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Abstract— Polymorphic circuits represent a newly emerging 

computation paradigm, where one hardware structure is capable 
to perform two or more different intended functions, depending 
on  instantaneous conditions in the target operating environment. 
Due to the peculiarity of this paradigm, design of these circuits also 
calls for a novel approach to logic synthesis procedures. Several 
attempts to enhance the design of such circuits have already been 
made, producing highly suboptimal solutions. As an ingenious 
attempt to set lower bounds on complexity and support designers 
of sophisticated logic synthesis algorithms, a method with the 
prospect to facilitate the generation of optimum-size polymorphic 
circuits is presented in this paper. The core of the proposed 
method is based on a purposeful exploitation of formal techniques, 
comprising SAT and PBO in the first place. 

Keywords—polymorphic circuits, Boolean functions, logic 
synthesis, SAT 

I.  INTRODUCTION 

The still ongoing trend of relentlessly scaling diverse circuit 
features in a close compliance with the Moore’s law, while the 
ubiquitous CMOS technology is approaching its technology 
limits at the same time, is raising the necessity to introduce rather 
unconventional technological solutions accompanied by a range 
of suitable computational paradigms [1]. Thus, it becomes 
obvious that so called emerging technologies and their 
properties will play a substantial role in pursuing new generation 
of devices. Polymorphic circuits can be recognized as one of 
such examples [2]. Here, by means of using a single hardware 
structure, two or more intended functions can be implemented. 
Selection mechanism of the active function at a given moment 
in time involves the natural occurrence of external conditions, 
like temperature, supply voltage, light, or even an additional 
control signal, which have a direct impact on the electrical 
properties of a particular hardware circuitry.  

The motivation behind the activities ultimately resulting 
in the creation of polymorphic circuits (or similar ones with 
respect to the general principle of operation) has been originally 
given by the need to properly address the following aspects: 1) 
autonomous temperature compensation of a system properties 
once it is deployed in harsh environments [3] without the 
possibility of performing regular maintenance, 2) “graceful 
degradation” of a system [4] that ensures, for example, its safe 
shut-down or triggers its automatic transition into the low-power 
emergency operating mode in case of low or depleted batteries. 
Another application field can be identified in connection 
with security devices – a hidden function (watermark) can be 
implemented using polymorphic electronics [4]. 

The first attempt to design such circuits has been made 
by NASA Jet Propulsion Laboratory, for adaptively changing 
the function of a device based on environment temperature 

[2]-[6]. MOS transistor structures were proposed to accomplish 
this job and polymorphic gates were developed and 
manufactured, performing distinctive logic functions (e.g., 
NAND/NOR [5], AND/OR [6]) once exposed to variable 
temperature ranges.  

Due to fundamental constraints projected in the capabilities 
of existing conventional methods in terms of enabling the design 
of such structures [4], these polymorphic gates were mostly 
generated by suitable evolutionary techniques. In particular, the 
application of genetic programming [5], [6] took place. At a 
present time, it is possible to design virtually any type 
of polymorphic gate by using these techniques [7]. 

Theoretical backgrounds and most importantly the physical 
availability of polymorphic gates opens a path towards the 
opportunity to actually design even larger circuits comprising 
more than just a few logic gates. From a practical point of view, 
it makes indeed no sense to employ solely the polymorphic logic 
gates with the sensitivity to the external conditions within a 
given circuit. It is important to note that a typical circuit with 
multifunctional or polymorphic behavior is always built around 
the combination of conventional, mono-functional logic gates, 
while their polymorphic counterparts are used only for a portion 
of the circuit structure. There have been already reported 
numerous attempts to design polymorphic circuits of an arbitrary 
size [7], [8], [9]. However, all these approaches are considerably 
suffering from non-optimality of the resulting circuit structure; 
there has been demonstrated no obvious proof to validate the 
optimality or a lower bound imposed on size complexity at least. 

As a remedy to this, a novel method that facilitates the design 
tasks of size-optimal polymorphic circuits is presented in this 
contribution. It is based on application of formal techniques, 
particularly the Boolean Satisfiability Problem (SAT) [10] and 
Pseudo-Boolean Optimization (PBO) [11]. 

The proposed method was tested on standard benchmark 
circuits, to demonstrate its capabilities. 

The paper is structured as follows: Section II presents the 
related work, Section III contains some preliminaries necessary 
to understand the problem. Section IV then presents the 
proposed synthesis method, with experimental results 
in Section V. Section VI concludes the paper. 

II. RELATED WORK 

Based on the availability of suitable polymorphic gates, the 
design of more complex (larger) polymorphic circuits has been 
tackled recently. One of the approaches is quite straightforward 
– a polymorphic circuit switching between two functions can be 
obtained in an easy way by means of implementing these two 
functions separately, whereas the actual output is selected by a 
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single polymorphic multiplexer [7]. Another approach, based on 
BDDs [12], was also proposed in [7]. In both situations, the 
polymorphic gates have been moved to the circuit outputs. This 
approach eventually leads to very inefficient results, since there 
is no shared portion of the logic between operating and 
functional modes of a given circuit. 

The first attempt to use sharing of logic resources between 
the two specified functions has been addressed in [9]. Based 
on the initial, two-level description of these functions, shared co-
kernels [13] are subsequently identified, thus making it possible 
to move polymorphic gates “deeper” into the circuit structure. 
However, it is still possible to observe the inclination to place 
the polymorphic gates near the circuit outputs. 

The actual optimality of results obtained by the 
aforementioned methods is rather questionable at least. Hence, 
obtaining lower bounds on size complexity of polymorphic 
circuits, i.e., designing optimum implementations of these 
circuits, is a vital task now. 

It is a well-known fact that the Optimum Circuit problem is 
Σ2-complete [14]. Needless to say, this observation applies 
to polymorphic circuits domain as well. The synthesis task 
supported by the use of formal techniques may be still 
accomplished with a reasonable efficiency for small circuits. 

The problem of obtaining optimum multi-level 
representations of Boolean functions has been tackled since 
1970’s. In [15], [16], an approach based on Integer Linear 
Programming (ILP) has been proposed. Optimum solutions 
based on NOR gates for functions of up to 4 variables were 
computed here. Branch and bound techniques were presented 
in [17], [18], [19], whose scalability is rather doubtful. 

A satisfiability (SAT) based approach was introduced 
in [20], however, it takes aim specifically at the network nodes 
restricted to majority gates. A SAT and PBO-based method to 
design optimum XOR-AND-Inverter Graphs has been recently 
proposed in [21]. 

One of the most recent works presents the optimum circuit 
generation for Majority-Inverter Graphs [22], which is based 
on Satisfiability Modulo Theories (SMT). 

Even though the design of optimum circuit implementation 
is a mature and well-mastered process in case of standard logic, 
no such approach has been proposed for polymorphic circuits 
until now. Let us note that because the suggested problem 
simply exhibits an immensely complex nature, it is possible 
to design provably optimum implementations only in case 
of functions with a severely limited number of inputs, typically 
up to 10. However, this cannot be overcome now by any means 
(unless a significant breakthrough in circuit complexity theory 
happens); all the algorithms mentioned above suffer from 
excessive (double-exponential) growth of asymptotic 
complexity, either in time or space. 

III. PRELIMINARIES 

A. Polymorphic Circuit Representation 

Multi-output combinational circuits will be considered 
throughout the paper. A combinational logic circuit can be 
represented as a directed acyclic graph (DAG), with nodes 

corresponding to gates (logic functions they implement) and 
edges representing connections between them. The DAG has 
one or more roots corresponding to the circuit’s primary outputs 
(POs) and the DAG leaves correspond to its primary inputs 
(PIs). 

Since one of the crucial objectives is to make the optimum 
circuit generation procedure general enough to be directly 
applicable to any emerging technology, the set of node functions 
will not be restricted by any means. In this paper, the concept of 
nodes will be restricted to 2-input ones only, for the sake of 
clarity. However, the method can be easily extended to handle 
nodes with virtually any number of inputs, without the need to 
introduce any additional principal modifications. Therefore, 
each node may implement any 2-input function (out of 10 
possible). 

Similarly to Reduced Boolean Circuits (RBCs) [23], [24] or 
AND-Inverter-Graphs (AIGs) [25], the edges may be negated, 
thus indicating the presence of an inverter at the edge. 

Besides the role of an ordinary negation, the edges may 
assume the polymorphic nature. This means, all respective edges 
are further inverted, when the external polymorphic stimulus 
occurs. The polymorphic stimulus (denoted as P in the following 
text) enables the selection of the circuit operating mode (out of 
the two intended functions). As a result, there are four types 
of edges: normal, negated, polymorphic, and negated 
polymorphic ones. 

An example of such a DAG is shown in Fig. 1a, for a 
polymorphic circuit implementing a function AND/XOR, i.e., 
the function ܨ = തܲሺܽ ∙ ܾ) + ܲሺܽ ⊕ ܾ), 

where P is the polymorphic stimulus. 

In the figure, circle nodes represent an AND gate, hexagon 
nodes a XOR gate, dashed edges are negated, blue bold edges 
are polymorphic. 

Another example is shown Fig. 1b, for a polymorphic 1-bit 
full adder. Here, one of the adder inputs is implemented as the 
polymorphic stimulus. Notice that the polymorphic edges 
actually represent implicit XOR gates. This is the first hint that 
efficient implementation of polymorphism may significantly 
reduce the amount of logic [26]. 

   

 a)  b) 

Fig. 1. Examples of polymorphic circuits represented by a DAG, 
for a) AND/XOR, b) polymorphic 1-bit full adder 
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B. Boolean Satisfiability (SAT) Problem 

The CNF Satisfiability problem (CNF-SAT) [10] is defined 
as follows: given a Boolean formula in its conjunctive normal 
form (CNF), find a satisfying assignment of its variables. 
A literal is a variable or its negation. A clause is a sum 
of literals. The CNF is a product of clauses. The formula is 
satisfiable, when there exists an assignment of its variables, so 
that the respective functional value is equal to one. In the 
constructive version of the SAT problem, a satisfiability witness, 
i.e., the satisfying assignment of variables, is returned as a result. 

IV. THE PROPOSED METHOD 

The proposed SAT-based method of designing size-optimal 
polymorphic circuits is presented here. Any set of 2-input gates 
can be used as a set of building blocks (DAG nodes), with their 
costs (area) specified. As stated in Subsection III.A, the DAG 
edges may be negated and/or polymorphic. 

For the purpose of this paper, the procedure generating one 
size-optimal structure for a given polymorphic function will be 
presented. However, the procedure can be easily extended 
to optimize the delay, and/or to enumerate all such structures, 
following the principles given in [21]. 

A. The Algorithm 

The Optimum Circuit Problem is solved by its reduction to a 
decision CNF-SAT problem [10]. Since these problems belong 
to different complexity classes of polynomial hierarchy 
(Optimum Circuit Problem is Σ2-complete [14]), the reduction is 
not polynomial. 

The optimization problem is reduced to its decision version 
by a simple trick: a decision problem “Does there exist an 
n-node implementation of a given k-input function?” is solved, 
whereas we start with n = 1, and if the answer is negative, n is 
increased. This procedure is repeated, until a positive answer is 
obtained. The solution witness is then the optimum solution 
of the original problem [22]. 

The procedure is outlined by a pseudo-code shown in Fig. 2. 
The input to the algorithm is a truth table (set of binary vectors, 
for a multi-output function) of the function to be implemented, 
the output is its optimal implementation structure. 

For a given function f having k inputs, o outputs, and n nodes, 
a characteristic function in CNF is generated (see Subsection 
IV.B) and SAT is solved [27]. If the SAT is unsatisfiable, n is 
increased by one and the procedure is repeated, until a satisfiable 
solution is obtained. The satisfiability proof is then the solution: 
the optimum circuit structure. 

Generate_structure (truth_table f, int k) { 
 n = 1; 
 do { 
  CNF = Generate_CNF(f, k, n); 
  Sol = SAT_Solve(CNF); 
  if (Sol.unsat) n++; 
 } while (Sol.unsat); 
 return Sol.extract_structure; 
} 

Fig. 2. The basic optimum structure generation procedure  

B. The CNF Construction 

The main procedure of the algorithm, the SAT instance 
generation (Generate_CNF in Fig. 2) is described here. 

Let us have a polymorphic circuit with k inputs and o outputs 
constructed of n gates. As stated in Subsection III.A, such a 
circuit can be represented as a DAG with attributed edges. The 
following variables and constraints are introduced: 

• Each primary input (PI) and DAG node has a unique index, 0…݊ + ݇ − 1, where DAG PIs are represented by nodes 
indexed 0…݇ − 1 and internal nodes are indexed ݇ …݊ + ݇ − 1; 

• the DAG has o outputs, each can be connected to any node 0…݊ + ݇ − 1; 
• the parent node always has higher index than both its 

children; 
• node inputs (exactly two here) are labeled 0 (left input) and 

1 (right input); 
• each node can implement any function from a given set 

of 2-input functions F. The ordinary numbers of functions 
are binary-encoded, i.e., v variables are needed to index the 
functions, ݒ ∈ {0… ۀ|logଶ|۴ڿ − 1}. 
For easier understanding of the following explanations, the 

network with corresponding variables describing the structure 
(node labels) and function (edge labels), is shown in Fig. 3, for 
a node i (a), connection of a node j to the mth input of a node i 
(b), and connection of the node i to the primary output w (c). The 
circle node represents the node i, rectangle nodes describe edge 
value modifiers (negation, polymorphy), and the 
diamond-shaped nodes represent the network interconnection. 

    

 a) b) c) 

Fig. 3. Network structure with corresponding variables 

In the scenario given above, a set of Boolean variables 
describing the structure of the network is defined: 

• ௜ܰ,௠ …݉௧௛input	of	node	݅	is	negated, defined for		݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0,1}; 
• ௜ܲ,௠ …݉௧௛input	of	node	݅	is	polymorphic, defined 

for	݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0,1}; 
௜,௝,௠ܥ • … output	of	݅௧௛node	is	connected	to	݉௧௛input		of	݆௧௛node, defined	for	݅ ∈ {0, … , ݊ + ݇ − 1},	݆ ∈ {maxሺ݅ + 1, ݇), … , ݊ + ݇ − 1} ,݉ ∈ {0, 1};	
• ܱ௪,௜ ݓ		,௧௛node݅	݋ݐ	connected	is	௧௛outputݓ… ∈ ݋…0} − 1}, ݅ ∈ {0…݊ + ݇ − 1};	
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• ܱܰ௪ ,edge	negated	by		node	a	to	connected	is	௧௛outputݓ	…	 ݓ ∈ {0… ݋ − 1}; 
• ܱ ௪ܲ ,edge	polymorphic	by	node	a	to	connected	is	௧௛outputݓ	…	 ݓ ∈ {0… ݋ − 1}; 
௜,௩ܨ • … the	݅௧௛node	function	selector,	݅ ∈ {݇, … , ݊ + ݇ − 1}, ݒ ∈ {0… ۀ|logଶ|۴ڿ − 1}. 

 

Next, constraints (SAT clauses) are defined, to describe the 
network validity. Note that the universal quantifiers actually 
represent conjunctions of SAT clauses. The final CNF-SAT 
instance is then formed by conjunction of all the constraints. 

For the lack of space, the final CNFs will not be presented 
in some cases; only more intuitive Boolean formulas will be 
given. These can be easily converted to CNFs using laws 
of Boolean algebra. 

1) Each node input is connected somewhere – to a node 
with a smaller index (including PIs): ∀݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1}: ሧ ௝,௜,௠௝∈{଴,…,௜ିଵ}ܥ  

2) Each node output is connected somewhere – to a node 
with a higher index or to an output: 

∀݅ ∈ {݇, … , ݊ + ݇ − ۈۉ:{1
ۇ ሧ ௜,௝,௠௝∈{୫ୟ୶ሺ௜ାଵ,௞),…,௡ା௞ିଵ}௠∈{଴,ଵ}ܥ ۋی

ۊ
∨ ሧ ௜ܱ,௪௪∈{଴…௢ିଵ}  

3) Each node input has only one source ∀݅ ∈ {݇, … , ݊ + ݇ − 1}, ݆ ∈ {0, … , ݅ − 1},		ℎ ∈ {݆ + 1; ݅ − 1},݉ ∈ {0, 1}: ௝,௜,௠ܥ ⟹  ௛,ప,௠തതതതതതതܥ
In simple words, if the mth input of node i is connected 

to node j, it must not be connected to node h. 

4) Each primary output is connected to at least one node ∀ݓ ∈ ݋…0} − 1}: ሧ ܱ௪,௜௜∈{଴,…,௡ା௞ିଵ}  

5) Each primary output is connected to one node at most ∀ݓ ∈ ݋…0} − 1}, ݅ ∈ {0…݊ + ݇ − 1},	݆ ∈ {݅ + 1…݊ + ݇ − 1}: ܱ௪,௜ ⟹ ܱ௪,ఫതതതതത 
In simple words, if the output w is connected to node i, it 

must not be connected to node j. 

Next, the desired function must be enforced. This means that 
the network must output the correct functional value for each 
input combination, i.e., for all 2௞ minterms for all outputs. 

For this purpose, additional Boolean variables, specific for 
each ݌ ∈ {0, … , 2௞ − 1} minterm, are defined: 

• ௜ܻ,௣ …	݅௧௛	node	output	value, ݅ ∈ {0, … ݊ + ݇ − 1}.	 For	݅	 < 	݇, it	represents	a	primary	input	ሺPI); 
• ௣ܲ … 	polymorphic	stimulus	value;		
• ௜ܺ,௠,௣ …݉௧௛	input	of	node	݅; defined	for		݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1};	
• ܺ ௜ܰ,௠,௣ …݉௧௛	input	of	node	݅, after	possibly	negated	

	edge	following	the	polymorphic	edge;	defined	for	݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1};	
• ܺ ௜ܲ,௠,௣ …݉௧௛	input	of	node	݅, after	possible		polymorphic	edge; defined	for		݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1};	
• ܱ ௪ܸ,௣ 	;value	node	௧௛outputݓ	…
• ܱܰ௪,௣ ,value	node	௧௛outputݓ	… after	possible		negation;	
• ܱܰ ௪ܲ,௣ ,value	node	௧௛outputݓ	… after	possible		polymorphic	edge, following	the	negation.	

Next, constraints enforcing the function are defined: 

6) Polymorphic edges: ∀݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1}:	ܺ ௜ܲ,௠,௣ = 	 ൫ ௜ܲ,௠ ⟹ ௣ܲ⨁ ௜ܺ,௠,௣൯ + 	൫ పܲ,௠തതതതത ⟹ ௜ܺ,௠,௣൯  
In simple words, if the edge is polymorphic, negate the 

signal, if the polymorphy stimulus occurs. 

7) Negated edges: ∀݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1}:	ܺ ௜ܰ,௠,௣ = 	ܺ ௜ܲ,௠,௣⨁ ௜ܰ,௠	  
8) Nodes interconnection: ∀݅ ∈ {0, … , ݊ + ݇ − 1},	݆ ∈ {maxሺ݅ + 1; ݇) , … , ݊ + ݇ − 1},	݉ ∈ {0, ௜,௝,௠ܥ	:{1 ⟺ ௜ܻ,௣ = ௝ܺ,௠,௣	
9) Negated output edges: ܱܰ௪,௣ = ܱ ௪ܸ,௣⨁ܱܰ௪ 

10) Polymorphic output edges: ܱܰ ௪ܲ,௣ = ܱܰ௪,௣⨁൫ܱ ௪ܲ ∧ 	 ௣ܲ൯ 
11) Outputs: ∀ݓ ∈ ݋…0} − 1), ݅ ∈ {0, … , ݊ + ݇ − 1}:	ܱ௪,௜ ⟹ ൫ܱ ௪ܸ,௣ = 	 ௜ܻ,௣൯ 
12) Nodes functions: ∀݅ ∈ {݇, … , ݊ + ݇ − 1}: ௜ܻ,௣ = ܺ ௜ܰ,଴,௣ < ݌݋ > ܺ ௜ܰ,ଵ,௣.	

In principle, the characteristic functions of the operators <݌݋ > (nodes functions) are constructed by deriving their on- and 
off-sets in CNF. Depending on the function selection (variables ܨ௜,௩), constraints for the outputs ( ௜ܻ,௣) and inputs 
(ܺ ௜ܰ,଴,௣, ܺ ௜ܰ,ଵ,௣) of nodes are derived, based on these node 
characteristic functions. Due to the lack of space, we will omit a 
detailed formal description of the procedure. 

Just to give a simple example, if, e.g., ܨ௜,଴ = 0 selects an 
AND node i, these constraints will be generated: ∀݅ ∈ {݇, … , ݊ + ݇ − ௜,଴ܨ	:{1 = 0 ⟹ ൫ ௜ܻ,௣ = ܺ ௜ܰ,଴,௣ ∙ ܺ ௜ܰ,ଵ,௣൯	  

13) The  function – input and output values: ∀݅ ∈ {0, … ݇ − 1}: ௜ܻ,௣ = forced	respective	bit	value	௣ܲ = polymorphic	stimulus	value	for	the	݌௧௛minterm	∀ݓ ∈ {0… ݋ − 1):	ܱܰ ௪ܲ,௣ = 	forced	outputs	for	minterm	݌ 

The clauses stated above are concatenated to form a CNF, 
to produce a SAT instance. A solution of this instance, 
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particularly the values of variables	 ௜ܰ,௠, ௜ܲ,௠, ,௜,௝,௠ܥ ܱ௪,௜, ܱܰ௪,ܱ ௪ܲ, and ܨ௜,௩, then represent the implementation of the desired 
DAG. 

 Note that the number of clauses describing the DAG validity 
grows linearly with both k and n, but the number of clauses 
describing the function grows exponentially with k, because of 
an exponential number of minterms. When combined with an 
NP-complete SAT-solving repeatedly used in the process, it is 
clear that this approach is feasible for small k’s only. However, 
it is fully sufficient for some purposes. 

C. Employing Optimization 

Since any set of 2-input gates can be used to implement node 
functions, it could be useful to have the means to adjust their cost 
(area) and use the summary network cost as the optimization 
criterion, instead of just minimizing the nodes count. This can 
be easily accomplished by using Pseudo-Boolean Optimization 
(PBO) [11], [28] instead of SAT. The polymorphic (or inverted) 
edges may also be given a customizable cost, yielding, e.g., 
minimization of the number of polymorphic edges in the result. 
All these features have been implemented in our tool MinCirc 
[29]. However, detailed description of their principles is beyond 
the scope of this paper. For some details see [21]. 

V. EXPERIMENTAL RESULTS 

Experimental results are demonstrated in this section. 
Several smallest circuits from the MCNC [30] and ITC’99 [31] 
benchmark sets, plus generic adders were used for this purpose. 
Combinational parts of sequential circuits were extracted. These 
circuits were collapsed to a PLA by ABC [32] to obtain a truth 
table. MiniSAT [27] has been used as a SAT-solver. 

For the purpose of the experiments, we have defined a 
scenario, where one circuit input is defined as the polymorphic 
stimulus, while the other inputs remain the primary inputs. Such 
a scenario is not that unrealistic – one may imagine a technology, 
where the function of multiple gates is influenced just by one 
signal. The Si-NW technology is such an example [33].  

Optimum implementations of the example circuits have been 
synthesized, without polymorphism being used and compared to 
their respective optimum polymorphic designs, for different 
inputs set as polymorphic stimuli. The results are shown in 
TABLE I. for AND-nodes based circuits. Similar results are 
presented in TABLE II. , with the nodes set extended by a XOR 
gate (with its cost set equal to the AND gate cost). 

TABLE I.  SYNTHESIS RESULTS – ONLY AND NODES USED 

 Std. synth. Polymorphic synthesis
Name k o Nd. Levels Nd. P. edges Levels

1-adder 3 2 7 4 3 6 2
2-adder 5 3 14 8 10 6 6
c17 5 2 6 3 5 5 3
daio 5 6 10 4 8 9 4
b06 10 14 10 4 11 1 5
lion 4 3 9 5 7 8 4
majority 5 1 8 6 5 6 4
s27 7 4 7 5 7 6 3
t 5 2 6 3 5 5 3

Sum     288 165 239 
(17%) 227 145

(12%) 

After the circuit name, numbers of its inputs and outputs (k, 
o) are given. Then, results of standard optimum synthesis [21] 
are shown, in terms of the number of nodes (Nd.) and levels, 
followed by the results of polymorphic implementations. The 
first circuit input was always selected as polymorphic stimulus, 
the “P. edges” column gives the number of polymorphic edges 
in the implementation. 

TABLE II.  SYNTHESIS RESULTS – AND AND XOR NODES USED 

Std. synthesis Polymorphic synthesis
Name Nd. XORs Lev. Nd. XORs P. edges Levels

1-adder 5 3 3 2 1 6 1
2-adder 10 6 6 7 4 9 4
c17 6 0 4 5 0 5 2
daio 7 3 3 7 2 4 4
b06 8 1 5 9 2 3 5
lion 9 1 7 7 0 8 5
majority 8 0 5 5 0 6 4
s27 7 0 5 7 0 5 5
t 6 0 3 5 0 5 3

Sum 206 25 132 176 
(15%) 

12 
(12%) 184 112

(15%) 
 

Results of only 9 circuits are shown in the tables, with 
summary values over all exercised 31 circuits (with different 
inputs set as polymorphy stimuli) given in the last rows, together 
with overall percentage reductions compared to the standard 
synthesis process. 

It is possible to see that the polymorphic implementations 
exhibit smaller area and delay in most of cases, assuming that 
the polymorphic edges are “for free”. Even though this 
observation is quite obvious, since the notion of polymorphism 
actually allows implementing implicit XOR gates (see Section 
III), the purpose of the experiments was to illustrate how much 
area can be saved by means of using the polymorphic electronics 
paradigm. 

VI. CONCLUSIONS AND DISCUSSION 

A SAT-based method generating optimum polymorphic 
circuits described by a directed acyclic graph (DAG) was 
presented. The polymorphism property is implemented by 
introduction of polymorphic edges into the DAG. 

The method is general, in the sense of any set of 2-input gates 
can be used as the circuit building blocks (DAG nodes). These 
gates can be assigned an arbitrary cost (size), allowing 
to produce circuits minimizing this cost. Polymorphic edges 
may be assigned a cost too. 

Since the complexity of the problem solved – the optimum 
circuit – is immense (it is a Σ2-complete problem), the method 
can be applied to functions having typically up to 10 inputs. 
However, the method can still serve as a mean of obtaining 
lower bounds on complexity of polymorphic circuits. 

The achieved experimental results enable the comparison 
of “standard” optimum implementations of several benchmark 
circuits with their polymorphic counterparts. A scenario, where 
one circuit input serves as a polymorphic stimulus, was used. As 
a result, polymorphic implementations exhibit an average 17% 
improvement in the number of gates. However, polymorphism 
is considered to be available “for free” in this scenario. 
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Presenting this experimental comparison, however, was not 
the main purpose of this paper, since it is unrealistic, unless 
concrete technology is targeted. Instead, the objective was 
to present the method itself, in its most general form. Then, it 
can be used, e.g., as a part of more complex synthesis algorithms 
applied to specific target technologies. For example, it can be 
used for generating optimum implementations of functions with 
a limited number of inputs, to be used in general logic 
optimization processes, like rewriting [34], [35]. Here, optimum 
implementations of 4-input functions are used to replace their 
functional equivalents in a circuit to be optimized, to reduce its 
size. Generation of 4-input functions by the proposed method is 
very fast, indeed. Thus, for such functions it can be applied even 
on-demand, in the rewriting process. It has been found that using 
replacement functions of more than 6 inputs is impractical, 
because of an immense growth of the rewriting algorithm 
complexity caused by a high number of replacement candidates 
[34]. Therefore, our algorithm is applicable here. 
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