluation algorithms to choosc the best from image scries. Since the
camera had to be reprogramed each time, the exposure time is changed to capture a
sequence of images taking several seconds, and therefore HDR approach could not
be utilized duc to possible finger posture changes.

14.12 Preprocessing

For the preprocessing of the originally captured images, first, the image is seg-
mented to obtain the finger mask, and after that the elimination of finger posture
changes will be described.

14.12.1 Region of interest localization

Conventional algorithms for finger vein region of interest (ROI) localization
assume touch-based sensor, and therefore, the ROI of the finger is obtained by
applying a fixed window mask. This straightforward approach cannot be used in
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Figure 14.19 Finger vein images captured with different exposure times. In each
row, there are images of the same finger, and appropriate columns
belong to the same exposure time. The exposure time grows in the
right. All images were enhanced using CLAHE
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Figure 14.20 Example of Watershed procedure. needle blue of part (b) W
background green of part (c) Wy (a) Original image, (b) defined
marker sets and (c) segmented image

most touchless systems, and therefore a method using Watershed for ROI locali-
zation will be introduced.

The Watershed algorithm was utilized to distinguish between the finger and
the background.

To use the Watershed algorithm, for all classes, there must be preset a set of
pixels, which belong to the appropriate class. Let us denote the image size as a tuple
(X5 Vim)- The background marker set W, is defined using (14.1), and the finger marker
set Wyusing (14.2). Examples of predefined sets can be seen in Figure 14.20(b), and
the result of the Watershed algorithm is displayed in Figure 14.20(c).

Wy = {(lvy)b} € {la e -aym}} U {(x7y)|x € {]7'-'7xm} Ny € {]aym}}

X € xn“ RN X 7y = 2ym xnhy

1 2
y S {gym,g%n}}

(14.2)
According to the segmented image, mask M(x, y) is defined, it returns 1 if (x, y)
belongs to the finger segment, 0 otherwise. To reduce possible inaccuracies in
scgmentation, the morphological opening is applied on finger mask M, followed by
morphological closing.

w={ )
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Table 14.1 Defined coordinate system and six finger posture changes based

on [42]
Type Name
P ) _f’ @ :)_LZ e_l_z
X X y
1 Shift along x-axis M e
2 Rotation around x-axis 6
3 Shift along y-axis e

4 Rotation around y-axis ?

z
5 Shift along z-axis e_L
6 Rotation around z-axis

14.12.2  Correction of finger posture changes

There are six basic finger posture changes described in Table 14.1.

Type 6 correction: Type 6 finger posture change can be eliminated by rotation
around the z-axis using rotation matrix R(€). To obtain the unknown rotation
0, sets Cropy Chottom and Crigarerine in equation sets below are defined:

Ciop = {(x,»)IM(x,y) =1 AM(x,y — 1) = 0}
C/mzmm = {(x,y)|M(X,y) = 1 /\M(x,y— 1) = O}
Coniddleline = {(x,y)lEI(x,yT) € Ciop N 3(x,¥8) € Crotom NYB +yT = Zy}

where M(x, y) is an image segmentation mask. Examples of these sets are
visualized in Figure 14.21(b).

Type 3 correction: When the Type 6 posture change is eliminated, it is pos-
sible to crop the finger image according to the finger mask to minimize the
image size while preserving the ROI. Consequently, the Type 3 change is
eliminated as well. This step is visualized in Figure 14.21(d).

Type 1 correction: The Type 1 posture change is trivially solved, since the
position of the fingertip is known, and therefore alignment according to left
border solves the Type 1 posture change.

Type 5 correction: To climinate Type 5 posture change, the finger vein image
is normalized to a rectangle using a finger image mask. The image with size
(¥max> Ymax) 18 separated by columns and each column segment, where
M(x, y)=1 is linearly stretched to the size (1, yax). The result of this
operation is displayed in Figure 14.21(e).

Both Types 2 and 4 posture changes are ignored in this work.
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(d) (©

Figure 14.21  Procedure of elimination of finger posture changes—C,,, Chosoms
Chnidaieline Sets. (a) original image, (b) visualized sets Cx, (c) rotated
by 0, (d) cropped and (e) stretched

14.12.3  Interphalangeal joint localization

The phalangeal joints of a finger are constituted by several components including
synovial fluid [43], the density of which is much lower than the density of bones.
Therefore, when using transmission method to acquire a finger vein image, a
brighter region can be seen in the acquired image, which corresponds to the inter-
phalangeal joint. This region can be substituted by a single line with a pixel width
[43]. The Type 6 change is ignored, and sum of all gray level values for each
column (perpendicular to the length of the finger) is computed in (14.3), and the
maximum row-sum in (14.4) approximately denotes the position of the inter-
phalangeal joint. After Type 2 correction, it is possible to detect the interphalangeal
joint. Better results were obtained using weighted ¢ in (14.5), where smaller weight
is given with the length of the finger. This weighting is necessary, due to frequent
wrong positioning of the user’s finger. The fingertip is then overilluminated and
might cause wrongly localized interphalangeal joint.

JYmax

px) =Y f(x.¥) (14.3)
y=1
ry = argmax (¢(x)) (14.4)
x€{1,... Xmax }

Fp = argmax <,/ al -¢(x)> (14.5)
x€ {1, Xmax } Xmax

14.12.4 Size normalization

Having a feature vector of a constant size can be achieved by cropping the stretched
image followed by scaling. For cropping, the r; (interphalangeal joint approximation)
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is used as right border and /8 is used as a left border. The height of the image is
preserved. After that, the cropped image is scaled to size 300 x 200 pixel.

Due to various thicknesses of fingers of different persons, it is necessary to
acquire several images of the same finger with different exposure time. Each
finger vein record is contained of a totally ordered set /" with six pictures; this set
will be denoted as a sequence. There exists a function e: V—N, which assigns
cach image an exposure time expressed as a natural number and e is totally
ordered on V. The quality estimation function ¢q: V'—R assigns a score to each
image. After that, the image with best score /., is chosen: ;. = arg max g(v),
(ve V) from the sequence. Several concrete quality estimation approaches can be
utilized to choose the best quality image and its score from V and will be
presented below.

No heuristic 4 quality estimation NoHeuristici, which statically assigns 1 to
the image with the /th highest exposure time and 0 to others.

Haralick HaralickF(d, 6) is a quality estimation function, which assigns score
to image according to selected Haralick feature F, where F € {Energy, Contrast,
Homogenity, Entropy} and displacement vector (d, 6).

An expert can choose a reference image, which histogram will be computed
and another image’s quality will be estimated by histogram comparison, for
example using chi-square method.

14.13 Feature extraction

Various features, which could be extracted from finger vein images, will be
described as follows:

o Local binary patterns (LBP) is a method for extracting textural features of a
grayscale image. The original LBP [44] uses 3*3 nonparametric operator for
labeling each pixel (x., y.) by thresholding the eight-neighborhood with the
gray level of the center pixel (x., y.) and summing threshold values weighted
by powers of two [45].

e  Repeated line tracking.: This method extracts finger vein pattern even from
a noised and irregularly shaded image. The method is based on tracking
dark lines starting at various pixel positions. The dark line is followed until
it is not detectable anymore, and then a new line from different pixel is
started.

o Maximum curvature: It is claimed to be resistant to various vein widths and its
brightness. The algorithm has become a benchmark for the newly developed
finger vein extraction and comparison methods [46—48].

The Haralick and Local Binary Patterns Histogram (LBPH) features described were
utilized as a texture describing features, which will be mainly used as a dis-
criminative feature for liveness detection.

In the case of Haralick features, all four mentioned (contrast, energy, homo-
genity and entropy) are concatenated to a single-feature vector. On the other hand,
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maximum curvature and repeated line tracking are suited for detailed vein eva-
luation and therefore finger vein recognition. The outcome of both maximum
curvature and repeated line tracking is a locus space with probability of being a
vein. This locus space is thresholded using threshold ¢, computed as #-percentile of
nonzero locus space values.

The last step in processing pipeline is dependent on the chosen mode: liveness
detection or vein recognition. In the classification mode, binary (with classes live
and nonlive) nonlinear probabilistic support vector machine (SVM) with radial
basis function (RBF) as a kernel is used for final decision. The recognition mode
details are dependent on used feature extraction method. To determine score of two
LBPH vectors, a chi-square metric is used. In the case of repeated line tracking and
maximum curvature, the veins are aligned using iterative closest point (ICP)
algorithm, after that the detected veins are emphasized with morphological opera-
tions and the final comparison score is based on Hamming distance of intersecting
regions.

14.14 Quality annotator

An application for manual quality annotation of finger vein was implemented for
objective evaluation of quality-assessment algorithms. It scans for all sets of six
images from the same session and then it displays them on screen using QT
framework7. An expert can then assign the images a label (good or bad) as can be
seen in Figure 14.22. The output of quality annotator can be used in evaluation
subsystem to evaluate different approaches of quality assessment.

14.15 Dataset description

To evaluate the proposed system, a dataset containing both live fingers and fingers
spoofs was gathered. Six fingers (both index, middle and ring fingers) of each
volunteer were captured, and each finger can be perceived as a biometric sample of
a unique individual. Each finger was captured six times in two different days to
consider possible changes of vein visibility. The nonlive dataset consists of 370
sequences of 59 different materials or material combinations.

14.16 Conclusion

In this chapter, we have introduced multiple general approaches that can and are
being used for purposes of liveness detection in hand and finger-based biometrics.
Methods based on spectral analysis have been further elaborated on. The principle
using the light absorption as well as light reflection has been discussed, and a
method of acquiring data described. The advantages, disadvantages and results of
mentioned approaches to liveness detection were discussed.
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Figure 14.22  Screenshot of quality annotator application. The images highlighted
with green color was marked as good, on the other hand, images
highlighted with red are marked as poor quality images

Lately, the spoofing attacks have shown that it is possible to fool most
commercial fingerprint sensors with artificial fingerprints. On the contrary, finger
vein recognition is a relatively new but promising method suitable for biometric
authentication achieving high recognition performance. One advantage of vein
recognition is that blood vessels arc an internal biometric characteristic, and it is
harder for an attacker to obtain it from a user. Image of veins is usually acquired
using infrared radiation for biometric purposes. When we create a biometric
system, which cxamines both mentioned characteristics at once, it is more
demanding to compromise it. An intruder must obtain both fingerprint and image
of finger veins of a legitimate user and merge those into a single spoof, which has
desired optical characteristics. All implemented methods were thoroughly eval-
uated and compared. In liveness detection mode, EER equal to 6.5% was achieved
using LBPH features. In finger vein verification mode, the best result EER equal
to 10.8% was obtained using maximum curvature features. A future development,
which may improve the error rates, was outlined including reconstruction of 3D
model of blood vessels. As we can see, the error rates are quite high for unimodal
system, but in fusion with high precision fingerprint recognition, it might be
possible to preclude most of impostor attempts without rejecting any legitimate
user.
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