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Abstract—In the context of approximate computing, many
different design approaches have been introduced in recent
years exploiting the application error resilience in order to
reduce power consumption. Among others, the concept of Quality
Configurable Circuits (QCC) has been proposed. QCCs allow us
to dynamically modulate the degree to which their functionality
is approximated with respect to the desired quality of service.
Existing approaches typically construct complex approximate
circuits using smaller approximate and exact components. This
approach is, however, associated with a considerable area and
power overhead. To mitigate this issue, we propose a holistic
approach enabling to formulate the QCC design problem as a
search problem that can be solved by means of evolutionary
design techniques. In order to prove this concept, various
quality configurable 8-bit multipliers were designed. Compared
to the state-of-the-art solutions, the proposed quality configurable
multipliers exhibit better tradeoffs in terms of electrical as well
as quality parameters.

I. INTRODUCTION

Improving energy efficiency of modern computing systems
is the main challenge in today’s digital design. Computing
capabilities of mobile devices such as smartphones have grown
exponentially in the past decades, however, battery technology
did not follow the same evolution. Moreover, autonomy is
becoming a critical issue in computer-based systems.

Many fundamentally new and different approaches have
recently been introduced under the term of approximate com-
puting to address the relentless rise in demand for energy-
efficient systems. A good survey of existing techniques can be
found, for example, in [1], [2]. The concept of approximate
computing exploits the idea of accepting a certain level of in-
accuracy in computations to reduce complexity and other non-
functional properties (such as delay and power consumption)
of digital systems. The key motivation behind the approximate
computing concept is the inherent error resilience of many
real-world applications. For example, Chippa et al. reported
that more than 83% of runtime is spent in computations
that can be approximated [3]. An open question is how to
systematically approximate circuits and software in order to
obtain desired quality of service (i.e. an acceptable error) with
a minimum power budget.

Quality Configurable Circuits have been introduced as a
natural response to the increasing demand for approximate
circuits that are able to adapt their behavior and energy require-
ments to a variable workload. Quality Configurable Circuits

are approximate circuits that can dynamically modulate the
degree to which their functionality is approximated based on
the desired output accuracy. For example, power consumption
can be dynamically traded for accuracy depending on the
state of an application. Existing approaches typically construct
large approximate circuits using smaller components such as
configurable 2-bit approximate multipliers [4] or maskable
adders [5]. Composing a larger circuit from smaller subcir-
cuits, however, typically introduces overhead. For example,
when 8-bit approximate multipliers are composed of 2-bit
multipliers, the overhead is substantial (see Section III). This
paper addresses the problem of automatic design of quality
configurable circuits. As a case study, 8-bit multipliers are
chosen because they represent a key component of many sys-
tems. In particular, quality configurable multipliers supporting
two modes of operation are considered.

II. APPROXIMATE COMPUTING

In order to reduce the energy consumption, one could use
the so-called overscaling technique for approximate comput-
ing. Overscaling means, that we let the supply voltage inten-
tionally drop below a critical point that guarantees a reliable
operation. As a consequence of that, the timing errors are
induced on critical paths. Unfortunately, these errors often lead
to large computational error [2]. In addition to that, the energy
efficiency gain for this approach is relatively small. Hence the
designers are gradually turning away from overscaling and the
majority of the recently proposed methods resorts to functional
approximation. The idea of functional approximation is to
implement a slightly different function to the original one
provided that the accuracy is kept at desired level and the
power consumption or other electrical parameters are reduced
adequately. Functional approximation can be introduced at
various levels of circuit description.

One of the possibilities how to functionally approximate a
given circuit is to make a change at the level of behavioral
description, e.g., in the truth table. This idea was employed,
e.g., by Kulkarni et al. who manually designed a small 2-
bit approximate multiplier consisting of five gates [6], which
was then employed in larger approximate multipliers. Unfortu-
nately, the manual design represents a time consuming process
which is feasible for small circuits only. The current trend is
to develop fully automated functional approximation methods
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that can be integrated into computer aided design tools for
digital circuits. Majority of the currently available methods
are error-oriented in the sense that all logic optimizations
leading to an approximate solution are constrained by a
predefined error criterion [7]–[9]. The error can be expressed
by various metrics such as the error magnitude, the average
error magnitude or the error probability. The error-oriented
approach, however, represents only one possibility of obtaining
an approximate circuits design. Sekanina et al. introduced
an alternative area-oriented approach [10], based on genetic
programming, exploiting the fact that the evolutionary design
is capable of constructing partially working solutions even if
sufficient resources (required for creating a fully functional
solution) are not available. The user can control the used area
(and so power consumption which is highly correlated with
occupied resources) more comfortably than by means of the
error-oriented methods.

A. Automated design of approximate circuits

The approximate design methods typically employ various
heuristics to identify circuit parts suitable for approximation.
Probabilistic pruning is one of the first approaches that ad-
dresses the problem of approximate synthesis [11]. The goal
is to remove circuit nodes or blocks and their associated wires
in order to trade the exactness of computation for power,
area, and delay improvement. The decision to prune a node
is generally based on the significance, which is a structural
parameter, and the activity (toggle count).

The Systematic methodology for Automatic Logic Syn-
thesis of Approximate circuits (SALSA) represents another
of the early approaches [7]. In order to be able to use the
existing synthesis tools, the authors mapped the problem of
approximate synthesis into an equivalent problem of traditional
logic synthesis – don’t care based optimization. A differen-
t systematic approach, denoted as Substitute-And-SIMplIfy
(SASIMI), tries to identify signal pairs in the circuit that
exhibit the same value with a high probability, and substitutes
one for the other [9]. The substitutions introduce functional
approximations and hence some redundant nodes appears.
These nodes can be eliminated from the circuit which results
in area and power savings.

In order to deliver better trade-offs, various more advanced
approaches have been applied to obtain a more powerful
method for approximate re-synthesis, in which the original
logic function is replaced by a cheaper implementation [12]–
[14]. The problem of approximate re-synthesis is typically
mapped to a search-based design problem. An automated
circuit approximation procedure is seen as a multi-objective
search process in which a circuit satisfying user-defined con-
straints and showing desired trade-off between the quality and
other electrical parameters is sought in the space of all possible
implementations. A heuristic procedure (e.g. an evolutionary
algorithm) that gradually modifies the original implementation
is typically utilized. Among others, the following search-based
approaches have been proposed. Nepal et al. introduced a
technique for automated behavioral synthesis of approximate

computing circuits (ABACUS) [15]. ABACUS uses a simple
greedy search algorithm to modify abstract synthesis tree.
In order to approximate gate-level digital circuits, Sekanina
and Vasicek introduced an evolutionary approach based on
Cartesian Genetic Programming (CGP) [12], [13]. The rea-
sons for using the advanced evolutionary approach was that
the population-based approach suits well in finding multiple
solutions and its niche-preservation methods can be exploited
to discover diverse solutions. As shown in [16], this approach
is able to produce high-quality approximate circuits that are
unreachable by traditional approximate techniques.

B. Approximate arithmetic circuits

The key circuit components such as small adders, multi-
pliers, FIR and IIR filters, and DCT and FFT blocks have
already been approximated [1], [7], [9], [15], [16]. We restrict
our attention to the multipliers because they represent a key
component of many signal processing systems.

The following techniques have been proposed in approxi-
mate implementations of multipliers [17]: (1) Approximation
in generating partial products utilizing a simpler structure
to generate partial products [6]. (2) Approximation in the
partial product tree by ignoring some partial products or
dividing partial products in to several modules and applying
approximation in the less significant modules. (3) Using ap-
proximate counters or compressors in the partial product tree.
(4) Composing complex approximate multipliers by means of
simple approximate multipliers as shown in [6].

In addition to that, the general design methods such as
SALSA or SASIMI were also employed to approximate the
multipliers. Recently, an evolutionary approach was applied in
the task of approximate circuit design with respect to multiple
objectives [12], [16]. The circuit approximation problem was
formulated as a multi-objective search problem and solved
using the state-of-the art CGP method [18] combined with
the NSGA-II algorithm. By means of this method a rich
library consisting of the 471 high-quality Pareto optimal 8-
bit approximate multipliers was generatedin [16].

Various arithmetic error metrics were employed to assess the
quality of arithmetic circuits [19]. Let O(i)

orig be an output value
of the fully functional circuit for an input vector i and O(i)

approx

be an output value of an approximate circuit. Then, the error
magnitude defined as the maximum difference between the
output of approximate and precise multiplier is equal to

WCE = max
∀i
|O(i)

orig −O
(i)
approx|. (1)

In addition to that, the mean error magnitude and the mean
relative error magnitude are typically considered
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The WCE-oriented approximation is important not only in
time-critical and dependable systems, but also in image and
signal processing, where low MAE, but excessive WCE can
produce unacceptable results.

The approximation error is typically obtained using the
exhaustive simulation for small multipliers [16]. For more
complex instances such as 16-bit and 32-bit multipliers, tech-
niques of formal verification have to be applied [20].

III. QUALITY-CONFIGURABLE CIRCUITS

Another class of approximate circuits are quality config-
urable circuits (QCCs) allowing the user to select one of the
circuit configurations that differ in the quality of processing
and power consumption. The quality configurable circuits nat-
urally support dynamic approximation as a response to variable
requirements on the quality of result [4]. For example, these
circuits can be utilized in the signal processing applications
that can thus benefit from an in situ dynamic adaptation of
the quality of processing in response to variable requirements
on the quality of result and available resources.

QCCs are typically constructed from elementary building
blocks that are created in such a way that their error can be
modified using several configuration bits. As the configuration
bits can disconnect some preselected parts of the circuit, the
power consumption can be dynamically changed depending
on the actual application needs.

Several quality configurable multipliers (QCMs) have been
introduced by Shafique et al. [4], [21]. A configurable 2-bit
multiplier operating in two modes has been proposed. The
configuration is driven by a single configuration signal. In the
first mode, the multiplier works exactly as the approximate
multiplier proposed by Kulkarni et al [6]. It exhibits a single
erroneous output if both the input operands are equal to 3 (see
Fig. 1). In this case, the value 7 is returned instead of 9. In the
second mode, a correction circuit is activated (the correction
circuit is shown in Fig. 2). This circuit modifies the output
value of the Kulkarni’s multiplier if it equals to 7. Then, the
value is increased by two. This multiplier is used as a building
block for construction of larger 8-bit and 16-bit multipliers.
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Fig. 1. 2-bit approximate multiplier proposed by Kulkarni in [6]

Yang et al. utilized a different approach [5]. In order to
obtain a configurable 8-bit multiplier, a carry-maskable one-
bit adder was employed to generate the final product. In
addition to that, the partial product tree of the multiplier was
approximated by a tree compressor. This architecture enables
to flexibly select the length of the carry propagation to satisfy

the accuracy requirements. The shorter length implies lower
switching activity which results in the reduction of power
consumption and delay.

As the technology nodes shrink, the static power constitutes
the predominant part of the total energy consumption. The
straightforward way to reduce the static power is to turn off
the power supply of the blocks that are currently inactive. In
general, this technique, called power gating, can be applied to
reduce dynamic as well as static power as it can be used for the
so called logic isolation. A logic block (island) is assigned its
own supply voltage from a virtual VDDV rail. When the block
is active, the VDDV is connected to the power supply voltage
VDD. When the block is inactive, the switches are turned off
allowing VDDV to float and gradually sink toward 0. There are
various ways in which a portion of logic can be isolated [22].
The simplest approach would be to use latches or AND/OR
gates at the inputs of the island to prevent switching activity
within it. Similarly, multiplexers can be inserted at the island
outputs.

The power gating principle is employed in the work of
Jain et al. [22]. The idea is to identify portions of logic
in the circuit that consume significant power, but contribute
only minimally to the output accuracy, and to isolate them
in a quality-aware manner, i.e., to suppress the selected logic
portions from being evaluated provided the output satisfies
the desired quality requirement. One or more approximate
modes of the circuit operation are then enabled by isolating
the identified logic (using multiplexers, latches or power gating
cells). Recently, configurable multipliers with two approxima-
tion modes based on four approximate 4:2 compressors were
proposed by Akbari et al. [23]. In the approximate mode,
only the approximate part is active whereas the supplementary
part along with some components of the approximate part
is invoked in the exact operating mode. The power gating
technique was used to turn OFF the unused components of the
approximate part. In the exact operating mode, tristate buffers
are utilized to disconnect the outputs of the approximate part
from the primary outputs. Each of the proposed compressors
has its own level of accuracy in the approximate mode as well
as different delays and power dissipations in the approximate
and exact modes.
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Let us investigate a common approach to designing QCM.
Fig. 2 depicts the structure of a configurable 2-bit multiplier
implemented using the power gating technique. The multiplier
consists of two blocks. While the first block is always active,
power gating is employed to control the second block. In
the approximate mode, the approximate 2-bit multiplier is
enabled only. In the second mode, the correction circuit, as
proposed by Shafique et al., is activated. In this mode, the
QCM operates as an exact 2-bit multiplier. Multiplexers are
employed to isolate undefined accurate output values in the
approximate quality mode. The parameters of the 2-bit QCM
synthesized using Synopsys DC with 45nm FreePDK are given
in Table I. Compared to the common multiplier implemented
using Verilog star operator, the 2-bit QCM exhibits some
overhead when we consider area, power, and delay. In the
approximate mode, however, the electrical parameters (i.e.
power and delay) are significantly improved. The 2-bit QCM
in the approximate mode consumes 36% less power compared
to the accurate multiplier.

TABLE I
PARAMETERS OF 2-BIT AND 8-BIT EXACT AND CONFIGURABLE

APPROXIMATE MULTIPLIERS ACCORDING TO [4], [21].

Multiplier operating Power Delay Area MAE WCE
mode µW ns µm2

2-bit exact - 3.8 0.15 19 0% 0%
2-bit QCM approx. 2.4 0.09 12∗ 13% 13%

exact 4.7 0.21 23 0% 0%
8-bit exact - 428.3 1.25 727 0% 0%
8-bit QCM approx. 483.0 1.51 1197∗ 1.4% 22%

exact 516.4 1.60 1337 0% 0%
∗ The value is the area of the approximate part only.

The small 2-bit QCMs can be used as a building block
for construction of larger configurable multipliers. We can
employ a divide-and-conquer strategy for synthesizing a 2n-
bit multiplier from four n-bit multipliers. The operands are
divided into four n-bit chunks (each operand has a lower
and higher part) that are independently processed using four
multipliers whose outputs are reduced using two adders with
one n-bit and one 2n-bit operand each. This approach can
be applied recursively. It means that sixteen 2-bit QCMs are
required to implement a single 8-bit QCM. Depending on
the application, a coarse grained as well as a fine grained
configuration can be supported. In the first case, all 2-bit
QCMs share the same configuration bit. In the second case,
every 2-bit QCM has a dedicated configuration bit. The
parameters of the exact as well as configurable 8-bit multiplier
supporting two approximate modes are given in Table I.
Although the Kulkarni’s 2-bit approximate multiplier is very
effective, the recursive construction introduces a substantial
overhead because it uses a large amount of accurate adders for
summing the partial products. In the approximate mode, the
QCM consumes even about 13% more power than the accurate
multiplier. Switching from the exact mode to the approximate
mode reduces the power by 6% only.

IV. EVOLUTIONARY DESIGN OF QUALITY CONFIGURABLE
CIRCUITS

In order to approximate digital circuits, various approaches
have been proposed. In this work, we employ CGP [18]. CGP
especially differs from other GP branches in (i) the solution
representation and (ii) the search mechanism. CGP can easily
handle constraints given on candidate circuits, the method is
naturally multi-objective and high-quality approximate circuits
have already been obtained with CGP [13], [16].

This section introduces the idea of the proposed design
method, the utilized evolutionary algorithm and the con-
struction of the fitness function for the design of quality
configurable approximate circuits.

A. Representation of digital circuits

From a hardware designer point of view, every candidate
circuit is represented as a netlist containing a constant number
of components. These components are (virtually) organized
in a two-dimensional grid of nc columns and nr rows. Type
of components depends on the level of abstraction used in
modeling, where logic gates and RT level components are
naturally supported. Every component has up to na inputs and
nb outputs. We restrict ourselves to single output components
(i.e. nb = 1).

A unique address is assigned to all primary inputs and
to the output of all components to define an addressing
system enabling circuit topologies to be specified. The primary
inputs are labeled 0 . . . ni − 1, where ni denotes the number
of primary inputs. The outputs of components are labeled
ni, ni + 1, . . . , ni + nc · nr − 1. No feedback connections are
allowed in the basic version of CGP. Each component is repre-
sented using na + 1 integers in the netlist, where na integers
specify destination addresses for its inputs and one integer
is a pointer to the table Γ defining all supported functions.
A component placed in the j-th column can obtain its input
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Fig. 3. Representation of the quality configurable circuits supporting two
approximate modes. The chromosome consists of three parts. In the first part,
array of CGP nodes is encoded. This part is followed by no integers defining
the outputs of the QCC in the first mode. The last part contains no integers
specifying the outputs of QCC in the second mode.



values either from primary inputs or from the components
placed in the previous columns.

The whole circuit is then represented using a string consist-
ing of nc · nr · (na + 1) + no integers, where no denotes the
number of primary outputs. The last no integers specify the in-
dexes where the primary outputs are connected to. In addition
to that, logic constants (‘0’ and ‘1’) are allowed to be directly
connected to the primary outputs in approximate circuit design.
Our goal is to design a quality configurable circuit supporting
two approximate modes. One of the possibilities how to solve
this design problem is to extend the common CGP encoding
and append additional no integers specifying the outputs in
the second mode of operation (see Fig. 3).

For example, Fig. 4a shows a gate level 4 input / 4 output
QCC consisting of 9 gates and having 3 logic levels on the
longest input-output path. This circuit is represented in the
CGP grid with nc = 3 and nr = 3 and the outputs of
its components are labeled 4 . . . 12. There is a single unused
component (gate having index 10).

The main feature of the CGP encoding is that while the
number of nodes is constant, the size of the represented circuits
is variable (from 0 to nc · nr components can be involved) as
some components can remain disconnected. This redundancy
has been identified as a crucial property of the efficient search
in the space of digital circuits [18].

B. Fitness Function

The considered QCC shown in Fig. 3 consists of two sub-
circuits and works as follows. In the approximate mode, circuit
C1 is active. The remaining logic is switched off. In the
exact mode, power gated logic is activated. It means that
both circuits C1 and C2 are active. The QCC is optimized
for the scenario in which the approximate mode is active for a
predominant part of the whole runtime. This is the reason, why
C1 is always powered. For applications where the switching
time is not critical, it would be more efficient to apply power
gating also on a part of C1 that is not shared between modes,
i.e. to C1 \ C2, where C1 denotes the set of gates of circuit
C1, C2 denotes the set of gates of circuit C2 and \ is the set
difference.

The goal of the evolution is to find a circuit showing
the highest possible power reduction when it operates in the

approximate mode. In addition to that, we are looking for a
QCM whose electrical parameters are almost identical with the
accurate multiplier. In order to simplify the problem we exploit
the fact that power consumption is typically highly correlated
with occupied resources [10]. It means that we can base the
search on the optimization of the area on the chip. The problem
is formulated as follows. Let ε be the maximum acceptable
worst-case error. Then, the fitness value of a candidate QCC
is calculated as

fitness = −


2|C1|+ |C2 \ C1| if WCE(C1) < ε ∧

WCE(C2) = 0

∞, otherwise,

where |C1| denotes the area of the subcircuit C1 and |C2 \
C1| denotes the area of the power gated logic. The goal of
the evolutionary algorithm is to maximize the fitness and thus
minimize the area.

C. Proposed Seeding Strategies

CGP employs a simple search method. Firstly, the initial
population P is created. In the approximate circuit design, the
initial population is typically seeded by an original circuit
ought to be approximated. The next step consists in the
evaluation of candidate circuits using the fitness function. Each
member of P then receives the so-called fitness score and
the highest-scored individual becomes a new parent of the
next population. From this parent, λ candidate solutions are
generated using mutation operator. The termination criterion
is given by the number of iterations. The mutation operator
modifies up to h randomly chosen integers of the chromosome.
Their new values are generated randomly, but it is guaranteed
that the new values are valid. One mutation can affect either
the gate function, gate input connection, or primary output
connection.

Two seeding strategies are considered in this paper. Firstly,
the initial population is seeded by a single candidate circuit
that consists of a single instance of the original circuit. If the
goal is to design a quality configurable n-bit multiplier, the
CGP encodes a netlist with the exact multiplier. The exact
multiplier has 2n primary outputs. The CGP uses no = 2 · 2n
primary outputs. The first no outputs are connected to the

Fig. 4. Encoding of the initial QCMs created using a 2-bit multiplier and their netlists. Oi are the outputs of subcircuit C1, O
′
i are the outputs of C2.



outputs of the multiplier and the same applies for the second
no outputs. Both output parts share the same logic and
the CGP is forced to separate this logic. This approach is
denoted as seeding strategy I (SS-I) and it is illustrated in
Fig. 4a. Secondly, the initial population is seeded by a single
candidate circuit that consists of two identical instances of the
original circuit. The first no outputs are connected to the first
instance and the second no outputs are connected to the second
instance. The CGP is forced to find the largest common part.
This approach is denoted as seeding strategy II (SS-II) and it
is illustrated in Fig. 4b.

V. EXPERIMENTAL SETUP

The CGP parameters were initialized as follows. We em-
ployed λ = 6 individuals in the population, the number of
mutations was h = 5, and the number of rows nr = 1. When
the first seeding strategy is employed, the number of columns
equals to the number of components of the exact conventional
multiplier used to seed the initial population. The number
of columns was two-times bigger when the second seeding
strategy is employed. Each CGP node has two inputs and one
output (i.e. na = 2, nb = 1) and could implement one of the
following eight functions: Γ = {BUF (buffer), INV (inverter),
AND, OR, XOR, NAND, NOR, XNOR}. The evolution was
executed for 1 hour.

Various 8-bit multipliers were employed to seed the initial
population. In particular, Ripple-Carry Array multiplier, two
Carry-Save Array multipliers and three different Wallace Tree
architectures. The array multiplier offers the lowest speed
but occupies the smallest area on a chip compared to the
other variants and especially the most expensive Wallace tree
multiplier. Wallace-tree adder multiplier is the fastest known
architecture which sums the partial products using multiple
levels of carry-save adders.

The evolutionary design was repeated for 12 target arith-
metic errors ε ∈ {0.01%, 0.02%, 0.05%, 0.1%, 0.2%, 0.5%,
1%, 2%, 5%, 10% 15% 20%}. Considering two seeding
strategies, 12 target errors and 6 types of initial multiplier
architectures, there are 144 different configurations in total.
For each configuration, 10 independent evolutionary runs were
executed.

We obtained more than one thousand of different 8-bit
QCMs. All QCMs were synthesized by means of Synopsys
Design Compiler using 45nm technology in order to determine
power and delay parameters for each operation mode.

VI. RESULTS

A. Search algorithm

In the first experiment, we investigated the impact of the
seeding strategy on the size of resulting circuits. Fig. 5 shows
the number of CGP nodes (i.e. the circuit size) in the exact
and approximate multiplier mode for several target worst case
errors. Box plots are constructed from all 60 independent CGP
runs executed for each error level. A general observation is
that the number of CGP nodes decreases with ε for both
SS-I and SS-II. However, the impact on the circuits size is
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Fig. 5. The number of CGP nodes (circuit size) of the logic utilized in the
exact mode (|C1∪C2|) and approximate mode (|C1|) for several target worst
case errors. Box plots are constructed from 10 independent CGP runs seeded
with 6 different exact multipliers.

almost negligible in SS-I. In SS-II, the size of circuits in
the exact mode is doubled with respect to SS-I for low ε.
This undesirable property becomes eliminated for higher error
levels. In the approximate mode, the size of circuits produced
by SS-II is significantly reduced with increasing ε.

B. Results of synthesis

As SS-II leads to solutions significantly different in the
exact and approximate mode in terms of the number of CGP
nodes (i.e. in the circuit size and power consumption), we will
analyze only the circuits evolved with SS-II. For a further anal-
ysis we randomly selected three QCMs (with WCE = 0.019%,
1.979% and 9.914% in the approximate mode) that are denoted
A1, A2 and A3 in Table II. These circuits were compared
with exact multipliers (Verilog star operator, Dadda multiplier,
composite multiplier constructed using 2x2 bit multipliers),
approximate multiplier (again, with a composite structure)
and various QCMs reported in [23]. Table II shows that
the proposed QCMs exhibit very good properties especially
in the approximate mode. In the exact mode, the selected
multipliers exhibit parameters that are comparable with the
exact multiplier built from 2-bit multipliers. The chosen QCMs
consume about 30% more power compared to the optimal
exact multiplier. It is not fair, however, to compare these
multipliers directly. Firstly, the power gating introduces some
overhead. Secondly, the logic that is used in the approximate
mode is intentionally active even in the exact mode because the
QCMs are optimized for applications where the approximate
mode is active most of the time. In the approximate mode,
the QCMs exhibit substantially better parameters compared
to the approximate multipliers based on 2-bit approximate
components. While the QCM A1 exhibits by two orders of
magnitude better MAE (one order in the magnitude for MRE)
compared to the QCM constructed using 2-bit multipliers, it



TABLE II
PARAMETERS OF THE PROPOSED QUALITY CONFIGURABLE 8-BIT MULTIPLIERS AND VARIOUS EXACT AND APPROXIMATE MULTIPLIERS.

MULTIPLIER APPROXIMATE MODE EXACT MODE
MAE MRE Area Delay Power PDP Area Delay Power PDP

Exact (Verilog star operator) - - - - - - 100.0% 100.0% 100.0% 100.0%
Exact (Dadda) [23] - - - - - - 124.3% 102.7% 102.1% 104.8%
Exact (built from exact 2× 2) - - - - - - 159.8% 122.4% 112.0% 137.1%
Approx. (built from approx. 2× 2 [6]) 899.6 3.2% 89.4% 112.0% 83.2% 93.3% - - - -
QCM (built from approx. 2× 2 [6]) 899.6 3.2% 152.3% 120.8% 112.0% 135.3% 170.0% 128.0% 119.8% 153.3%

QCM DQ4:2C1 [23] 3540.0 36.9% 48.7% 46.7% 30.8% 14.4% 125.3% 104.0% 101.7% 105.7%
QCM DQ4:2C2 [23] 2400.0 29.3% 40.2% 61.3% 29.2% 17.9% 127.4% 105.3% 102.4% 107.8%
QCM DQ4:2C3 [23] 3220.0 32.8% 65.2% 65.3% 61.0% 39.9% 128.4% 105.3% 102.6% 108.1%
QCM DQ4:2C4 [23] 1390.0 8.1% 75.4% 70.7% 64.5% 45.6% 132.4% 106.7% 103.1% 109.9%
QCM DQ4:2Cmixed [23] 1460.0 11.9% 52.7% 69.3% 42.5% 29.4% 127.9% 105.3% 102.1% 107.6%

Proposed QCM A1 (WCE= 0.019%) 4.3 0.2% 92.2% 89.6% 97.2% 87.1% 124.5% 79.5% 129.4% 102.8%
Proposed QCM A2 (WCE= 1.979%) 329.5 16.7% 45.0% 74.7% 36.8% 27.5% 135.8% 101.7% 128.7% 130.9%
Proposed QCM A3 (WCE= 9.914%) 1668.2 35.4% 16.7% 40.4% 9.3% 3.7% 112.3% 139.4% 105.9% 147.6%

occupies the area comparable to the area of non-configurable
Kulkarni’s approximate multiplier. The MAE of DQ4 QCMs is
very high. It is thus natural to expect higher power reduction.
Interestingly, QCM A3 with comparable MAE overcomes
these QCMs not only in the power but also in delay.
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Fig. 6. Power consumption of evolved QCMs used a) in the static mode (exact
and approximate mode is evaluated separately) and b) in dynamic mode where
the ratio between approximate and exact mode is r = 75% and r = 90%.
The results are given separately for each level of WCE.

Fig. 6 shows how the power consumption depends on the
circuit mode and the maximum allowed WCE. While the
power follows the expected trend for the approximate mode,
the exact mode exhibits undesired variability and the QCMs
do not show any benefit. When we evaluate the QCMs in
the intended dynamic scenario (see the bottom part of Fig. 6
showing the average power for various ratios between duration
of the approximate and exact mode), there are QCMs that can
achieve nearly 10% power reduction even when a negligible
error is introduced (see the situation for WCE=0.05%). As
evident, the power decreases with the increasing error. In
addition to that, spending more time in the approximate mode

leads to lower average power consumption. For 1% error and
90% ratio in favor of approximate mode, for example, the best
evolved QCM requires only 60% of the power of the exact 8-
bit multiplier.
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Fig. 7. Average PSNR representing the quality of filtering w.r.t power
consumption (top) and WCE (bottom) of QCMs employed in Gaussian image
filters. Local Pareto fronts are depicted using solid lines for three analyzed
cases.

C. QCM in Image Filtering
The proposed QCMs are evaluated as building blocks of

image filters developed for Gaussian noise elimination. Each
QCM is used to create three Gaussian noise filters with kernels
W ×W pixels, where W = 3 (standard deviation σ = 0.8),
5 (σ = 1.6) and 7 (σ = 2.4). For example, 49 QCMs
are needed for composing a filter with the 7x7 kernel. In
total, over 4000 different image filters were created and then
evaluated using a set of 25 benchmark images with the size of
384 x 256 pixels1. The quality of filtering was determined

1http://www.fit.vutbr.cz/vasicek/imagedb



as a peak signal to noise ratio (PSNR) between the exact
Gaussian filter and approximate Gaussian filter composed of
QCMs configured in the approximate mode. Fig. 7 shows
the average PSNR obtained by filtering of 25 images w.r.t
power consumption and WCE of QCMs employed in selected
Gaussian image filters in which the approximate mode is active
in 90% of time. Their power consumption is given relatively
to the power consumption of the exact Gaussian noise filter.
The proposed filters show expected behavior — the quality
of filtering is positively corelated with power consumption
of individual QCMs. The best results are obtained with the
3x3 pixel kernel because larger kernels lead to the loss of
detail in filtered images. For obtaining a reasonable image
quality (which roughly corresponds with PSNR > 30 dB) the
QCMs should exhibit WCE better than 2%. This situation
is also depicted in Fig. 8 in which three different filters
containing QCMs A1, A2 and A3 are compared using a single
image. While the difference between the output of the exact
filter and the filter employing A1 is invisible, A2 leads to a
small reduction of a dynamic range. The quality of filtering
using QCM A3 is not acceptable. We have already seen that
QCMs from [23] have significantly higher MAE in comparison
with the proposed QCMs. Because MAE is highly positively
correlated with WCE, DQ4 circuits are not competitive in this
task.

Fig. 8. The images obtained using exact and three approximate Gaussian
image filters with the 3x3 kernel and σ = 0.8. The approximate filters are
composed of the QCMs whose parameters are given in Table II.

VII. CONCLUSION

We developed a new method for the design of quality
configurable circuits. The method is based on CGP in which
the exact and approximate versions of the circuit are evolved
together. The method was experimentally evaluated in the
design of QCMs operating in two modes. A detailed analysis
revealed that evolved QCMs provide better parameters than
the state of the art QCMs. Proposed QCMs were employed
in quality configurable Gaussian noise filters in which the

approximate mode of operation is dominating. We showed
that a small loss in the quality of filtering leads to a significant
power consumption reduction. Our future work will be devoted
to applying the proposed methodology in the design of other
quality configurable circuits.
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