
Fast Reconfigurable Hash Functions for Network
Flow Hashing in FPGAs

David Grochol and Lukas Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Email: igrochol@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Efficient monitoring of high speed computer net-
works operating with a 100 Gigabit per second (Gbps) data
throughput requires a suitable hardware acceleration of its key
components. We present a platform capable of automated de-
signing of hash functions suitable for network flow hashing. The
platform employs a multi-objective linear genetic programming
developed for the hash function design. We evolved high-quality
hash functions and implemented them in a field programmable
gate array (FPGA). Several evolved hash functions were com-
bined together in order to form a new reconfigurable hash func-
tion. The proposed reconfigurable design significantly reduces the
area on a chip while the maximum operation frequency remains
very close to the fastest hash functions. Properties of evolved hash
functions were compared with the state-of-the-art hash functions
in terms of the quality of hashing, area and operation frequency
in the FPGA.

I. INTRODUCTION

Current high-speed computer networks can achieve a 100
Gigabit per second (Gbps) throughput and even 400 Gbps
links will be available in the near future. At these speeds,
detailed packet processing becomes a challenging problem.
Fast packet processing is especially important in network
security and monitoring systems, where any packet unseen
by the monitoring system because of the system’s insufficient
performance can affect the quality of monitoring or disallow
the detection of security threats. In order to achieve a 100
Gbps throughput, every packet has to be processed in less than
7 ns. It means that a single CPU core can only execute a few
instructions to perform this job, which is far from needed.
Hence, application-specific hardware accelerators have been
developed to provide sufficient performance.

This paper deals with an automated design of ultra-fast
hash functions that are crucial in these accelerators. In par-
ticular, hash functions will be developed for the software
defined monitoring (SDM) platform. SDM performs network
monitoring and analysis using relatively simple (and so fast)
configurable circuits implemented in a field programmable
gate array (FPGA). These circuits are configured by means of
a software application whose purpose is to offload all time-
critical packet processing tasks to hardware and perform only
sophisticated analysis and other tasks that are not suitable for
the hardware acceleration.

In SDM, the network traffic is analyzed at the level of
network flows. A network flow is a sequence of packets from a
source device to a destination, for example, a network flow can

contain a specific transport connection or a media stream. One
flow is defined by five parameters within a certain time period:
source and destination IP address, source and destination port
and transport protocol. These parameters will be referred to
as a flow identifier. The role of hashing is to assign a memory
slot (containing the data of a given flow) to the flow identifier
extracted from network traffic.

The objective of this work is to develop and evaluate
new hash functions suitable for network flow hashing in
the FPGA. We will also explore possibilities of developing
the reconfigurable hash functions whose implementation is
motivated by recent attacks on traffic monitoring systems
that use a hash function to distribute the network traffic (i.e.
flow processing) on several cores. If the attacker can reveal
how the network traffic is distributed, (s)he can generate a
specific traffic from some IP addresses (and so flows) in such
a way that (almost) all traffic is intentionally directed by
the hash function to one core, the core becomes overloaded,
some flows are dropped and thus remain invisible for security
monitoring. However, if a reconfigurable hash function is
supported, another configuration of the hash function can
quickly be activated when one core becomes overloaded. This
will change the unwanted workload distribution to the original
status and keep the monitoring system working. In order to
minimize the time spent in the less secure configuration, the
system has to be adapted at the hardware level.

The proposed solution will be developed in the following
steps. (i) We will introduce a genetic programming (GP) based
system implemented for the evolutionary design of desired
hash functions. (ii) Hash functions evolved with this system
will be implemented in an FPGA, evaluated on several data
sets and compared with conventional hash functions in terms
of the quality of hashing, the area used in the FPGA and the
maximal operation frequency. (iii) Finally, we will propose
and evaluate a new reconfigurable hash function that combines
selected parts of evolved hash functions in order to reduce the
implementation cost.

The rest of the paper is organized as follows. Section II in-
troduces the area of hash functions and their design, including
the evolutionary hash function design. Section III presents a
platform capable of automated evolutionary designing of hash
functions suitable for network flow hashing. The approach uti-
lized for the FPGA implementation of hash functions that were
evolved by means of the platform is presented in Section IV.

978-1-5386-7753-7/18/$31.00 c© 2018 IEEE

2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)

257

This section also deals with the development and experimental
evaluation of a reconfigurable hash function. Conclusions are
given in Section V.

II. HASH FUNCTIONS

A hash function is a mathematical function h that maps an
input binary string (of length k) to a binary string of fixed
length (l), h : 2k → 2l, where k >> l. The output value is
called hash value or simply hash [1]. If h(x) = h(y), where
x and y are two inputs and x 6= y, the so-called collision
is reported. Next section will describe one of the collision-
handling methods that we employ in our application.

We will only deal with non-cryptographic hash functions
in this paper. In the case of cryptographic hash functions,
additional requirements (such as a pre-image resistance) are
imposed on them, but these requirements are not relevant in
our context.

A. Hash table

Fig. 1 shows how hash function h is used in a hash table,
which is a data structure implementing an associative array [2].
Based on the input data (a key), the hash function computes
a hash, i.e. an index into the array of slots, where the desired
data can be found. Ideally, the hash function will address a
unique slot, but collisions have to be handled in real-world
applications. For this purpose, the separate chaining method,
cuckoo hashing, coalesced hashing and other techniques have
been developed. In the case of the separate chaining method,
a linear list of records having the same hash is constructed
and managed for each index of the table. If there is at most
one occupied record at index i then the time complexity of
lookup is constant; otherwise, it is linear with respect to the
number of records at a given index.

Fig. 1. Hash table with separate chaining.

The quality of non-cryptographic hash functions is evaluated
based on their collision resistance (good hash functions should
generate a minimum number of collisions), the avalanche ef-
fect (similar input vectors should produce completely different
outputs), the distribution of outputs, the execution time and the
table load factor (for a given memory size).

B. Design techniques

If a hash function is needed for a given application, the de-
signer can either choose one of general-purpose hash functions
available in the literature (such as DJBHash [3], DEKHash [1],
FVN (Fowler-Noll-Vo) [4], One At Time, Lookup3 [5], Mur-
murHash2, MurmurHash3 [6] and CityHash [7]) or develop a
new application-specific hash function.

Hash functions are usually designed by applying a general
construction procedure such as the Merkle-Damgård con-
struction [8]. However, a lot of approaches based on the
evolutionary design principles have been introduced in re-
cent years. Their main advantage is that they are capable
of producing high-quality hash functions optimized for a
given application domain. Hash functions were evolved with
genetic algorithms [9], tree GP [10], linear GP [11], [12],
grammar evolution [13] and Cartesian GP [14]. Both scenarios
– application-specific hash functions (see, e.g., [15], [12], [16],
[17]) and general-purpose hash functions (see, e.g., [10], [18])
– were addressed in the literature.

The fitness function is usually based on measuring the
avalanche effect [19], [20] or the number of collisions [12],
[18]. The execution time optimization has been explicitly
addressed in [11], [12], where the hash function design was
formulated as a multi-objective design problem.

C. Hashing in FPGAs

FPGA implementations of adaptive hash functions were
developed for various network applications such as network
routing [21], caching [22] and IP filtering [23]. For example,
the hash function for IP filtering computes 12-bit hashes in 43
clock cycles for 32-bit inputs. Because of pipelined processing,
one hash can be produced in each clock cycle, which gives
260 million hashes per second, i.e. 3.8 ns per hash [23]. This
is more than sufficient for 400 Gbps links.

For comparative purposes of this paper, we implemented
in FPGA two hash functions: XORHash and SipHash. The
XORHash was developed for hashing of the network flows. It
is based on the so-called xor folding, in which the components
of the flow identifier are shifted by a predetermined number
of bits and then summed by means of the xor function [24].
These implementations lead to high-speed pipelined structures.
SipHash is a family of pseudorandom functions optimized
for short inputs. Target applications include network traffic
authentication and hash-table lookups [25]. A VHDL imple-
mentation is available at https://131002.net/siphash

III. PLATFORM FOR HASH FUNCTION DESIGN

In our previous work, we developed a platform for evolu-
tionary design of hash functions that are suitable for network
flow hashing within the SDM concept [12]. The objective
was not only to evolve high quality hash functions for this
application, but also to optimize the execution time as the
hash function is called very often.

258

A. Network flow hashing

The hash function is constructed for the hash table in which
the collisions are handled with the separate chaining method.
In IPv4, a network flow is defined using 104 bits representing
the source IP address (32 b), the destination IP address (32 b),
the source port (16 b), the destination port (16 b) and the
transport protocol (8 b). In order to reduce the execution time,
these inputs are processed in parallel, i.e. the hash function
would consume 104 input bits. We proposed to reduce the
dimension of the input vector to 3 × 32 = 96 bits in such
a way that the source and destination IP addresses remain in
the original format and a new 32 bit vector is created from
the source and destination port (sp, dp) and transport protocol
(tp) according to formula [11]

((sp << 16) ∨ dp)⊕ tp.

As the real traffic especially contains two types of transport
protocol (TCP and UDP), there is not a significant loss
of information using this reduction of the input vector. In
addition, the input vector fits into three 32 bit registers which
makes its processing straightforward on a common 32 bit
processor. Finally, the resulting hash is represented on 16 bits.

B. Linear genetic programming

Linear genetic programming (LGP) [26], [27], [28] evolves
computer programs that are represented as sequences of in-
structions for a register machine. The input and output program
values are stored in the registers or in an external data memory.
In our case, no external memory is needed because the 96 bit
input can be stored in three registers (r0, r1 and r2) and the
resulting hash is in the register r0. The remaining registers are
initialized to 0. The number of registers available in the register
machine is constant. Each instruction is typically represented
by the instruction code, destination register and two source
registers, for example, [xor, r4, r1, r2] is representing the
operation r4 = r1 xor r2. Based on many experiments, a
very restricted instruction set containing the addition, mul-
tiplication, logical XOR and right rotation was employed in
our experiments. In some experiments, multiplication is even
avoided to reduce the execution time of the resulting hash
function. The impact of (not)supporting the multiplication
on the execution time and quality of hashing was analyzed
in [11]. The program size is restricted to contain only several
instructions (usually less than 20) in order to force LGP to
create short programs.

LGP typically operates with 200 individuals in the popula-
tion, one-point crossover with probability 90 %, mutation prob-
ability 15 % and tournament selection [11], [12]. The register
machine contains eight 32 bit registers. In our experiments,
1000 generations are produced in each LGP run.

C. Fitness functions

Two objectives can be optimized by the proposed platform:
the quality of hashing and the execution time of a hash
function.

In order to evaluate a candidate hash function, it is executed
with a set of flow identifiers. Executing the hash function leads
to inserting the flow identifiers to the hash table and creating
appropriate lists for all slots showing a collision. Let Ki inputs
(keys) be mapped into i-th memory slot by a candidate hash
function h. Then the fitness f(h) is defined as the weighted
number of collisions:

f(h) =
s∑

i=1

gi, where (1)

gi =

{
0 if Ki ≤ 1∑Ki

j=2 j
2 if Ki ≥ 2

(2)

and s is the number of memory slots. This function clearly
penalizes candidate hash functions showing many collisions
and thus long lists in the hash table with separate chaining.
The following example demonstrates the fitness evaluation:
Consider that two flow identifiers are assigned to slot i = 3,
three input identifiers are assigned to slot i = 10 and 0 or
1 input is assigned to the remaining slots (s = 20). Then
f(h) = 22 + (22 + 32) = 17. The objective is to minimize
f(h).

Candidate programs usually contain redundant instructions.
For example, they could contain instructions whose result is
not used by any other instruction or whose execution does
not affect contents of the registers. These instructions can
be removed. As modern processors support SIMD (Single
Instruction Multiple Data) processing via the SSE and AVX
extensions, we re-arrange the candidate programs to fit this
scheme [12]. For example, modern CPUs can typically process
256 bits at once which means that eight 32-bit operations
can be executed in one instruction instead of executing eight
instructions sequentially. The execution time of a candidate
program then corresponds to the number of blocks of instruc-
tions, where one block contains all instructions that can be
executed in parallel.

In a multi-objective scenario implemented by means of
the NSGA-II algorithm [29], LGP thus tries to minimize
the number of collisions and the number of instructions (or
instruction blocks) [12].

D. Results

The network data used in experiments were collected with a
network monitoring device installed in our research computer
network. The network data were divided into three data sets
containing 20,000 (DataSet1), 50,000 (DataSet2) and 100,000
(DataSet3) identifiers of network flows. Note that the iden-
tifiers of network flows are unique. DataSet1 is used as a
training set for LGP.

Fig. 2 shows all Pareto fronts (the weighted number of
collisions vs. the number of instructions in C code) obtained
from 30 independent runs of LGP. We identified seven hash
functions NSGAHash1 – NSGAHash7 covering the Pareto
front for a further analysis.

Evolved hash functions and selected conventional hash
functions were implemented in C and compiled with the

259

TABLE I
THE NUMBER OF COLLISIONS.

Hash function The number of collisions
DataSet1 DataSet2 DataSet3

DJBHash 2835 15113 48925
DEKHash 2926 15247 49017
FVNHash 2756 14957 48780
One At Time 2821 14988 48636
lookup3 2742 15009 48737
Murmur2 2800 15050 48749
Murmur3 2744 14911 48763
CityHash 2807 14990 48647
GPHash 2777 15052 48750
EFHash 5317 25266 63175
XORHash 2864 15011 48575
SipHash 2835 14934 48622
NSGAHash1 2923 15677 49336
NSGAHash2 2746 15170 48835
NSGAHash3 2689 15575 49292
NSGAHash4 2692 15010 48715
NSGAHash5 2759 14975 48749
NSGAHash6 2650 14839 48680
NSGAHash7 2639 14975 48650
mixHash 2716 15006 48716

TABLE II
THE AVERAGE EXECUTION TIME ON INTEL XEON E5-2620V3

Hash function Time [ms]
DataSet1 DataSet2 DataSet3

DJBHash 1.069 3.608 9.690
DEKHash 0.890 3.210 8.647
FVNHash 1.021 3.546 9.556
One At Time 1.361 4.568 12.024
lookup3 0.721 2.670 7.473
Murmur2 0.787 2.868 7.871
Murmur3 0.929 3.304 8.892
CityHash 0.760 2.736 7.603
GPHash 1.448 4.749 12.406
EFHash 1.871 13.560 48.132
XORHash 0.649 2.390 6.774
SipHash 4.061 10.147 23.442
NSGAHash1 0.568 2.871 8.642
NSGAHash2 0.560 2.182 6.334
NSGAHash3 0.541 2.871 8.500
NSGAHash4 0.561 2.168 6.267
NSGAHash5 0.564 2.191 6.394
NSGAHash6 0.559 2.192 6.369
NSGAHash7 0.593 2.295 6.883
mixHash 0.566 2.178 6.352

identical compiler settings. These implementations were then
used to evaluate the number of collisions (Table I) and CPU
execution time (Table II) on test data sets.

Table II gives the average execution time needed to process
all data sets 20 times. NSGAHash4 provides the shortest
execution time because a good tradeoff between the number
of collisions and the complexity of the hash function was
discovered by LGP.

In summary, it was shown using real world network data that
the proposed platform can provide high-quality compromise
solutions (in terms of the execution time and the quality of
hashing) in comparison with commonly used hash functions
and specialized hash functions available in the literature.

IV. HASH FUNCTIONS IN FPGA

The hash functions evolved by LGP were optimized with
respect to the number of collisions and the execution time on
a CPU. LGP also tried to maximize the number instructions
that can be executed in parallel. This property is useful from
the hardware perspective as the evolved functions contain
arithmetic operations that can be executed in parallel and the
execution time can thus be minimized.

A. FPGA implementation

We analyzed evolved hash functions NSGAHash1 – NS-
GAHash7 and created their VHDL structural implementations
according to evolved programs. In order to maximize the
operation frequency, we inserted synchronization registers to
enable the pipelined processing. Examples of resulting im-
plementations are shown for NSGAHash4, NSGAHash5 and
NSGAHash6 in Fig. 3, 4 and 5. The network flow description
is provided in 32 bit registers i0, i1 and i2. Each stage of
the pipeline contains a 32 bit function (such as addition,
logic operation, rotation or no operation) followed by a 32
bit register R. Rotation is implemented by reconnecting the
input signals according to a given bit count, i.e. no special
function such as a barrel shifter is needed. The resulting 16
bit hash value is obtained from a 16 bit XOR function.

NSGAHash1 – NSGAHash7 were synthesized using Xillinx
ISE 14.4 tool for three different Xilinx FPGAs, namely
Spartan-6 (xc6slx150), Virtex-6 (xc6vlx550t) and Virtex-7
(xc7vx550t). Table III summarizes all important parameters:
the latency, the number of look-up tables (LUTs), the number
of flip-flops (FFs), delay and maximum operation frequency.
In order to provide examples of conventional hash functions,
we also implemented XORHash [24] and SipHash [25] and
listed their parameters in Table III. It has to be noted that
other conventional hash functions are more complex than the
selected functions and their hardware implementation would
not bring any advantages to our target application. One can
observe that evolved hash functions are more compact than
conventional hash functions (the number of LUTs and FFs
was significantly reduced) and exhibit a small initial latency
of 2–4 clock cycles. The execution time is comparable with
XORHash, but SipHash is much slower than evolved hash
functions.

B. Reconfigurable hash function

In order to design a reconfigurable hash function that could
be used in the security use-case sketched in Section I, a
natural solution would be to implement desired hash func-
tions on the FPGA and select one of them by means of a
multiplexer. Detailed analysis of NSGAHash4, NSGAHash5
and NSGAHash6 shown in Fig. 3, 4 and 5, however, revealed
that these hash functions are structurally very similar. We took
into account this fact and designed a new reconfigurable hash
function (RecoHash) that contains all these hash functions. The
multiplexers are carefully placed and used to switch among
subcircuits of these hash functions rather than the whole
hash functions. RecoHash has four different configurations,

260

Fig. 2. Resulting Pareto fronts created from 30 independent runs of LGP.

Fig. 3. Pipelined implementation of NSGAHash4.

implementing NSGAHash4 (mode 00), NSGAHash5 (mode
01), NSGAHash6 (mode 10) and mixHash (mode 11), where
mixHash is a mixture of the former functions.

The synthesis results given in Table III clearly show the
main benefits of RecoHash. For example, in the case of the
implementation in Virtex-7, its size (144 LUTs) is significantly
smaller than the sum of the LUTs needed to implement its core
hash functions (80 + 112 + 112 = 304 LUTs). The same also
holds for FFs (144 < 3× 122). The max. operation frequency
of RecoHash is very close to the fastest hash functions.

Fig. 4. Pipelined implementation of NSGAHash5.

Figure 7 shows all key parameters (LUTs, delay and
the number of collisions) for all evolved hash functions,
conventional hash functions and RecoHash. The number of
collisions is given for the most challenging DataSet3. Because
of the pipeline structure, evolved hash functions exhibit a very
similar delay. The only exception is NSGAHash7 which is
more complex due to multipliers that were implemented by
DSP blocks available in the FPGA.

Finally, by means of 1 million input vectors we analyzed
how many flows are hashed by RecoHash to the same index
by means of its different configurations. As these numbers are

261

TABLE III
SYNTHESIS RESULTS FOR DIFFERENT TYPES OF XILLINX FPGAS. *NSGAHASH7 USES 3 DSP BLOCKS FOR MULTIPLICATION

Hash function Number Number Delay max. frequency
FPGA Type Latency of LUTs of FFs [ns] [MHz]

SipHash
Spartan-6 4 989 521 10.501 95.23
Virtex-6 4 1061 521 6.449 155.06
Virtex-7 4 1061 521 5.469 182.84

XORHash
Spartan-6 7 291 228 2.395 417.54
Virtex-6 7 291 228 1.771 564.65
Virtex-7 7 291 228 1.594 627.35

NSGAHash1
Spartan-6 2 48 48 3.133 319.18
Virtex-6 2 48 48 1.452 688.71
Virtex-7 2 48 48 1.353 739.10

NSGAHash2
Spartan-6 3 80 112 2.358 424.09
Virtex-6 3 80 112 1.766 566.25
Virtex-7 3 80 112 1.589 629.33

NSGAHash3
Spartan-6 2 48 48 3.133 319.18
Virtex-6 2 48 48 1.452 688.71
Virtex-7 2 48 48 1.353 739.10

NSGAHash4
Spartan-6 3 80 112 3.133 319.18
Virtex-6 3 80 112 1.766 566.25
Virtex-7 3 80 112 1.589 629.33

NSGAHash5
Spartan-6 3 112 112 3.170 315.46
Virtex-6 3 112 112 1.766 566.25
Virtex-7 3 112 112 1.589 629.33

NSGAHash6
Spartan-6 3 112 112 3.170 315.46
Virtex-6 3 112 112 1.766 566.25
Virtex-7 3 112 112 1.589 629.33

NSGAHash7
Spartan-6 4 80* 161 11.541 86.65
Virtex-6 4 80* 161 6.208 161.08
Virtex-7 4 80* 161 5.432 184.09

RecoHash
Spartan-6 4 144 240 3.049 327.98
Virtex-6 4 144 240 1.766 566.25
Virtex-7 4 144 240 1.589 629.33

Fig. 5. Pipelined implementation of NSGAHash6.

very low (e.g., 0.0021% for NSGAHash4 and NSGAHash5;
0.0017% for NSGAHash4 and NSGAHash6; and 0.0008% for
NSGAHash5 and NSGAHash6), we concluded that RecoHash
provides significantly different hash values in its operation
modes.

V. CONCLUSIONS

Motivated by the recent need for the high-speed network
flow processing in FPGAs, we proposed efficient hardware
implementations of hash functions for an FPGA, including a
reconfigurable hash function. The proposed solution exploits a
multi-objective LGP capable of designing and optimizing not

Fig. 6. Reconfigurable hash function RecoHash.

only the quality of hashing, but also the execution time of hash
functions. Because of these properties, evolved hash functions
(i.e. sequences of instructions) could directly be translated
to a VHDL structural description, synthesized and evaluated
on several FPGAs. Compared with conventional solutions,
evolved implementations require less area in the FPGA while
the maximum operation frequency is slightly higher.

We exploited the structural similarity of several hash func-
tions and combined them together to create a reconfigurable

262

Fig. 7. Parameters of implementations of hash functions in Virtex-7. The
number of collisions is given for DataSet3.

hash function RecoHash. RecoHash requires less area in the
FPGA than any solution based on multiplexing of the available
hash functions. RecoHash can also be used as a building block
of more complex hashing schemes.

The quality of hashing was evaluated with the data coming
from real network flows. In our future work, we plan to
integrate selected hardware implementations of hash functions
into SDM system and evaluate them in the real online scenario.

ACKNOWLEDGMENTS

This work was supported by The Ministry of Education,
Youth and Sports of the Czech Republic INTER-COST
project LTC18053. The authors would like to thank Dr. Martin
Zadnik for his valuable comments to this research.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming (Volume 3), 1973.
[2] W. D. Maurer and T. G. Lewis, “Hash table methods,” ACM Computing

Surveys (CSUR), vol. 7, no. 1, pp. 5–19, 1975.
[3] D. J. Bernstein, “Mathematics and computer science,”

https://cr.yp.to/djb.html.
[4] G. Fowler, P. Vo, and L. C. Noll, “FVN Hash,”

http://www.isthe.com/chongo/tech/comp/fnv/.
[5] B. Jenkins, “A hash function for hash table lookup,”

http://www.burtleburtle.net/bob/hash/doobs.html.

[6] A. Appleby, “Murmur hash functions,”
https://github.com/aappleby/smhasher.

[7] G. Pike and J. Alakuijala, “Introducing cityhash,” 2011.
[8] R. C. Merkle, “Secrecy, authentication, and public key systems,” Ph.D.

dissertation, Stanford University, 1979.
[9] M. Safdari and R. Joshi, “Evolving universal hash functions using

genetic algorithms,” in In Proc. of the Future Computer and Communi-
cation, 2009, pp. 84–87.

[10] C. Estebanez, Y. Saez, G. Recio, and P. Isasi, “Automatic design of
noncryptographic hash functions using genetic programming,” Compu-
tational Intelligence, vol. 30, no. 4, pp. 798–831, 2014.

[11] D. Grochol and L. Sekanina, “Evolutionary design of fast high-quality
hash functions for network applications,” in Proc. of the 2016 Genetic
and Evolutionary Computation Conference. ACM, 2016, pp. 901–908.

[12] ——, “Multiobjective evolution of hash functions for high speed net-
works,” in Proceedings of the 2017 IEEE Congress on Evolutionary
Computation. IEEE Computer Society, 2017, pp. 1533–1540.

[13] P. Berarducci, D. Jordan, D. Martin, and J. Seitzer, “Gevosh: Using
grammatical evolution to generate hashing functions.” in MAICS, 2004,
pp. 31–39.

[14] H. Widiger, R. Salomon, and D. Timmermann, “Packet classification
with evolvable hardware hash functions–an intrinsic approach,” in In-
ternational Workshop on Biologically Inspired Approaches to Advanced
Information Technology. Springer, 2006, pp. 64–79.

[15] P. Kaufmann, C. Plessl, and M. Platzner, “EvoCaches: Application-
specific Adaptation of Cache Mappings,” in Adaptive Hardware and
Systems (AHS). IEEE CS, 2009, pp. 11–18.

[16] M. Kidoň and R. Dobai, “Evolutionary design of hash functions for ip
address hashing using genetic programming,” in Evolutionary Compu-
tation (CEC), 2017 IEEE Congress on. IEEE, 2017, pp. 1720–1727.

[17] Z. A. Kocsis, G. Neumann, J. Swan, M. G. Epitropakis, A. E. Brownlee,
S. O. Haraldsson, and E. Bowles, “Repairing and optimizing hadoop
hashcode implementations,” in International Symposium on Search
Based Software Engineering. Springer, 2014, pp. 259–264.

[18] J. Karasek, R. Burget, and O. Morsky, “Towards an automatic design
of non-cryptographic hash function,” in 34th Int. Conf. on Telecommu-
nications and Signal Processing (TSP), 2011, pp. 19–23.

[19] C. Estébanez, J. C. Hernández-Castro, A. Ribagorda, and P. Isasi, “Find-
ing state-of-the-art non-cryptographic hashes with genetic program-
ming,” in Parallel Problem Solving from Nature-PPSN IX. Springer,
2006, pp. 818–827.

[20] C. Estebanez, J. C. Hernandez-Castro, A. Ribagorda, and P. Isasi,
“Evolving hash functions by means of genetic programming,” in Pro-
ceedings of the 8th annual conference on Genetic and evolutionary
computation, 2006, pp. 1861–1862.

[21] R. Salomon, H. Widiger, and A. Tockhorn, “Rapid evolution of time-
efficient packet classifiers,” in 2006 IEEE International Conference on
Evolutionary Computation, 2006, pp. 2793–2799.

[22] E. Damiani, A. G. B. Tettamanzi, and V. Liberali, “On-line evolution
of fpga-based circuits: a case study on hash functions,” in Proc. of the
First NASA/DoD Workshop on Evolvable Hardware, 1999, pp. 26–33.

[23] R. Dobai, J. Korenek, and L. Sekanina, “Evolutionary design of hash
function pairs for network filters,” Applied Soft Computing, vol. 56,
no. 7, pp. 173–181, 2017.

[24] Z. Cao and Z. Wang, “Flow identification for supporting per-flow queue-
ing,” in Computer Communications and Networks, 2000. Proceedings.
Ninth International Conference on. IEEE, 2000, pp. 88–93.

[25] J.-P. Aumasson and D. J. Bernstein, “Siphash: A fast short-input PRF,”
in Progress in Cryptology - INDOCRYPT 2012. Springer, 2012, pp.
489–508.

[26] M. Brameier and W. Banzhaf, Linear genetic programming. New York:
Springer, 2007.

[27] M. Oltean and C. Grosan, “A comparison of several linear genetic
programming techniques,” Complex Systems, vol. 14, no. 4, pp. 285–
314, 2003.

[28] G. Wilson and W. Banzhaf, “A comparison of cartesian genetic pro-
gramming and linear genetic programming,” in Genetic Programming.
Springer, 2008, pp. 182–193.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evo-
lutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

263

