2018 21st Euromicro Conference on Digital System Design

Program Generation
Through a Probabilistic Constrained Grammar

Ondrej Cekan, Jakub Podivinsky, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations
Bozetechnova 2, 612 66 Brno, Czech Republic
Tel.: +420 54114-{1361, 1361, 1223}
Email: {icekan, ipodivinsky, kotasek} @fit.vutbr.cz

Abstract—The paper introduces a probabilistic constrained
grammar which is a newly formed grammar system for use
in the area of test stimuli generation. The grammar extends
the existing probabilistic context-free grammar and establishes
constraints for grammar limitations. Stimuli obtained through
the proposed principle are used in the functional verification
of a RISC processor and coverage metrics are evaluated. The
detailed information about the construction of an assembly code
for processors is described, as well as the experimantal results
with the implemented generator. Experiments show the expressive
power of the probabilistic constrained grammar and achieved
code coverage in the verification of the processor. The grammar
system demonstrates that is very suitable for an assembly code
generation and universal use in the area of test stimuli.

Keywords—Probabilistic Constrained Grammar, Probabilistic
Context-Free Grammar, Stimulus, Constraint, Functional Verifi-
cation

I. INTRODUCTION

Nowadays, electronic circuits become more and more com-
plex due to new technologies of production and many different
components are merged into one chip. It causes a problem with
testing and verification of the whole system too. The classical
approaches of testability fail, as well as formal techniques for
the verification of the large systems. The emphasis on the
quality of a proposed system is also still rising, therefore,
thorough verification of the system has to be done. Due to
this fact, the functional verification technique was designed to
accelerate the verification of the correct behaviour of complex
systems [1].

In the functional verification, the system inputs are set
while its outputs are monitored. The functional verification
is based on two systems which are tested in parallel with
the same input data (stimulus). The first system is the hard-
ware implementation of a device typically described in HDL
(Hardware Description Language) [2], known as DUT (Device
Under Test) which verifies its correctness due to the given
specification. The second system is a model of the verified
system which corresponds to the same specifications and is
typically implemented in a different programming language.
The model is known as the golden model. The same stimulus
is brought to the input of these two systems which is typically
obtained from a stimulus generator. Both systems are simu-
lated. The output of the functional verification is the result of
comparing the outputs of both systems on equality and also
the information about the coverage of the key system functions
[3]. In the context of the simulation environment, the metrics

978-1-5386-7377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DSD.2018.00049

214

and conditions (key functions) which should be monitored can
be defined. Therefore, coverage is an important metric in this
process. It defines the percentage value which represents the
level of the system verification, and how well input stimuli
cover the behaviour of the system.

In our research, we focus on the stimuli generation which
can be used in the functional verification. We benefit from
the grammar systems which allow us to formally define and
generate any language through the application of production
rules. We extend the grammar system through special con-
straints which restrict the application of the production rules
in the grammar. In this paper, we show stimuli generation of a
valid assembly code for a RISC processor [4] and we measure
the coverage value in our experiments through the functional
verification.

The text of the paper is structured as follows. Section
2 describes our previous research which this work is based
on. The state of the art in the area of stimuli generation is
described in section 3. In section 4, a probabilistic constrained
grammar with the design of input structures is described.
Section 5 describes the process of encoding instructions into
the probabilistic constrained grammar. In section 6, a method
of generating stimuli through our architecture is demonstrated.
The experiments with the generation of assembly programs
through the proposed principle and conventional approaches
are presented in section 7. Finally, in section 8, we summarize
the results in the conclusion.

II. PREVIOUS RESEARCH

In our previous research, we concentrated on:

e A universal architecture of stimuli generation, which is
based on two input structures, was developed. [5] The
first structure called Format contains the information
about the format of the stimulus. The second structure
called Constraints defines the restrictive conditions
for stimulus format and prescribes how the stimulus
should be created, because only a subset of all pos-
sible solutions is valid for the given system. Based
on these structures, valid stimuli are generated. We
utilize this architecture in this work where a stimulus
format is described through a probabilistic context-
free grammar and together with constraints, it defines
our new grammar system - probabilistic constrained
grammar. The extended architecture for the use in
grammar systems can be seen in Fig. 1.

cps™

Conference Publishing Services

e Specific input structures (no general) for describing
assembly programs for RISC and VLIW processors,
and input structures for generating random mazes for
the robot controller were designed [6].

e A stimuli generator based on the described architec-
ture which generates a defined set of stimuli on the
basis of the problem of constraint solving [7] was
implemented.

Probabilistic
Constrained Grammar

\ 4

Generator

A 4

Stimulus

Fig. 1: The versatile architecture of stimuli generation.

III. RELATED WORK

An assembler code is mainly used as a randomly generated
program for processors, because it does not require a compiler,
and therefore, offers a full control over the operations and
registers of a processor. These programs are typically de-
scribed by several input blocks that are designed for a specific
processor, and therefore, they can not be used for another
type of processor or different system. As an input block, a
description of the processor instruction set (ISA) [8] is used
and is combined with either a VHDL processor description [9]
or some micro-architecture elements [10]. Another approach
is through a specially designed library [11] that defines all
possible combinations of instructions and operations that are
valid for the given processor and the resulting program is
obtained using the genetic algorithm [12]. The generation
approach using the abstract processor model has been also
described in the literature [13].

These approaches are quite complex, the definition of
stimuli is complicated and dependent on a specific processor.
The use of such generator of stimuli is very time-consuming,
because the input block definition is quite extensive and
based on proprietary formats that combine detailed information
about the processor architecture and the semantics of each
instruction. The generators are also limited to the specific
processor and can not be used for any other.

As a universal stimuli generator, we can mention MicroGP
tool [14] which does not only generate stimuli but it also finds
the most optimal solution of hard problems. The architecture

of this tool is composed of 3 separated blocks: an evolutionary
core, a problem definition (an instruction library) and an ex-
ternal evaluator. The evolutionary core and external evaluator
are the blocks for the optimization process. The optimization
process of the MicroGP tool is not in this paper discussed
and is only utilized the block of problem definition. In the
commercial sector, there are different program generators (e.g.
GenesysPro from IBM company [15]), however, they can not
be obtained and compared with them.

In this paper, we focus on universal stimuli generation
which is also suitable for assembly code generation. Through
the probabilistic constrained grammar, we are able to define the
desired instructions of the processor in a consistent way. This
work represents a generalization of our previous research. Our
approach of stimuli generation is compared with commercial
program generator from the Codasip company [16] and with
the MicroGP tool and the coverage of the process of the
functional verification is compared.

IV. A PROBABILISTIC CONSTRAINED GRAMMAR

Grammar is an instrument for the representation of any
language [17]. It is a generative system that can represent the
finite and infinite languages. The grammar uses two disjoint
finite alphabets: 1) the set N of non-terminal symbols, and 2)
the set T of terminal symbols. The non-terminals serve as the
auxiliary variables which are substituted for the non-terminal
or terminal strings through production rules and the substitu-
tion takes place until the string contains only terminal symbols.
Then, the sentence of the defined language is generated.

We introduce the definition of a new grammar system
which combines existing context-free grammar with a con-
straint satisfaction problem (CSP) [18]. CSP deals with the
assignment of values from a particular domain with respect
to restrictive conditions. We have described the new grammar
system as a Probabilistic Constrained Grammar which is pair
G:

G = (H,C); where:

H is a probabilistic context-free grammar.
C is a ordered list of constraints for the grammar
H.

A probabilistic (stochastic) context-free grammar [19] is
a basic context-free grammar into which probabilities for the
application of production rules were delivered. It is the 5-tuple:

H= (N,T,R,S,P); where:

N is a finite set of non-terminal symbols.

T is a finite set of terminal symbols, NNT = 0.

R is a finite set of production rules with form A —
a, where A € N a a € (NUT)*.

S is the starting non-terminal.

P is a finite set of probabilities for production rules.

The constraints represent the definition of the CSP and
restrict the grammar in the application of the production rules.
The non-terminal symbols N of grammar H can represent

variables that are constrained through probabilities P in the
application of the rules. The set of production rules R, where
the non-terminal X is on the left side of a rule, represents the
domain of values for the given non-terminal. The constraint is
the 5-tuple:

C = (RSIRDIPI[RE]I[O]); where:

Rg is the identifier of the rule which calls this con-
straint.

Rp is the identifier of the rule for which the proba-
bility is changed.

P is the new probability value.

Rg (optional) is the identifier of the rule, the ap-
plication of which causes the abolition of the
constraint.

(0] (optional) is the count of derivations of Rg rule

before abolishing the constraint.

The constraints limit the application of production rules for
a given non-terminal and, therefore, restrict all possible strings
in a given formal language. The probabilistic context-free
grammar itself is a statical definition of a language, while the
addition of the constraints will cause a dynamic change of the
generated language during the application of production rules.
It is a certain analogy of programmable grammar; however, it
depends on the context that has been generated so far.

The implementation of the generator based on the new
grammar performs the application of the rules from the starting
non-terminal with leftmost derivations. After the application of
any rule, the constraints for the relevant rule are triggered and
new probabilities are set for the given rules.

V. ENCODING INSTRUCTIONS INTO THE GRAMMAR

In the context of coding instructions of the processor
into a probabilistic context-free grammar, we introduce three
conditions which have to be ensured against the standard
definition of the grammar.

Firstly, the production rules may not be strictly defined
with probability values in which they can be applied. In
the case that the probability for a rule is missing, it will
be calculated as 100% — Y definedProbabilities for the
given non-terminal. In the case where there is no definition
of probability for multiple rules, the probability for each
rule will be the same and will be calculated as (100% —
>~ definedProbabilities) /numberO f RulesWithout Proba
bility for the given non-terminal. Through this, the explicitness
for the application of the rules without a strictly defined
probability is defined. The probability in most cases will not
be defined, because we have the goal of gaining the same
probability for almost every rule because of the large number
of combinations for generating an instruction in the program.

Secondly, the probabilities will not be calculated from
the training data set (as is in the typical application of the
grammar), but they will be determined by an engineer on
the basis of their knowledge about the processor. The main
task is to limit a certain group of instructions in order to
generate them in the minimum. This group can be represented
by jump instructions. Their excessive generating will cause
low utilization of the program code. The utilization of the

216

program code is defined by instructions which are physically
executed on the processor. Through the grammar definition
we do not describe semantics of the instructions (it is not the
aim of this principle), but only syntaxes. Therefore, we are
able to generate only forward jumps (i.e. their execution is
independent of the previous instruction sequences).

Thirdly, production rules which have some constraints must
be clearly identifiable (i.e. they must have an identifier). As-
signed probabilities of certain rules of the grammar will change
during the stimulus generation. It is needed to identify the rules
in which the probability will be dynamically changed based
on the previously used rules. The rules are typically labelled
numerically, but we will use a combination of alphanumeric
characters.

A. The Process of Encoding Instructions

Processor instructions should be divided into several groups
depending on the type of the instruction. Each group is defined
by a custom non-terminal into which it is possible to get
from the starting symbol. Each group has a defined probability
which is increased/decreased on the basis of the type and the
count of instructions. The arithmetic instructions will typically
have a higher probability than jump instructions. Based on
the format of the instruction, each group is subdivided into
another non-terminal which brings together the same format
of instructions. For example, the arithmetic instructions which
work with two register operands will be in a different group
than the arithmetic instructions which work with a register and
immediate operand. In the next step, each instruction is defined
by using a template that is composed of non-terminal and
terminal symbols. Non-terminal symbols are already replaced
to specific registers and operations which create the actual
instruction of the program.

B. The example of encoding instructions

This example shows the part of the assembly probabilistic
context-free grammar for the Codix Cobalt processor [16]
developed in the Codasip company [16]. This is a 32bit
RISC processor which contains around 60 types of instruc-
tions. Consider S as the starting grammar non-terminal. The
instruction set of the processor can be split into 5 groups
- arithmetic (ARITHM), memory (MEMORY), conditional
(CONDIT), jump (JUMPS) and other (OTHERS) instructions.
The definition of these production rules, including implied
probabilities, is as follows:

S — ARITHM(50%) |[MEMORY (20%) |CONDIT (15%) |
JUMPS (5%) | OTHERS (10%)

The set probabilities are very important to achieve the
highest coverage in our experiments in the fastest possible
time. These probabilities were experimentally found as the best
setting. Other settings will cause slower coverage convergence.

In the case that at the end of these rules we define
again the starting non-terminal, we get a cyclic instruction
generation. We chose a group of arithmetic instructions that
can be divided into 6 subgroups with different formats which

specify other non-terminals. This includes a subset of instruc-
tions using two registers as operands (ARITHM_RR), regis-
ter and immediate operand (ARITHM_RI), three registers as
operands (ARITHM_THREE), instructions for sign extension
(ARITHM_EXT), assignment instruction (ARITHM_ASS),
and instructions for assigning numbers into the upper half of
the immediate operand (ARITHM_LUI). The rules defining
these groups production the non-terminal to a specific syntax
of the given instruction according to its definition. Register
and number values are still hidden behind other non-terminals.
Several examples of the definitions of these rules are as
follows:

ARITHM — ARITHM_RR|ARITHM_RT |
ARITHM_THREE |ARITHM_EXT |
ARITHM_ASS|ARITH_LUI

ARITHM_RR — DST ARITHM_NAME SRC, SRC

ARITHM_RI — DST ARITHM_NAME SRC, IMM

ARITHM_NAME — add|sub|add|or|xor|shl|shr

DST|SRC — rO0|rl|r2|xr3|rd|xr5|r6]|...|r31

At first sight, it seems that DST and SRC non-terminals
can be represented by the same non-terminal because they
specify the same register values and, therefore, we may not
have two different definitions of the rules. In fact, it requires
the differentiation between operands of the instruction because
constraints for the rules deriving the DST non-terminal will be
different than constraints for SRC non-terminal - for example,
in order to preserve the latency between instructions. The
entire selected branch of the derivation tree for the arithmetic
operation ADD is shown in Fig. 2. It is obvious that through
simple adjustments we are also able to generate a binary
representation of the assembly program.

~

MEMORY CONDIT ARITHM JUMPS OTHERS

- ~ ~

DST = ARITHM_NAME SRC, SRC DST = ARITHM_NAME SRC, IMM

r1o = add r5, rl12

Fig. 2: The derivation tree for ADD instruction which is
composed of destination register, instruction name, and two
source registers.

217

C. The example of constraints for instructions

For the clarity, we use the keyword C before the definition
of constraints.

1) Latency ensuring: Let us consider a simplified proba-
bilistic context-free grammar H with rules, where EOL marks
a new line:

S — DST = add SRC SRC EOL S
drl: DST — rl
dr2: DST — r2
dr3: DST — r3
srl: SRC — rl
sr2: SRC — r2
sr3: SRC — r3
eol: EOL — \n
Through the constraints we want to achieve that the add

instructions will have latency on two. It means that the
generator cannot use the result DST as the source operand
SRC in one following instruction; therefore, the result is not
stored in the register yet. The constraints will be defined in
the following way:

C(dril,
C(dr2,
C(dr3,

0,
0,
0,

srl,
sr2,
sr3,

eol,
eol,
eol,

It is able to read the first constraint in the following way:
after application of the drl rule, the probability for the srl/
rule is set to 0, and after two applications of the eol rule, the
probability for the sr/ rule is set back to the default value
(33.33%).

2) Absolute forward jumps: Let us consider a simplified
probabilistic context-free grammar H with rules:

S — ADD S(80%) |JUMP S(20%)
T — ADD T|ADD

ADD — r3 = add r2 rl EOL

jmp: JUMP — Jjump NAME EOL T NAME:
EOL — \n

njl: NAME &— STRL

nj2: NAME &— STR2

nj3: NAME &— STR3

Then the jump instruction jump NAME will be generated
by using the jmp rule, including its label marked by NAME:
non-terminal. Between the jump instruction and its label any
other instruction can be placed, except jumps. Both NAME
non-terminals must be derived into the same string; therefore,
the leftmost derivation as a classic variant cannot be used. For
this case, a special derivation characterized with &— mark is
used. This ensures that all NAME non-terminals are derived
through the same selected rule. The use of the following
constraints ensures the reduction of the probability to zero
after the application of a randomly selected label and thus
the uniqueness of the label in the whole program.

C(njl,

C(nj2,
C(nj3,

0)
0)
0)

njl,
njz,
nj3,

3) Number of program instructions: It is possible to set the
number of instructions in a program through the proper settings
of the production rules and constraints. Consider a probabilistic
constrained grammar G with rules and constraints:

start: S — START
end: START — END(100%)
START — ADD START

ADD — r3 = add r2 rl EOL
END — nop
eol: EOL — \n

C(start,end,0,e0l,1000);

The key settings of the number of instructions lies in
the addition of a simple production rule that ensures the
application of the one defined constraint. It can be seen that
current configuration of the production rules will write only
one nop instruction in the program by application of the end
rule. The invocation of the constraint disables the application
of the end rule for the 1,000 productions and thus 1,000
of ADD instructions will be generated before the adjusted
probability is removed. After that, the one nop instruction will
also be generated.

VI. RANDOM PROGRAM GENERATION

The detailed architecture of the stimuli generation based
on the grammar system is shown in Fig. 3. In the figure,
there are two input structures which contain the probabilistic
context-free grammar (Format) and Constraints for restricting
the grammar rules. In the definition of structures, we use the
Jinja2 templating system [20], [21] which allows us to define
the cycles, branches and other special macros that simplify
the entry of production rules of the grammar. These structures
are preprocessed in the first step. Preprocess performs the
expansion of the Jinja2 macros and the result of this process
are the Extended structures of the probabilistic context-free
grammar and constraints which already contain the complete
definitions of the production rules and constraints necessary to
ensure the completeness and validity of the generated program.
The extended structures form the final Probabilistic constrained
grammar which is processed by the Generator core. It performs
the application of the rules from the starting non-terminal with
leftmost derivations. After the derivation of any rule, specific
constraints are triggered and new probabilities are set for
selected rules. The demonstration of the NAME non-terminal
definition for the set of names for label of jump instructions
through the library Jinja2 follows:

{$ for i in range(1l,100)
NAME &— STR{{i}}
{% endfor %}

%}

VII. EXPERIMENTAL RESULTS

In our experiments, we focused on two criteria. The first
criterion has its origin in the language theory and its aim is
to determine the expressive power of the new grammar. The
second criterion is the practical use of generated test stimuli
in the field of the functional verification.

218

Generator !
Preprocess Preprocess
A 4
Ext. Format Ext. Constraints

Probabilistic Constrained Grammar

Generator Core

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| v v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Output

|

| |
1 |
! Stimulus |
| |
| |

Fig. 3: The detailed architecture of the stimuli generation based
on the grammar system.

A. Expressive power of the new grammar

The probabilistic constrained grammar alters the behaviour
of the original context-free grammar, and offers completely
new fields in the application area. It must also be mentioned
that the expressive power of the newly formed grammar is
displaced towards context languages which is a necessary
condition to generate a valid test stimulus. In the case of
the program generation, the context is necessary in order
to preserve the correct order of some assembly instructions,
uniqueness of jump instructions labels, etc. The proof that the
expressive power is changed from the context-free language
to the context language, or at least to the partially context
language, shows the following language:

L(G) { a™b™c" n>11

Strings which belong to the given language L(G) have
a non-zero length and are always sequences of a characters
followed by equally long sequences of b characters and ¢
characters. This language is context sensitive and thus cannot
be generated through context-free grammar due to its inability
to ensure the application of the same number of production
rules. The context-free grammar which can be defined for the
similar language can look like:

ABC

aAla
bB|b
cClc

QW n
44l

TABLE I: The total code coverage in the functional verification for the generators for 100 programs.

\ Number of instructions H 100 \ 200 \ 500 \ 1000 \ 2000 \ 5000 \ 10000 \ 15000 \ 20000 \ 25000 \
USG 61.01% | 72.33% | 76.29% | 79.35% | 82.13% | 84.50% | 85.81% | 86.45% | 86.91% | 87.26%
commercial 60.90% | 72.47% | 76.35% | 79.48% | 81.88% | 84.04% | 85.16% | 85.63% | 86.23% | 86.56%
microGP 60.92% | 71.88% | 75.54% | 78.59% | 81.02% | 82.92% | 83.87% | 84.37% | 84.69% | 84.91%
RISCG 60.94% | 72.40% | 76.13% | 79.34% | 81.76% | 84.21% | 85.44% | 85.98% | 86.02% | 86.31%
—-USG -#-microGP —&—commercial RISCG
90
) o =
85 - —» |
S
w 80
Q
<
g 75
(@]
O
[70
a
S
65
60 ©
0 5000 10000 15000 20000 25000

NUMBER OF INSTRUCTIONS

Fig. 4: The comparison of achieved code coverages in the functional verification for 100 programs.

with language:

L(G) = { a™b"c® : m, o> 11}

The context-free grammar can be modified for generating
the language a™b"c™ where m, n > 1, but it is still not
the previously defined language. For the previously defined
language, the context sensitivity through the probabilistic con-
strained grammar is needed. In the following example, we
show the minor modification of the L(G) grammar which is

written through the probabilistic context-free grammar:

s: S — ABC
a: A — aA
ae: A — €(100%)
b: B — bB
be: B — €(100%)
c: C — cC
ce: C — €(100%)

The number of applications of A, B, and C non-terminals
is achieved by adding three constraints which ensure this
functionality and establish context sensitivity. The rn number
of applications of production rules can be randomly generated
through a templating library [20] and the number value is
forwarded to the last parameter of each constraint.

219

{% set rn random (1000)+1 %}
// rn can be set to any value
C(s,ae,0,a,{{rn}});
C(s,be,0,b, {{rn}});
C(s,ce,0,c,{{rn}});

B. Coverage in the functional verification

Grammar systems provide a new dimension in input test
stimuli generation. For this reason, we decided to perform an
experiment by achieving the highest coverage in the functional
verification on the Codix Cobalt processor. In our experiments,
we focus on the code coverage. It measures the system
source code through typical metrics like statements, branches,
expressions, conditions, and states. The main task of the
experiment is to verify the influence of stimuli generated
using the grammar system (marked as USG) on their quality
and achieved coverage in comparison with the microGP tool,
the commercial generator from Codasip and our previously
developed program generator for RISC processors (marked
as RISCG [6]). It should be mentioned that no optimization
process has been activated for the tools (e.g. genetic algorithm)
to compare the results with each other.

In the experiment, we generated 100 programs with a dif-
ferent number of assembly instructions through the mentioned
generators. All programs have been verified by the functional

verification on their validity and the total code coverage has
been measured. The result of the experiment can be seen in
Table I and Fig. 4.

From the results, it can be seen that for a small number of
instructions in the program, the coverage of all generators is
almost identical. This is accomplished by the fact that a small
number of different instructions trigger a series of transactions
that are executed, and therefore, the code coverage is suddenly
raised to 70-80%. For the higher number of instructions in
the program, the instruction sequence is very important which
invokes transactions occurring only in a certain state of the
processor and sequence of instructions. For this reason, the
coverage is rising relatively slowly and for 25,000 instructions
in 100 programs, the maximum possible code coverage is
approximately achieved.

The maximal total code coverage was 87.26% for our
USG generator for 100 programs with 25,000 instructions
(25,000 instructions is the maximum for the simulation tools).
Next in row was the commercial generator, our previously
developed generator RISCG and MicroGP tool. It can be stated
that the test stimuli generation using the grammar system is
an appropriate and effective way of stimuli generation. The
generation time spent to create the stimulus was 1.1 second
in case of USG, 0.7 second in case of RISCG, 1.5 second in
case of commercial tool and 43 seconds in case of MicroGP
tool for 25,000 instructions.

VIII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, our research in the field of random test stimuli
generation was presented. For the definition of the stimuli, we
used two input structures which defined the format of the stim-
uli and constraints. We introduced the new grammar system -
a probabilistic constrained grammar which was practically im-
plemented and verified in assembly code generation. The valid
stimulus was obtained through constraint definitions which
restrict the defined grammar in the application of production
rules. The expressive power of the probabilistic constrained
grammar was proven to be higher than the expressive power
of context-free languages. The experiment showed that the test
stimuli generation using the grammar system is competitive
and more profitable than other way.

The presented approach can be used for stimuli generation
of various systems. The approach was also applied on the
robot controller implemented into FPGA. The stimuli were
represented by mazes in which the robot controller searched
the path from the start to goal position (more information can
be found in [22]). In our future research, we are working on
an on-line solution of the generator and we will direct our
efforts towards creating a methodology for using the proposed
approach in the area of stimuli generation.

ACKNOWLEDGEMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602 and BUT project FIT-S-17-3994.

220

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]
(20]
(21]

[22]

REFERENCES

A. Meyer, Principles of Functional Verification. Amsterdam: Elsevier

Science, 2003.

P. Ashenden. (1990 [cit. 2015-01-02]) The vhdl cookbook [online]. Ade-
laide. [Online]. Available: http://www.ics.uci.edu/ alexv/154/VHDL-
Cookbook.pdf

S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” Design and Test of Computers, IEEE, vol. 18,
no. 4, pp. 36-45, May 2001.

“Risc principles,” in Guide to RISC Processors.
2005, pp. 39-44.

O. Cekan, M. Simkova, and Z. Kotasek, “Universal pseudo-random
generation of assembler codes for processors,” in Proceedings of The 4th
Workshop on Manufacturable and Dependable Multicore Architectures
at Nanoscale. COST, European Cooperation in Science and
Technology, 2015, pp. 70-73. [Online]. Available: http://www.median-
project.eu/wp-content/uploads/18_IV-2_median2015.pdf

J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The
evaluation platform for testing fault-tolerance methodologies in
electro-mechanical applications,” Microprocessors and Microsystems,
vol. 39, no. 8, pp. 1215 - 1230, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933115000630

R. H. C. Yap, “Constraint processing by rina dechter, morgan kaufmann
publishers, 2003, hard cover: Isbn 1-55860-890-7, xx + 481 pages,”
Theory Pract. Log. Program., vol. 4, no. 5-6, pp. 755-757, Sep. 2004.
[Online]. Available: http://dx.doi.org/10.1017/S1471068404222189

D. A. Patterson, “Reduced instruction set computers,” Commun. ACM,
vol. 28, no. 1, pp. 8-21, January 1985.

New York: Springer,

J. Hudec, “An efficient technique for processor automatic functional
test generation based on evolutionary strategies,” in Proceedings of the
ITI 2011, 33rd International Conference on Information Technology
Interfaces, May 2011, pp. 527-532.

V. Belkin and S. Sharshunov, “Isa based functional test generation with
application to self-test of risc processors,” in Design and Diagnostics
of Electronic Circuits and systems, 2006 IEEE, April 2006, pp. 73-74.

F. Corno, E. Sanchez, M. Reorda, and G. Squillero, “Automatic test
program generation: a case study,” IEEE Design and Test of Computers,
vol. 21, no. 2, pp. 102-109, March 2004.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms,
Ist ed. Springer Publishing Company, Incorporated, 2007.

F. Corno, M. Reorda, G. Squillero, and M. Violante, “A genetic
algorithm-based system for generating test programs for microprocessor
ip cores,” in Proceedings of the 12th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2000). IEEE Computer
Society, November 2000, pp. 195-198.

G. Squillero, “Microgp—an evolutionary assembly program generator,”
Genetic Programming and Evolvable Machines, vol. 6, no. 3, pp.
247-263, 2005. [Online]. Available: http://dx.doi.org/10.1007/s10710-
005-2985-x

A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-pro: innovations in test program generation for
functional processor verification,” IEEE Design Test of Computers,
vol. 21, no. 2, pp. 84-93, Mar 2004.

Codasip. (2016) Codasip — enabling the internet of extraordinary
things. [Online]. Available: http://www.codasip.com

A. Meduna, Formal Languages and Computation: Models and Their
Applications, 1st ed. Boston, MA, USA: Auerbach Publications, 2014.
V. Kumar, “Algorithms for constraint satisfaction problems: A survey,”
Al MAGAZINE, vol. 13, no. 1, pp. 32-44, 1992.

R. Giegerich, Introduction to Stochastic Context Free Grammars,
J. Gorodkin and L. W. Ruzzo, Eds. Totowa, NJ: Humana Press, 2014.
A. Ronacher. (2014) Jinja2 (the python template engine). [Online].
Available: http://jinja.pocoo.org/
M. Lutz, Learning Python, 2nd ed.
& Associates, Inc., 2003.

J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova, M. Krcma, and
Z. Kotasek, “Functional verification based platform for evaluating fault

tolerance properties,” Microprocessors and Microsystems, vol. 52, pp.
145 - 159, 2017.

Sebastopol, CA, USA: O’Reilly

