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Abstract—The complexity of today’s systems is growing along
with the level of chip integration. This results in higher demand
for reliability techniques; it also increases the difficulty of
incorporating reliability in such systems. For this purpose, we are
working on a method to automate reliability insertion; however,
for this method, it is necessary to have feedback on the result. In
this paper, one component of the automation flow enabling the es-
timation of the resulting reliability – Fault Tolerance ESTimation
(FT-EST) framework – is presented along with an improvement
for accelerating the time necessary to reach the estimation.
For the purpose of evaluation, we are using our Redundant
Data Types approach, which enables us to intentionally insert
reliability in a particular operation. The estimation utilizes the
concept of fault injection. The results indicate, that the concept
of Redundant Data Types is functional, however, also suggest its
future improvements (e.g. for the operation of subtraction).

Keywords—Fault-Tolerant, Fault Tolerance Property Estima-
tion, FT-EST, Verification, High-Level Synthesis, Redundant Data
Type.

I. INTRODUCTION

In recent decades, electronic systems have dominated the
field of controlling many important processes. For example,
autonomous vehicles are becoming more and more popu-
lar. Furthermore, electronic systems handle the processes of
airplane control, space aviation, etc. Many medical systems
are dependent on the reliable operation of their computer
controllers, as a failure of these controllers might endanger
the state of health of the patient. Moreover, as the complexity
of systems used in a critical environment is still growing, it is
important to focus on the aspects of their reliability. Reliability
improvement can be achieved through two main approaches.
The first one, called Fault Avoidance (FA) [1], consists of
the selection of components with prescribed quality, which
enhances the overall reliability of the system. The second
approach – Fault Tolerance (FT) [2] – modifies the architecture
of the system in such way that it becomes reliable; however,
the system remains composed of non-reliable parts.

Today’s systems are designed according to new method-
ologies operating on a high level of abstraction. This helps
designers to abstract from the details and simplify the design
process. High-Level Synthesis (HLS) can serve as an example
of this type of new methodology. In this paper, we use the
term ”HLS” to mean a collection of methods transforming
a description in a higher-level programming language (e.g.

C++) into its equivalent Register Transfer Level (RTL) rep-
resentation in the form of another language (e.g. VHDL).
Field Programmable Gate Arrays (FPGAs), towards which
our method is targeted, are particularly prone to Single Event
Upsets (SEUs). SEUs are caused by charged particles (e.g.
a heavy ion or a proton) [3]. Charged particles traveling
through an FPGA have the potential to change the state of the
SRAM configuration memory, thus disrupting the functionality
of the design. A small change in the SRAM configuration
memory might result in a major change in the behavior of
the design. For this reason, reliable systems operated in a hard
environment must implement measures to eliminate the impact.
The current demands on the FPGA technology tend to lower
the number of bits of the bitstream sensitive to faults.

This paper is organized as follows: Related work is pre-
sented in Section II. An overview of our method for the
verification of the final system is proposed in Section III. Our
Fault Tolerance ESTimation (FT-EST) framework is put into
the context of FT system design automation in Section IV.
The method for inserting redundancy during the HLS, which
is the subject of our experimentation, is presented in Section V.
The proposed FT-EST framework is described in Section VI.
Finally, the experimental setup and the results are summarized
in Section VII. The generator, which is able to produce stimuli,
is presented in Section VIII as a part of our future research.
Section IX concludes the paper and mentions our future plans.

II. RELATED WORK

During the testing of the resilience of systems against
faults, waiting for faults to appear naturally is not feasible.
Therefore, some special techniques were developed in order
to artificially accelerate the fault occurrence. An accurate
simulation method for the emulation of the effects of SEUs in
the configuration memory of FPGAs is presented in [4]. This
approach combines simulation and topological analysis of the
design mapped on the FPGA. An analytical algorithm is able to
identify the electrical effects induced into the resources of the
circuit affected by an SEU. Another simulation-based injection
technique, called ”script-based fault injection technique”, is
presented by the authors of [5]. A TCL script-based automated
fault injection methodology built around the target simulator,
which can take designs in both RTL and netlist levels of
abstraction, is proposed. The use of functional verification for
FT evaluation is presented in [6]. The authors use standard
verification language for fault modeling and faults are injected
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during the verification run in the simulation environment.
These simulator-based techniques prevent the need for design-
ers to use an expensive FPGA board, but there is the problem
that the design is not evaluated on a real FPGA.

Multi-platform fault injection based on the use of a bound-
ary scan through the Joint Test Action Group (JTAG) interface
is presented in [7]. This technique uses JTAG for observing and
modifying signals in design. An FPGA-based fault injection
tool, which is presented in [8], supports several synthesizable
fault models of digital systems and is implemented using
VHDL. However, the fault injection requires the addition
of some extra gates and wires to the original design, and,
thus, modifying the original VHDL. One weak point of this
approach is the difference between the tested device and the
device which will be manufactured.

In [9], [10], techniques which are based on fault injection
into a real FPGA board without changing the original design
were presented. These techniques are based on Partial Dynamic
Reconfiguration (PDR), which allows them to read the config-
uration bitstream, inverse bits and write the affected bitstream
back to the FPGA. In [10], the authors present FLIPPER.
This fault injection platform is composed of two boards with
FPGAs – the main board and the Design Under Test (DUT)
board. The fault injection is controlled by the main board,
which is driven by the software application running on a PC.
The authors in [11] focus on the speed of the fault impact
evaluation, where the fault injection is fully controlled by a
part of the design on the FPGA. The communication with a PC
is used only for the initial configuration of the fault injection
process. The FPGA-based fault injection method is presented
also by the authors of [12], which is demonstrated in [13].
This technique is implemented in Java and is based on the
RapidSmith library [14]. The authors provide a command line
interpreter that can operate in batch or interactive mode, and a
graphical interface to specify the locations of permanent faults.

III. THE VERIFICATION OF THE FINAL SYSTEM

The evaluation of the impact of faults on an FPGA-based
system lay within the scope of our previous research [15]. We
proposed an evaluation platform based on modified functional
verification. In our evaluation platform, we move the verified
design to the FPGA, which allows us to inject faults directly
into the target device. Together with the evaluation platform, an
evaluation process composed of three phases was developed.
The first phase is classical simulation-based functional veri-
fication. The second phase focuses on monitoring the impact
of faults on the electronic part of a verified system. The third
phase monitors the impact of faults on the mechanical part.
Many electronic systems control some kind of mechanical part,
which is the reason that our evaluation platform allows us
to evaluate the impact of faults on the mechanical part. The
main part of our evaluation platform is a fault injector, which
allows us to inject artificial faults directly into the FPGA. We
use a previously-developed fault injector [16], which is based
on PDR. The faults are injected through the JTAG interface
into a specified bit of the bitstream. The robot in the maze
and its robot controller were used as an experimental electro-
mechanical system in our previous case study. The design
of the whole system allowed us to implement various types
of robot controllers (hard-coded, soft-core processor, neural

network, etc.). Various experiments with various fault-injection
strategies have been done and presented in previous papers.

During the experiments with a developed evaluation plat-
form, we identified some disadvantages which we plan to solve
in our new evaluation approach. The evaluation of impact of
the faults is very time-consuming, as many time-consuming
verification runs must be performed. The evaluation platform
is very advantageous in the case of the final evaluation of the
whole system before it is manufactured. However, a designer
needs an evaluation which is done in a short time during the
development process. At the end of the development cycle, a
final, full evaluation with all parts of the system (electronic
and mechanical) can be performed. We identified the fact
that, during the development process, fast evaluation and the
identification of weakness points in the design are necessary.
The designer must harden these weakness points against faults
and perform another evaluation. These are the reasons why we
present a new evaluation approach.

IV. PARAMETER ESTIMATION FOR THE PURPOSES OF FT
DESIGN AUTOMATION

The general idea of our research is to propose a method
and build a platform to automate the process of the insertion
of FT properties into systems that were designed without
FT principles in mind. The demand for such a platform
is based on the constantly-increasing complexity of modern
electronic systems, which makes it significantly complicated to
incorporate FT properties into these systems. Moreover, chip-
level integration is growing constantly, which increases the
probability of SEU manifestation. This is why our previous
research targeted the areas of HLS and FT, as the combination
of both these principles aims to solve both problems. Our
method allows the insertion of FT properties at the algorithm
level without the need for significant changes of the source
description code. Even given this fact, however, the designer
has to insert its knowledge into the process of the decision as
to which FT method to apply to which component.

A. The General Process of FT System Design

The common approach to FT system design consists of
these stages [17]: 1) delimitation of the desired parameters
of the system, 2) selection of fault detection mechanisms,
3) selection of recovery algorithms, 4) evaluation of the FT
properties. The approach of FT system design starts with
a clear delimitation of the desired reliability parameters,
which are called reliability indicators. First of all, the set
of observed indicators I is determined. A threshold value is
specified for each indicator. The rest are based on an iteration
process, which starts with the nondurable system s0. This
process includes the modification of the current version of
the system si+1 = FTmodif(si) and also the evaluation
of the result for each of the selected reliability indicators
∀j, j ∈ I, rj = indicatorj(si+1). The process of the design
ends with the iteration that produces the system sx, which
fulfills the threshold value for each of the selected reliability
indicators j ∈ I . The actual process is illustrated in Figure 1.

B. FT System Design Automation

The structure of the automation framework will follow the
previously mentioned process of FT system design. The mod-
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Figure 1: The process of designing an FT system from a
nondurable system.

ification of the system involves text manipulation operations
(on the high-level description), the time requirement of which
is not critical, as well as the synthesis process. These text
modifications can be further simplified by utilizing the power
of the language used for the system description (e.g. for a plain
VHDL, generics can be used; for HLS, C++ templates can be
used; etc.). So far, the process of the evaluation of the resulting
reliability indicators has been the most time-consuming part
of our research. It is also obvious, the evaluation is performed
for each design during each iteration, which implies the need
for the acceleration. In our previous work, we evaluated our
manually modified circuit descriptions (i.e. robot controller
units) by a verification environment that tracks the behavior
of the simulated mechanical part of the system as well. In this
paper, we introduce this new framework that abstracts some
details (e.g. the mechanical part simulation) and introduces
new acceleration techniques such as parallel evaluation or
acceleration of the most evident bottlenecks by moving them
from the PC to the FPGA.

V. IMPLEMENTATION AND USAGE OF REDUNDANT DATA

TYPES

In our previous work [18], we introduced an approach to
introduce an arbitrary level of redundancy into an arbitrary
operation on the algorithm level. The general use of Redundant
Data Types (RDTs) includes: 1) selection of FT methods and
their implementation in the form of RDTs, 2) source code
modification, 3) FT property evaluation.

Each method of FT is implemented in the form of one new
RDT (e.g. Triple Modular Redundancy [TMR] is implemented
as a new RDT called triple). The selection and implementation
of RDTs can be prepared in advance. Then, the method of
using RDTs involves the modification of the HLS input source
code. The transformation of a nondurable system into its FT
version is achieved through the substitution of ordinary Data
Types (DTs) for RDTs. The particular variables to which this
substitution is applied, determine its FT method. This principle
allows us also to modify the operations performed on these
variables, thus allowing us to introduce not only information
redundancy, but also a combination of temporal and spatial

redundancy. As a result, such an RDT has the potential to
introduce almost arbitrary FT method (e.g. various modifica-
tions of the TMR principle, duplex, etc.). With the usage of
RDTs, it is possible to significantly reduce the modifications
needed to make the source code incorporate FT measures and
separate the FT method from the source code. This is useful
not only for the purposes of manual modifications of the source
code, but also for the automated approach. In the case of an
automated approach, RDTs are prepared in advance and the FT
automation tool is then focused on the FT method selection,
while the source code modification involves text substitution
of a specific part of the code.

Each of the RDTs represents one method of FT. To
maintain the functional equivalence of the code, it is necessary
to keep the behavior of the DT that was previously used in
the place of an RDT, which represents the FT method on
the architectural level (i.e. the number of instances and the
interconnections, etc.). In our research, we solve this problem
by parametrization of the RDT – the name of the previously
used DT is passed as a parameter to the RDT. In the context
of a particular RDT instance, we call this previously used
DT an original DT. Different subsystems utilizing different
methods of FT can be interconnected. On the algorithm level,
this is mainly done through an operation execution. To keep
the functionality of the dynamic interconnection of subsystems
according to the FT method, three interconnection possibilities
must be allowed: a) intra-data type – RDT vs. RDT of
equivalent redundancy types (e.g. TMR vs. TMR); b) inter-
data type operations – RDT vs. RDT of different redundancy
types – (e.g. TMR vs. duplex); and c) original-data type
operations – RDT vs. its original (unhardened) DT (e.g. TMR
vs. unhardened subsystem). The interconnections are schemat-
ically illustrated in Figure 2. The rules to establish these
interconnections are part of the binary operator definitions of
the particular language (e.g. in our research, we use the C++
language for its ability to easily incorporate new DTs with the
usage of the C++ templates [19].
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Figure 2: Three types of cases that can be distinguished
when considering binary operations: (a) intra-DT operation
between two TMR subsystems; (b) inter-DT operation between
a system with TMR and one with duplex hardening; and (c)
original-DT operation between TMR and unhardened subsys-
tems.

VI. THE ACCELERATION OF FT PARAMETER ESTIMATION

When designing FT systems, the designer (or a design
automation system) needs to have feedback of the reliability
of the current variation of the circuit. The sooner the designer
obtains the information on how the current circuit performs in
the terms of reliability, the better the results have the potential
to be. However, in our research, the evaluation of the circuit has
been the most time-consuming task so far. In the following text,
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a novel approach we call FT-EST framework is described. The
FT-EST framework utilizes various acceleration techniques to
evaluate the reliability.

A. Iteration Types

For better understanding, let’s introduce the concepts of
iteration types in the FT-EST framework: 1) test cycle: During
the test cycle, all the selected input stimuli are tested against
their golden output values and compared to equivalence. The
output from one iteration of this type is whether A) the
circuit meets its functionality, and, thus, we assume it was
not corrupted by a fault, B) the functionality was corrupted,
and, thus, we definitely know the fault manifested in the form
of a failure. The output from this iteration can also be the
number of failures (i.e. the number of mismatching output
transactions) the fault has caused since the beginning of this
iteration. 2) SEU cycle: During the SEU cycle, each of the
selected bits of the bitstream is attacked by a fault injection,
which we simulate by a bit-flip, and tested by the test cycle
to obtain the effect of the fault. During this cycle, one whole
component is tested.

B. Acceleration Techniques

The framework incorporates acceleration techniques to
accelerate the evaluation of the provided circuit and make the
process of the evaluation more autonomous:

1) The framework is prepared to evaluate many instances of
the circuit simultaneously.

2) It is possible to perform the generation of the stimuli input
data on an FPGA to eliminate any bottlenecks between
the FPGA and the PC.

3) The comparison of the output data is also carried out on
the FPGA.

4) After each test cycle, only the Units Under Test (UUTs)
are refreshed to their original bitstreams, which reduces
the reconfiguration time.

Of course, the acceleration with the usage of multiple
instance evaluations simultaneously is limited by the space
provided on the FPGA, thus, it depends upon the FPGA area
consumption of the UUT. The area of the UUT also directly
specifies the number of bits of the bitstream that correspond
to this unit, and, therefore, have to be tested by an SEU
injection during the SEU cycle. As can be seen, the speed of
the evaluation is in indirect proportion to the size of the circuit
and even in a quadratic ratio. The speed of the evaluation is
also dependent on the number of input transactions the UUT
has to process correctly to be evaluated as resistant to the
particular SEU tested in this particular test cycle.

C. The Hardware Architecture of the Framework

The FT-EST framework HW part is a modular system
written in the VHDL language. A simplified diagram of the
framework is displayed in Figure 3. The FT-EST framework
was designed to require minimal user interactions during the
setup, so it will be usable in the process of automatic FT
system design. The parts of Figure 3 that are highlighted
in red are the only parts of the system that a designer (or
possibly another process) has to modify in order to alter the

experiment flow. The parts of the system highlighted in blue
are dynamically generated based on the configuration, which
includes basic information about the UUT (e.g. the number of
its input and output pins) and the number of instances of the
UUTs the framework has to prepare.

Figure 3: Simplified architecture of the FT-EST system; the
parts highlighted in blue are dynamically and fully automat-
ically generated, while the parts highlighted in red are to be
provided by the designer to specify the experiment setup.

The system is composed of various modules implemented
on the FPGA:

1) Input Generation Unit (IGU): This unit generates the
input stimuli. It is one of the main parts of the experiment
specification, as the selection of stimuli has a significant impact
on the meaning of the experiment. For the simplest UUTs (such
as some proofs of concept), the basic configurations of this
module can include an ordinary counter, which incrementally
generates all the possible values from a given range. Another
possibility is to include a random generation of stimuli. The
maximum-length Linear Feedback Shift Register (LFSR), the
FPGA implementation of which is discussed in [20], can be
used for this purpose, as this variation of the LFSR cycles
through each of the possible bit configurations except all zeros,
thus avoiding the state in which a circuit would be tested for
equivalent stimuli multiple times during one test cycle. Another
possibility is to pre-generate the most suitable set of stimuli on
the PC and utilize a BlockRAM memory to store this set on the
FPGA. However, this approach is dependent on the capacity
of the BlockRAMs available to the FT-EST framework.

2) Unit Instantiation Area (UIA): The UUTs are being
instantiated in this area. The number of instances is config-
urable, and the smallest possible configuration includes one
instance of the UUT and one instance of the golden unit. The
golden unit serves as a reference unit that is not subject to
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fault injection, and, thus, always provides the correct results.

3) Output Compare Unit (OCU): In this unit, analysis of
outputs of the results obtained from the instantiated UUTs is
performed. It compares the results obtained from the golden
unit and each of the UUTs and creates a vector of differences.
This unit makes the actual decision on whether a particular
UUT failed or passed through the current test stimulus.

4) Failure Capture Unit (FCU): This unit monitors the
vector of differences and records the number of output mis-
matches. It is composed of n counters, where n is equal to the
number of the UUT instances. The counters are addressable
and readable by the Communication InterFace (CIF) module,
which allows the PC SW to continuously read the current stats.

5) eXperiment Control Unit (XCU): Controls the exper-
iment process flow. The configuration of the Finite State
Machine (FSM) contained inside this module is dependent on
the reliability parameters measured. For example, for some
applications, it might be feasible to stop the evaluation after
each of the counters in the FCU module, which detects a
system failure, holds a non-zero value.

6) Communication InterFace (CIF): Serves as a platform-
independent interface to the internal registers holding the
configuration of the experiment. Its platform independence is
the key to the portability of the framework.

7) Communication Module (CM): It contains the inter-
face, which is controlled by the PC. In our specific experi-
mentation, we focus on the Xilinx FPGAs; thus, we used the
Xilinx specific implementation of the JTAG interface utilizing
the ChipScope Pro Integrated CONtroller (ICON) core [21]
and the Virtual Input/Output (VIO) core [22]. These IP cores
connect together and provide data signals inside of the FPGA
controllable from the PC.

D. The Software Part of the Framework

The system is also composed of a PC SW, which con-
trols the HW counterpart through high-level commands issued
through the communication registers:

1) FT-EST Software: On the PC, there is SW we devel-
oped to control the experiment on the HW counterpart and
to report the results. The structure is fully modular, so it is
possible to completely switch the target technology without
impacting the functionality. The only limitation is that the
target platform must support a way to inject faults into the
configuration bitstream, such as PDR [23]. The target platform
must also support partial bitstream creation with its relocation
and also must support a way to communicate with the platform
(such as the Ethernet, JTAG, etc.). The main experiment
controlling loop inside this module has to be adapted according
to the experiment strategy.

2) Fault Injector: We use the previously developed fault
injector [16], which was integrated into the FT-EST SW. In
our case, the fault injection is based on the PDR. Part of our
injector is also a toolkit, which allows us to select particular
parts of the bitstream, based on the location of the instantiated
component and allows us to filter out just the Look-Up Tables
(LUTs) configuration bits.

3) Tcl Engine Interface: To communicate with the HW
part of our solution, we use a ChipScope Engine Tcl Inter-
face [24], which allows us to set the address registers and
read and write data registers of the CIF through the CM on
the HW side. We also use an iMPACT tool to download the
bitstream data and renew the states of the UUTs after each
iteration of the SEU cycle.

E. Making More Instances of Identical Bitstreams

The acceleration techniques of our approach involve,
among others, multiple instantiations of the same UUT. For
this reason, we need to ensure that all of these UUTs are
synthesized equally and that each n-th bit of the partial
bitstream has an equal function between different instances
of the UUT. It is also necessary to transfer the tested design
to the final practical implementation without disturbing its
properties, because the same system synthesized multiple times
might have different properties (e.g. based on the area on
the target FPGA). We believe the solution to this problem
can be solved by using the automated bitstream relocation
technique [25], which would also allow us to transfer the
final realization of the component to the final implementation
without major changes to its architecture even on the lowest
level of abstraction, considering that the same platform is used
for the final implementation.

VII. THE EXPERIMENTS AND RESULTS

For our experiments, we decided to utilize the FT-EST
framework to evaluate our previously presented approach of
RDTs. A specific configuration of the FT-EST platform is
discussed later in this text. For this evaluation, we specified
three testing algorithms, which were afterwards translated into
the VHDL using the HLS and then instantiated in the FT-EST
framework and evaluated.

A. Benchmark Algorithm/Circuit Selection

We decided to put simple unsigned addition and signed
subtraction as the first two algorithms. Each of these operations
is performed on two 16-bit vectors, with the output being 16-
bit as well. This approach should evaluate the correctness of
the principle of a particular RDT operation, as one particular
operation implementation is addressed, and, thus, it is possible
to isolate the other influences, which is not possible in a large
design with multiple operations. For the third algorithm, a
Cyclic Redundancy Check (CRC) was selected. For this test,
we utilized its 8-bit version – CRC-8 – with an input data of
32 bits in length. The overview of the benchmark circuits we
selected is summarized in Table I.

TABLE I: An overview of the algorithms/circuits selected for
the purposes of benchmarking.

Algorithm Inputs Outputs

Addition A: 16-bit unsigned int. A + B: 16-bit unsigned int.

B: 16-bit unsigned int.

Subtraction A: 16-bit signed int. A ∗ B: 16-bit signed int.

B: 16-bit signed int.

CRC-8 A: 32-bit data CRC8(A): 8-bit checksum
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B. The Synthesis of the Circuits and the HW Platform

At first, the algorithms were implemented in a plain
C++ language. For each algorithm, two implementations were
made: 1) a simplex implementation, which did not involve any
FT techniques to serve as a reference unit, and 2) a TMR
implementation, which had each variable sanitized using the
approach of RDTs. These implementations were then put into
the HLS. In this experiment, we are using the Mentor Graphics
CatapultC University Version (UV) 8.2b [26]. During the HLS,
we turned off all the acceleration techniques, such as pipelining
or unrolling. Also, optimization was turned off, to make sure
the synthesis process does not remove the redundancy we
intentionally inserted into the algorithm code. As a result, we
obtained a VHDL implementation of the algorithms. Before
the evaluation, these VHDL implementations were instantiated
as a UUT in the UIA of the FT-EST unit. For the TMR
implementations a voter was added behind the component to
perform the final voting. For the simplex version, the UUT was
instantiated without additional components. The architectures
for both these cases are shown in Figure 4.

Figure 4: The architecture of the testing for (a) a simplex
component and also for (b) the TMR component utilizing the
concept of RDTs.

Finally, the prepared FT-EST unit was synthesized using
the Xilinx Integrated Synthesis Environment (ISE) 14.7 [27].
The resulting bitstreams were then evaluated on the ML506
board [28] utilizing the Virtex 5 technology.

C. FT-EST Configuration Parameters

During the evaluation, we set the FT-EST framework to
generate a permanent bit-flip for each bit of the utilized
contents of the LUTs. Each of the circuits consumes a 32-
bit width input data, thus, for each SEU, the FT-EST tested
the UUT through a range from 0 to 232 − 1 at a step of
43 resulting in approximately 100 millions of combinations.
This settings was chosen on an experimental basis considering
the amount of faults detected and the time spent. For this
particular experimentation, we omitted the state behavior of
the UUTs, as the UUTs act as combinational circuits. For such
simple circuits, we just omit this fact, as the state space of the
tested stimuli is so large that such a failure state would very
likely manifest itself in a form of a failure (i.e. output data
disruption).

D. FT Property Estimation Results

The experimental results were obtained through the steps
described in the previous text. We focused on the number
of output disturbances. We traced the cases in which, for a
given SEU, the UUT propagated one or more results that
were not equivalent to the results of the golden unit. Table II
shows the actual numbers of injections and also the numbers
of injections that caused an output mismatch as well as the

percentage of sensitive bits. As can be seen, the application of
the RDT approach utilizing a TMR led to a better reliability
(i.e. a lower percentage of sensitive bits) for each benchmark
algorithm. However, the impact of the RDT is dependent on
the operation. For example, in the case of the CRC-8, RDTs
managed to lower the percentage of sensitive bits from 34%
to 13%. Similarly for the addition. Although, in the case
of subtraction, this approach was less efficient lowering the
sensitive bits from 4% to 3%. We believe this dissimilarity is
caused by the fact that the CRC-8 actually uses more than only
one operation to compute, thus, resulting in more opportunities
for the RDT to show its effect. Also, the TMR versions of the
UUTs do not utilize exactly three times the bits of the simplex
versions. This is caused by the approach of RDTs, as it is a
data-path oriented approach, and, thus, it leaves the control-
path untreated.

TABLE II: The number of SEUs that caused an output mis-
match.

Algorithm FT method LUT bits Num. of inj. Num. of Sensitive

total [b] [-] disturbances [-] bits [%]

Addition none (simplex) 4288 b 4288 890 20.76 %

Addition TMR 8320 b 8320 225 2.70 %

Subtraction none (simplex) 4288 b 4288 178 4.15 %

Subtraction TMR 8320 b 8320 278 3.34 %

CRC-8 none (simplex) 4800 b 4800 1658 34.54 %

CRC-8 TMR 6592 b 6592 879 13.33 %

We were interested not only in the number of manifested
failures but we also monitored the number of mismatches each
particular SEU produced (i.e. the number of output mismatches
during one test cycle). For example, various SEUs caused the
CRC-8 simplex UUT to produce various numbers of error
outputs, however, the results show, that the application of
RDTs reduced the median of erroneous outputs per SEU to less
then one half of the median of the simplex unit. One exception
is the subtraction, for which this is not true. However, for this
case, one can see the TMR version produced always nearly
equivalent number of faults. Unfortunately, for now we are not
able to observe the actual data the UUT propagated but the fact
the number of failures is always the same might suggest one
case, the treatment of which would significantly improve the
robustness of the subtraction operation in the RDT. The results
for each UUT are summarized in a boxplot chart in Figure 5.

Figure 5: The distribution of mismatched outputs quantities
caused by one SEU during one test cycle (test cycles that did
not show any output errors are omitted; median value is marked
by a cross).
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E. The SEU Coverage

As another part of our experiments, we wanted to evaluate
whether the SEU coverage could be lowered without signifi-
cant impact on the precision of the estimation. For example,
if we evaluated only one half of the utilized LUTs content
bits selected uniformly at random from all the bits available,
would the resulting estimation still hold the certain level of
accuracy? For this evaluation, we utilized detailed logs of
the previous experimental runs to simulate this behavior. We
made 1000 runs per benchmark unit and SEU coverage. Each
run simulated one of the selected SEU bit coverages. The
results were compared to determine the spread of the accuracy.
The results in Table III show the dispersion interval of the
deviations. The deviation is calculated in the unit of percentage
points. As can be seen, lowering the SEU coverage impacts
the accuracy of the evaluation but the accuracy might still be
useful as an estimation during the FT design. The estimation
accuracy seems to be higher for larger UUTs, although this
is true only within one type of the algorithm (e.g. FT-EST
achieved better accuracy for the subtraction TMR than for the
subtraction simplex). It is also important to note, that 10% SEU
coverage results in a ten times shorter evaluation time, which
has significant impact on the FT design automation runtime
and allows to explore more configurations of the state space.

TABLE III: The deviation of the estimations for various SEU
coverage settings (less is better).

SEU Deviation Range of the Estimation [% points]

cove- Addition Addition Subtraction Subtraction CRC-8 CRC-8

rage simplex TMR simplex TMR simplex TMR

60 % 1.63 – -1.63 0.46 – -0.40 0.70 – -0.89 0.63 – -0.46 1.71 – -1.94 1.1 – -0.97

30 % 2.57 – -2.47 0.98 – -0.78 1.91 – -1.20 0.91 – -1.1 3.38 – -3.64 1.99 – -2.46

10 % 6.06 – -5.36 1.74 – -1.50 2.61 – -2.52 1.71 – -1.9 6.29 – -6.21 4.26 – -3.78

5 % 11.0 – -9.6 2.58 – -1.98 4.71 – -3.69 3.15 – -2.62 9.63 – -9.54 5.78 – -5.14

1 % 16.6 – -16.1 6.91 – -2.7 12.2 – -4.15 8.68 – -3.34 21.7 – -19.96 18.5 – -11.8

VIII. STIMULI GENERATION METHOD

As part of our future research, we would like to utilize
a method to generate the stimuli for more complex systems
as stimuli generation is a very important process in checking
the correct behavior of any system. Obtaining a stimulus or a
set of stimuli that adequately covers the entire state space can
greatly reduce the overall time for testing the system.

The universal stimuli generator is based on the theory
of grammar systems. For these purposes, we have designed
our own grammar system – probabilistic constrained grammar
(already introduced in the paper [29]), which is based on
probabilistic context-free grammar. Probabilistic context-free
grammar is a common context-free grammar that has a defined
probability for its production rules with which they are applied.
Probabilistic constrained grammar extends the probabilistic
context-free grammar about constraints which are capable of
modifying the probability values during a generation process
(the application of production rules). This makes it possible
to control the application of production rules to ensure the
suitability and validity of the stimulus for the system.

The architecture our universal stimuli generator is based
on two input structures which define grammar and constraints.

The Generator Core performs the leftmost derivations (appli-
cation of production rules) and takes into account/applies the
defined constraints. After replacing all non-terminal symbols
of a defined grammar, the output is a string which contains
only terminal symbols representing the resulting stimulus.

Our probabilistic context-free grammar is described pri-
marily by a set of production rules. Our conventions for
symbols of grammar are as follows: Non-terminal symbols
are in capital letters, while we consider any string in single
quotation marks to be terminal symbols. We always consider a
non-terminal marked with an S character to be a start symbol.
Each production rule always has a non-terminal symbol on
its left side, while its right side consists of a combination of
non-terminal and terminal symbols or ε (eps). The symbols
are separated by spaces. In parentheses after each production
rule, we can specify the percentage value of the probability
with which the rule will be applied. If the probability value
definition is missing, it is automatically calculated with respect
to the other defined probabilities of the rule. Each rule must
end with a dot. For a more efficient write, the production rules
can be merged using a comma. An example of the definition
of production rules for the probabilistic context-free grammar
that generates a simple linear equation is shown below:
S -> LEFT ’ = ’ RIGHT EX .
LEFT -> LEFT OP LEFT, VAL .
RIGHT -> RIGHT OP RIGHT, VAL .

VAL -> NUM, NUM ’x’, NUM ’(’ VAL ’)’ .
EX -> OP ’x’, eps(0%) .
OP -> ’ + ’, ’ - ’ .
NUM -> ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’ ’8’, ’9’ .

The proposed grammar would generate inequality without
the EX non-terminal (2 = 6), therefore, it is necessary to add
a rule that adds the variable x to the equation at any cost.
However, this solution is not ideal, because it decreases the
space of all possible solutions. This means, for example, that
it is not able to generate the equation 2x = 2, because it always
attaches an extra x: 2x = 2 - x. This problem can be solved by
a constraint through which we have expanded this grammar to
gain more expressive power. To add the constraint, we have
already defined the second rule EX replaces with eps in the
grammar, which will serve as the second replacement option.

The constraints are defined by the keyword cons followed
by 5 parameters. The first parameter specifies the activator, a
rule that causes a change of probability after a replacement.
The second parameter is a rule that gets a new probability.
The third parameter is the new probability value. The fourth
parameter specifies a rule that cancels the set probability
through this constraint after a replacement. Through the last
parameter, the number of replacements of the rule under the
forth parameter before the cancellation of set probability can
be specified. For the grammar above, we add this constraint:
cons(VAL -> NUM ’x’,EX -> eps,100);

This constraint has only three parameters which will cause
the EX -> eps rule to have a probability value set to 100% after
the application of the VAL -> NUM ’x’ rule. If x is generated
at any time during the generation process using the rule, the
EX non-terminal symbol will always be replaced by eps. If
this rule is not applied and the variable x is not generated,
the rule EX -> OP ’x’, which will still have the probability at
100%, is used. Using these constraints, we are able to define
and generate more complex input stimuli.
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IX. CONCLUSIONS AND FUTURE RESEARCH

This paper describes a novel approach, which we call FT-
EST framework, to accelerate the estimation of the impact
of SEUs. The FT-EST framework was used to evaluate the
previously presented approach of RDTs, which serve as an
instrument to incorporate redundancy on the algorithm level
before its processing by the HLS. The size of the UUT is
limited only by the FPGA capacity and by its testability or
how good test coverage is achievable by the chosen stimuli
generator. As for latent faults, the detection is possible through
the bitstream read-back, although, this requires a detailed
information of which bit of the bitstream covers the storage
function, which we do not have implemented at the moment.
The results we obtained indicate that the concept of RDTs is
functional, however, suggests its future improvements (e.g. for
the operation of subtraction). With the ability to evaluate UUTs
at a high speed the development of the FT automation tool will
be much easier. In addition, this paper also briefly explains the
techniques we plan to utilize to generate the stimuli inputs
for systems requiring more complex input transactions. As
a part of our future research, we would like to utilize the
stimuli generation technique and to incorporate the presented
approach to a larger system, which will utilize the outputs of
the evaluation during the FT design automation (i.e. to select
the proper FT method for a particular component or partition).
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