
Optimum Polymorphic Circuits Synthesis Method
Petr Fiser

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
fiserp@fit.cvut.cz

Vaclav Simek
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
simekv@fit.vutbr.cz

Abstract— Polymorphic circuits represent a newly emerging

computation paradigm, where one hardware structure is capable
to perform two or more different intended functions, depending
on instantaneous conditions in the target operating environment.
Due to the peculiarity of this paradigm, design of these circuits also
calls for a novel approach to logic synthesis procedures. Several
attempts to enhance the design of such circuits have already been
made, producing highly suboptimal solutions. As an ingenious
attempt to set lower bounds on complexity and support designers
of sophisticated logic synthesis algorithms, a method with the
prospect to facilitate the generation of optimum-size polymorphic
circuits is presented in this paper. The core of the proposed
method is based on a purposeful exploitation of formal techniques,
comprising SAT and PBO in the first place.

Keywords—polymorphic circuits, Boolean functions, logic
synthesis, SAT

I. INTRODUCTION

The still ongoing trend of relentlessly scaling diverse circuit
features in a close compliance with the Moore’s law, while the
ubiquitous CMOS technology is approaching its technology
limits at the same time, is raising the necessity to introduce rather
unconventional technological solutions accompanied by a range
of suitable computational paradigms [1]. Thus, it becomes
obvious that so called emerging technologies and their
properties will play a substantial role in pursuing new generation
of devices. Polymorphic circuits can be recognized as one of
such examples [2]. Here, by means of using a single hardware
structure, two or more intended functions can be implemented.
Selection mechanism of the active function at a given moment
in time involves the natural occurrence of external conditions,
like temperature, supply voltage, light, or even an additional
control signal, which have a direct impact on the electrical
properties of a particular hardware circuitry.

The motivation behind the activities ultimately resulting
in the creation of polymorphic circuits (or similar ones with
respect to the general principle of operation) has been originally
given by the need to properly address the following aspects: 1)
autonomous temperature compensation of a system properties
once it is deployed in harsh environments [3] without the
possibility of performing regular maintenance, 2) “graceful
degradation” of a system [4] that ensures, for example, its safe
shut-down or triggers its automatic transition into the low-power
emergency operating mode in case of low or depleted batteries.
Another application field can be identified in connection
with security devices – a hidden function (watermark) can be
implemented using polymorphic electronics [4].

The first attempt to design such circuits has been made
by NASA Jet Propulsion Laboratory, for adaptively changing
the function of a device based on environment temperature

[2]-[6]. MOS transistor structures were proposed to accomplish
this job and polymorphic gates were developed and
manufactured, performing distinctive logic functions (e.g.,
NAND/NOR [5], AND/OR [6]) once exposed to variable
temperature ranges.

Due to fundamental constraints projected in the capabilities
of existing conventional methods in terms of enabling the design
of such structures [4], these polymorphic gates were mostly
generated by suitable evolutionary techniques. In particular, the
application of genetic programming [5], [6] took place. At a
present time, it is possible to design virtually any type
of polymorphic gate by using these techniques [7].

Theoretical backgrounds and most importantly the physical
availability of polymorphic gates opens a path towards the
opportunity to actually design even larger circuits comprising
more than just a few logic gates. From a practical point of view,
it makes indeed no sense to employ solely the polymorphic logic
gates with the sensitivity to the external conditions within a
given circuit. It is important to note that a typical circuit with
multifunctional or polymorphic behavior is always built around
the combination of conventional, mono-functional logic gates,
while their polymorphic counterparts are used only for a portion
of the circuit structure. There have been already reported
numerous attempts to design polymorphic circuits of an arbitrary
size [7], [8], [9]. However, all these approaches are considerably
suffering from non-optimality of the resulting circuit structure;
there has been demonstrated no obvious proof to validate the
optimality or a lower bound imposed on size complexity at least.

As a remedy to this, a novel method that facilitates the design
tasks of size-optimal polymorphic circuits is presented in this
contribution. It is based on application of formal techniques,
particularly the Boolean Satisfiability Problem (SAT) [10] and
Pseudo-Boolean Optimization (PBO) [11].

The proposed method was tested on standard benchmark
circuits, to demonstrate its capabilities.

The paper is structured as follows: Section II presents the
related work, Section III contains some preliminaries necessary
to understand the problem. Section IV then presents the
proposed synthesis method, with experimental results
in Section V. Section VI concludes the paper.

II. RELATED WORK

Based on the availability of suitable polymorphic gates, the
design of more complex (larger) polymorphic circuits has been
tackled recently. One of the approaches is quite straightforward
– a polymorphic circuit switching between two functions can be
obtained in an easy way by means of implementing these two
functions separately, whereas the actual output is selected by a

2018 13th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS)

978-1-5386-5290-9/18/$31.00 ©2018 IEEE

	

single polymorphic multiplexer [7]. Another approach, based on
BDDs [12], was also proposed in [7]. In both situations, the
polymorphic gates have been moved to the circuit outputs. This
approach eventually leads to very inefficient results, since there
is no shared portion of the logic between operating and
functional modes of a given circuit.

The first attempt to use sharing of logic resources between
the two specified functions has been addressed in [9]. Based
on the initial, two-level description of these functions, shared co-
kernels [13] are subsequently identified, thus making it possible
to move polymorphic gates “deeper” into the circuit structure.
However, it is still possible to observe the inclination to place
the polymorphic gates near the circuit outputs.

The actual optimality of results obtained by the
aforementioned methods is rather questionable at least. Hence,
obtaining lower bounds on size complexity of polymorphic
circuits, i.e., designing optimum implementations of these
circuits, is a vital task now.

It is a well-known fact that the Optimum Circuit problem is
Σ2-complete [14]. Needless to say, this observation applies
to polymorphic circuits domain as well. The synthesis task
supported by the use of formal techniques may be still
accomplished with a reasonable efficiency for small circuits.

The problem of obtaining optimum multi-level
representations of Boolean functions has been tackled since
1970’s. In [15], [16], an approach based on Integer Linear
Programming (ILP) has been proposed. Optimum solutions
based on NOR gates for functions of up to 4 variables were
computed here. Branch and bound techniques were presented
in [17], [18], [19], whose scalability is rather doubtful.

A satisfiability (SAT) based approach was introduced
in [20], however, it takes aim specifically at the network nodes
restricted to majority gates. A SAT and PBO-based method to
design optimum XOR-AND-Inverter Graphs has been recently
proposed in [21].

One of the most recent works presents the optimum circuit
generation for Majority-Inverter Graphs [22], which is based
on Satisfiability Modulo Theories (SMT).

Even though the design of optimum circuit implementation
is a mature and well-mastered process in case of standard logic,
no such approach has been proposed for polymorphic circuits
until now. Let us note that because the suggested problem
simply exhibits an immensely complex nature, it is possible
to design provably optimum implementations only in case
of functions with a severely limited number of inputs, typically
up to 10. However, this cannot be overcome now by any means
(unless a significant breakthrough in circuit complexity theory
happens); all the algorithms mentioned above suffer from
excessive (double-exponential) growth of asymptotic
complexity, either in time or space.

III. PRELIMINARIES

A. Polymorphic Circuit Representation

Multi-output combinational circuits will be considered
throughout the paper. A combinational logic circuit can be
represented as a directed acyclic graph (DAG), with nodes

corresponding to gates (logic functions they implement) and
edges representing connections between them. The DAG has
one or more roots corresponding to the circuit’s primary outputs
(POs) and the DAG leaves correspond to its primary inputs
(PIs).

Since one of the crucial objectives is to make the optimum
circuit generation procedure general enough to be directly
applicable to any emerging technology, the set of node functions
will not be restricted by any means. In this paper, the concept of
nodes will be restricted to 2-input ones only, for the sake of
clarity. However, the method can be easily extended to handle
nodes with virtually any number of inputs, without the need to
introduce any additional principal modifications. Therefore,
each node may implement any 2-input function (out of 10
possible).

Similarly to Reduced Boolean Circuits (RBCs) [23], [24] or
AND-Inverter-Graphs (AIGs) [25], the edges may be negated,
thus indicating the presence of an inverter at the edge.

Besides the role of an ordinary negation, the edges may
assume the polymorphic nature. This means, all respective edges
are further inverted, when the external polymorphic stimulus
occurs. The polymorphic stimulus (denoted as P in the following
text) enables the selection of the circuit operating mode (out of
the two intended functions). As a result, there are four types
of edges: normal, negated, polymorphic, and negated
polymorphic ones.

An example of such a DAG is shown in Fig. 1a, for a
polymorphic circuit implementing a function AND/XOR, i.e.,
the function ܨ = തܲሺܽ ∙ ܾ) + ܲሺܽ ⊕ ܾ),

where P is the polymorphic stimulus.

In the figure, circle nodes represent an AND gate, hexagon
nodes a XOR gate, dashed edges are negated, blue bold edges
are polymorphic.

Another example is shown Fig. 1b, for a polymorphic 1-bit
full adder. Here, one of the adder inputs is implemented as the
polymorphic stimulus. Notice that the polymorphic edges
actually represent implicit XOR gates. This is the first hint that
efficient implementation of polymorphism may significantly
reduce the amount of logic [26].

 a) b)

Fig. 1. Examples of polymorphic circuits represented by a DAG,
for a) AND/XOR, b) polymorphic 1-bit full adder

!

!

B. Boolean Satisfiability (SAT) Problem

The CNF Satisfiability problem (CNF-SAT) [10] is defined
as follows: given a Boolean formula in its conjunctive normal
form (CNF), find a satisfying assignment of its variables.
A literal is a variable or its negation. A clause is a sum
of literals. The CNF is a product of clauses. The formula is
satisfiable, when there exists an assignment of its variables, so
that the respective functional value is equal to one. In the
constructive version of the SAT problem, a satisfiability witness,
i.e., the satisfying assignment of variables, is returned as a result.

IV. THE PROPOSED METHOD

The proposed SAT-based method of designing size-optimal
polymorphic circuits is presented here. Any set of 2-input gates
can be used as a set of building blocks (DAG nodes), with their
costs (area) specified. As stated in Subsection III.A, the DAG
edges may be negated and/or polymorphic.

For the purpose of this paper, the procedure generating one
size-optimal structure for a given polymorphic function will be
presented. However, the procedure can be easily extended
to optimize the delay, and/or to enumerate all such structures,
following the principles given in [21].

A. The Algorithm

The Optimum Circuit Problem is solved by its reduction to a
decision CNF-SAT problem [10]. Since these problems belong
to different complexity classes of polynomial hierarchy
(Optimum Circuit Problem is Σ2-complete [14]), the reduction is
not polynomial.

The optimization problem is reduced to its decision version
by a simple trick: a decision problem “Does there exist an
n-node implementation of a given k-input function?” is solved,
whereas we start with n = 1, and if the answer is negative, n is
increased. This procedure is repeated, until a positive answer is
obtained. The solution witness is then the optimum solution
of the original problem [22].

The procedure is outlined by a pseudo-code shown in Fig. 2.
The input to the algorithm is a truth table (set of binary vectors,
for a multi-output function) of the function to be implemented,
the output is its optimal implementation structure.

For a given function f having k inputs, o outputs, and n nodes,
a characteristic function in CNF is generated (see Subsection
IV.B) and SAT is solved [27]. If the SAT is unsatisfiable, n is
increased by one and the procedure is repeated, until a satisfiable
solution is obtained. The satisfiability proof is then the solution:
the optimum circuit structure.

Generate_structure (truth_table f, int k) {
 n = 1;
 do {
 CNF = Generate_CNF(f, k, n);
 Sol = SAT_Solve(CNF);
 if (Sol.unsat) n++;
 } while (Sol.unsat);
 return Sol.extract_structure;
}

Fig. 2. The basic optimum structure generation procedure

B. The CNF Construction

The main procedure of the algorithm, the SAT instance
generation (Generate_CNF in Fig. 2) is described here.

Let us have a polymorphic circuit with k inputs and o outputs
constructed of n gates. As stated in Subsection III.A, such a
circuit can be represented as a DAG with attributed edges. The
following variables and constraints are introduced:

• Each primary input (PI) and DAG node has a unique index, 0…݊ + ݇ − 1, where DAG PIs are represented by nodes
indexed 0…݇ − 1 and internal nodes are indexed ݇ …݊ + ݇ − 1;

• the DAG has o outputs, each can be connected to any node 0…݊ + ݇ − 1;
• the parent node always has higher index than both its

children;
• node inputs (exactly two here) are labeled 0 (left input) and

1 (right input);
• each node can implement any function from a given set

of 2-input functions F. The ordinary numbers of functions
are binary-encoded, i.e., v variables are needed to index the
functions, ݒ ∈ {0… ۀ|logଶ|۴ڿ − 1}.
For easier understanding of the following explanations, the

network with corresponding variables describing the structure
(node labels) and function (edge labels), is shown in Fig. 3, for
a node i (a), connection of a node j to the mth input of a node i
(b), and connection of the node i to the primary output w (c). The
circle node represents the node i, rectangle nodes describe edge
value modifiers (negation, polymorphy), and the
diamond-shaped nodes represent the network interconnection.

 a) b) c)

Fig. 3. Network structure with corresponding variables

In the scenario given above, a set of Boolean variables
describing the structure of the network is defined:

• ௜ܰ,௠ …݉௧௛input	of	node	݅	is	negated, defined for		݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0,1};
• ௜ܲ,௠ …݉௧௛input	of	node	݅	is	polymorphic, defined

for	݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0,1};
௜,௝,௠ܥ • … output	of	݅௧௛node	is	connected	to	݉௧௛input		of	݆௧௛node, defined	for	݅ ∈ {0, … , ݊ + ݇ − 1},	݆ ∈ {maxሺ݅ + 1, ݇), … , ݊ + ݇ − 1} ,݉ ∈ {0, 1};	
• ܱ௪,௜ ݓ		,௧௛node݅	݋ݐ	connected	is	௧௛outputݓ… ∈ ݋…0} − 1}, ݅ ∈ {0…݊ + ݇ − 1};	

!

!

• ܱܰ௪ ,edge	negated	by		node	a	to	connected	is	௧௛outputݓ	…	 ݓ ∈ {0… ݋ − 1};
• ܱ ௪ܲ ,edge	polymorphic	by	node	a	to	connected	is	௧௛outputݓ	…	 ݓ ∈ {0… ݋ − 1};
௜,௩ܨ • … the	݅௧௛node	function	selector,	݅ ∈ {݇, … , ݊ + ݇ − 1}, ݒ ∈ {0… ۀ|logଶ|۴ڿ − 1}.

Next, constraints (SAT clauses) are defined, to describe the
network validity. Note that the universal quantifiers actually
represent conjunctions of SAT clauses. The final CNF-SAT
instance is then formed by conjunction of all the constraints.

For the lack of space, the final CNFs will not be presented
in some cases; only more intuitive Boolean formulas will be
given. These can be easily converted to CNFs using laws
of Boolean algebra.

1) Each node input is connected somewhere – to a node
with a smaller index (including PIs): ∀݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1}: ሧ ௝,௜,௠௝∈{଴,…,௜ିଵ}ܥ

2) Each node output is connected somewhere – to a node
with a higher index or to an output:

∀݅ ∈ {݇, … , ݊ + ݇ − ۈۉ:{1
ۇ ሧ ௜,௝,௠௝∈{୫ୟ୶ሺ௜ାଵ,௞),…,௡ା௞ିଵ}௠∈{଴,ଵ}ܥ ۋی

ۊ
∨ ሧ ௜ܱ,௪௪∈{଴…௢ିଵ}

3) Each node input has only one source ∀݅ ∈ {݇, … , ݊ + ݇ − 1}, ݆ ∈ {0, … , ݅ − 1},		ℎ ∈ {݆ + 1; ݅ − 1},݉ ∈ {0, 1}: ௝,௜,௠ܥ ⟹ ௛,ప,௠തതതതതതതܥ
In simple words, if the mth input of node i is connected

to node j, it must not be connected to node h.

4) Each primary output is connected to at least one node ∀ݓ ∈ ݋…0} − 1}: ሧ ܱ௪,௜௜∈{଴,…,௡ା௞ିଵ}

5) Each primary output is connected to one node at most ∀ݓ ∈ ݋…0} − 1}, ݅ ∈ {0…݊ + ݇ − 1},	݆ ∈ {݅ + 1…݊ + ݇ − 1}: ܱ௪,௜ ⟹ ܱ௪,ఫതതതതത
In simple words, if the output w is connected to node i, it

must not be connected to node j.

Next, the desired function must be enforced. This means that
the network must output the correct functional value for each
input combination, i.e., for all 2௞ minterms for all outputs.

For this purpose, additional Boolean variables, specific for
each ݌ ∈ {0, … , 2௞ − 1} minterm, are defined:

• ௜ܻ,௣ …	݅௧௛	node	output	value, ݅ ∈ {0, … ݊ + ݇ − 1}.	 For	݅	 < 	݇, it	represents	a	primary	input	ሺPI);
• ௣ܲ … 	polymorphic	stimulus	value;		
• ௜ܺ,௠,௣ …݉௧௛	input	of	node	݅; defined	for		݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1};	
• ܺ ௜ܰ,௠,௣ …݉௧௛	input	of	node	݅, after	possibly	negated	

	edge	following	the	polymorphic	edge;	defined	for	݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1};	
• ܺ ௜ܲ,௠,௣ …݉௧௛	input	of	node	݅, after	possible		polymorphic	edge; defined	for		݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1};	
• ܱ ௪ܸ,௣ 	;value	node	௧௛outputݓ	…
• ܱܰ௪,௣ ,value	node	௧௛outputݓ	… after	possible		negation;	
• ܱܰ ௪ܲ,௣ ,value	node	௧௛outputݓ	… after	possible		polymorphic	edge, following	the	negation.	

Next, constraints enforcing the function are defined:

6) Polymorphic edges: ∀݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1}:	ܺ ௜ܲ,௠,௣ = 	 ൫ ௜ܲ,௠ ⟹ ௣ܲ⨁ ௜ܺ,௠,௣൯ + 	൫ పܲ,௠തതതതത ⟹ ௜ܺ,௠,௣൯
In simple words, if the edge is polymorphic, negate the

signal, if the polymorphy stimulus occurs.

7) Negated edges: ∀݅ ∈ {݇, … , ݊ + ݇ − 1},݉ ∈ {0, 1}:	ܺ ௜ܰ,௠,௣ = 	ܺ ௜ܲ,௠,௣⨁ ௜ܰ,௠	
8) Nodes interconnection: ∀݅ ∈ {0, … , ݊ + ݇ − 1},	݆ ∈ {maxሺ݅ + 1; ݇) , … , ݊ + ݇ − 1},	݉ ∈ {0, ௜,௝,௠ܥ	:{1 ⟺ ௜ܻ,௣ = ௝ܺ,௠,௣	
9) Negated output edges: ܱܰ௪,௣ = ܱ ௪ܸ,௣⨁ܱܰ௪

10) Polymorphic output edges: ܱܰ ௪ܲ,௣ = ܱܰ௪,௣⨁൫ܱ ௪ܲ ∧ 	 ௣ܲ൯
11) Outputs: ∀ݓ ∈ ݋…0} − 1), ݅ ∈ {0, … , ݊ + ݇ − 1}:	ܱ௪,௜ ⟹ ൫ܱ ௪ܸ,௣ = 	 ௜ܻ,௣൯
12) Nodes functions: ∀݅ ∈ {݇, … , ݊ + ݇ − 1}: ௜ܻ,௣ = ܺ ௜ܰ,଴,௣ < ݌݋ > ܺ ௜ܰ,ଵ,௣.	

In principle, the characteristic functions of the operators <݌݋ > (nodes functions) are constructed by deriving their on- and
off-sets in CNF. Depending on the function selection (variables ܨ௜,௩), constraints for the outputs (௜ܻ,௣) and inputs
(ܺ ௜ܰ,଴,௣, ܺ ௜ܰ,ଵ,௣) of nodes are derived, based on these node
characteristic functions. Due to the lack of space, we will omit a
detailed formal description of the procedure.

Just to give a simple example, if, e.g., ܨ௜,଴ = 0 selects an
AND node i, these constraints will be generated: ∀݅ ∈ {݇, … , ݊ + ݇ − ௜,଴ܨ	:{1 = 0 ⟹ ൫ ௜ܻ,௣ = ܺ ௜ܰ,଴,௣ ∙ ܺ ௜ܰ,ଵ,௣൯	

13) The function – input and output values: ∀݅ ∈ {0, … ݇ − 1}: ௜ܻ,௣ = forced	respective	bit	value	௣ܲ = polymorphic	stimulus	value	for	the	݌௧௛minterm	∀ݓ ∈ {0… ݋ − 1):	ܱܰ ௪ܲ,௣ = 	forced	outputs	for	minterm	݌

The clauses stated above are concatenated to form a CNF,
to produce a SAT instance. A solution of this instance,

!

!

particularly the values of variables	 ௜ܰ,௠, ௜ܲ,௠, ,௜,௝,௠ܥ ܱ௪,௜, ܱܰ௪,ܱ ௪ܲ, and ܨ௜,௩, then represent the implementation of the desired
DAG.

 Note that the number of clauses describing the DAG validity
grows linearly with both k and n, but the number of clauses
describing the function grows exponentially with k, because of
an exponential number of minterms. When combined with an
NP-complete SAT-solving repeatedly used in the process, it is
clear that this approach is feasible for small k’s only. However,
it is fully sufficient for some purposes.

C. Employing Optimization

Since any set of 2-input gates can be used to implement node
functions, it could be useful to have the means to adjust their cost
(area) and use the summary network cost as the optimization
criterion, instead of just minimizing the nodes count. This can
be easily accomplished by using Pseudo-Boolean Optimization
(PBO) [11], [28] instead of SAT. The polymorphic (or inverted)
edges may also be given a customizable cost, yielding, e.g.,
minimization of the number of polymorphic edges in the result.
All these features have been implemented in our tool MinCirc
[29]. However, detailed description of their principles is beyond
the scope of this paper. For some details see [21].

V. EXPERIMENTAL RESULTS

Experimental results are demonstrated in this section.
Several smallest circuits from the MCNC [30] and ITC’99 [31]
benchmark sets, plus generic adders were used for this purpose.
Combinational parts of sequential circuits were extracted. These
circuits were collapsed to a PLA by ABC [32] to obtain a truth
table. MiniSAT [27] has been used as a SAT-solver.

For the purpose of the experiments, we have defined a
scenario, where one circuit input is defined as the polymorphic
stimulus, while the other inputs remain the primary inputs. Such
a scenario is not that unrealistic – one may imagine a technology,
where the function of multiple gates is influenced just by one
signal. The Si-NW technology is such an example [33].

Optimum implementations of the example circuits have been
synthesized, without polymorphism being used and compared to
their respective optimum polymorphic designs, for different
inputs set as polymorphic stimuli. The results are shown in
TABLE I. for AND-nodes based circuits. Similar results are
presented in TABLE II. , with the nodes set extended by a XOR
gate (with its cost set equal to the AND gate cost).

TABLE I. SYNTHESIS RESULTS – ONLY AND NODES USED

 Std. synth. Polymorphic synthesis
Name k o Nd. Levels Nd. P. edges Levels

1-adder 3 2 7 4 3 6 2
2-adder 5 3 14 8 10 6 6
c17 5 2 6 3 5 5 3
daio 5 6 10 4 8 9 4
b06 10 14 10 4 11 1 5
lion 4 3 9 5 7 8 4
majority 5 1 8 6 5 6 4
s27 7 4 7 5 7 6 3
t 5 2 6 3 5 5 3

Sum 288 165 239
(17%) 227 145

(12%)

After the circuit name, numbers of its inputs and outputs (k,
o) are given. Then, results of standard optimum synthesis [21]
are shown, in terms of the number of nodes (Nd.) and levels,
followed by the results of polymorphic implementations. The
first circuit input was always selected as polymorphic stimulus,
the “P. edges” column gives the number of polymorphic edges
in the implementation.

TABLE II. SYNTHESIS RESULTS – AND AND XOR NODES USED

Std. synthesis Polymorphic synthesis
Name Nd. XORs Lev. Nd. XORs P. edges Levels

1-adder 5 3 3 2 1 6 1
2-adder 10 6 6 7 4 9 4
c17 6 0 4 5 0 5 2
daio 7 3 3 7 2 4 4
b06 8 1 5 9 2 3 5
lion 9 1 7 7 0 8 5
majority 8 0 5 5 0 6 4
s27 7 0 5 7 0 5 5
t 6 0 3 5 0 5 3

Sum 206 25 132 176
(15%)

12
(12%) 184 112

(15%)

Results of only 9 circuits are shown in the tables, with
summary values over all exercised 31 circuits (with different
inputs set as polymorphy stimuli) given in the last rows, together
with overall percentage reductions compared to the standard
synthesis process.

It is possible to see that the polymorphic implementations
exhibit smaller area and delay in most of cases, assuming that
the polymorphic edges are “for free”. Even though this
observation is quite obvious, since the notion of polymorphism
actually allows implementing implicit XOR gates (see Section
III), the purpose of the experiments was to illustrate how much
area can be saved by means of using the polymorphic electronics
paradigm.

VI. CONCLUSIONS AND DISCUSSION

A SAT-based method generating optimum polymorphic
circuits described by a directed acyclic graph (DAG) was
presented. The polymorphism property is implemented by
introduction of polymorphic edges into the DAG.

The method is general, in the sense of any set of 2-input gates
can be used as the circuit building blocks (DAG nodes). These
gates can be assigned an arbitrary cost (size), allowing
to produce circuits minimizing this cost. Polymorphic edges
may be assigned a cost too.

Since the complexity of the problem solved – the optimum
circuit – is immense (it is a Σ2-complete problem), the method
can be applied to functions having typically up to 10 inputs.
However, the method can still serve as a mean of obtaining
lower bounds on complexity of polymorphic circuits.

The achieved experimental results enable the comparison
of “standard” optimum implementations of several benchmark
circuits with their polymorphic counterparts. A scenario, where
one circuit input serves as a polymorphic stimulus, was used. As
a result, polymorphic implementations exhibit an average 17%
improvement in the number of gates. However, polymorphism
is considered to be available “for free” in this scenario.

!

!

Presenting this experimental comparison, however, was not
the main purpose of this paper, since it is unrealistic, unless
concrete technology is targeted. Instead, the objective was
to present the method itself, in its most general form. Then, it
can be used, e.g., as a part of more complex synthesis algorithms
applied to specific target technologies. For example, it can be
used for generating optimum implementations of functions with
a limited number of inputs, to be used in general logic
optimization processes, like rewriting [34], [35]. Here, optimum
implementations of 4-input functions are used to replace their
functional equivalents in a circuit to be optimized, to reduce its
size. Generation of 4-input functions by the proposed method is
very fast, indeed. Thus, for such functions it can be applied even
on-demand, in the rewriting process. It has been found that using
replacement functions of more than 6 inputs is impractical,
because of an immense growth of the rewriting algorithm
complexity caused by a high number of replacement candidates
[34]. Therefore, our algorithm is applicable here.

ACKNOWLEDGEMENT

This work was partially supported by the grant
GA16-05179S of the Czech Grant Agency, “Fault Tolerant and
Attack-Resistant Architectures Based on Programmable
Devices: Research of Interplay and Common Features”
(2016-2018). Another support for this work has been gratefully
provided by the grant FIT-S-17-3994 of Brno University of
Technology, “Advanced parallel and embedded computer
systems” (2017-2019). Access to computing and storage
facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum, provided under the
programme ”Projects of Large Research, Development, and
Innovations Infrastructures” (CESNET LM2015042), is greatly
appreciated.

REFERENCES
[1] I. L. Markov, "Limits on fundamental limits to computation", Nature, vol.

512, no. 7513, August 2014, pp. 147-154.

[2] A. Stoica, “Polymorphic electronics - A novel type of circuits with
multiple functionality,” NASA New Technology Report NPO-21213,
10106/2000.

[3] A. Stoica, “EHW Approach to Temperature Compensation
of Electronics,” NASA Tech Briefs NPO-21146, April 2004.

[4] A. Stoica, R.S. Zebulum, and D. Keymeulen, J. Lohn, “On Polymorphic
Circuits and Their Design using Evolutionary Algorithms,” in Proc. of
20th IASTED Int. Conf. on Applied Informatics, Insbruck, 2002, 6 p.

[5] A. Stoica, R.S. Zebulum, “Multifunctional logic gate controlled
by temperature,” NASA Tech Briefs. Pasadena: California Inst. of Tech.,
NPO-30795, July 2005, pp. 18.

[6] A. Stoica, R.S. Zebulum, “Polymorphic Electronic Circuits,” NASA Tech
Briefs. Pasadena: California Inst. of Tech., NPO-21213, April 2004. p. 10.

[7] Z. Gajda, L. Sekanina, “On Evolutionary Synthesis of Compact
Polymorphic Combinational Circuits,” in Journal of Multiple-Valued
Logic and Soft Computing, 2011, vol. 17, no. 6, pp. 607-631.

[8] R. Tesar, V. Simek, R. Ruzicka, and A. Crha, ”Design of Polymorphic
Operators for Efficient Synthesis of Multifunctional Circuits,” Journal
of Computer and Communications, 4, 2016, pp. 151-159.

[9] A. Crha, R. Ruzicka, V. Simek, “Synthesis Methodology of Polymorphic
Circuits Using Polymorphic NAND/NOR Gates,” in International
Conference on Mathematical/Analytical Modelling and Computer
Simulation, Cambridge, UK, 2015, pp. 612-617.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness, W. H. Freeman & Co. New York, USA,
1990, p. 338.

[11] E. Boros and P. L. Hammer, “Pseudo-Boolean optimization,” in Discrete
Applied Mathematics, Volume 123, Issues 1–3, 15 November 2002, pp.
155-225.

[12] S. B. Akers, “Binary decision diagrams,”, in IEEE Transactions on
Computers, 27(6), June 1978, pp. 509-516.

[13] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms, Boston, MA, Kluwer Academic Publishers, 1996, 564 p.

[14] C. Umans, “The Minimum Equivalent DNF Problem and Shortest
Implicants”, Journal of Computer and System Sciences, vol. 63, no. 4,
2001, pp. 597-611.

[15] S. Muroga and T. Ibaraki, “Design of optimal switching networks
by integer programming,” IEEE Trans. on Computers, vol. 21, no. 6,
1972, pp. 573–582.

[16] S. Muroga and H. C. Lai, “Minimization of logic networks under a
generalized cost function,” IEEE Trans. on Computers, vol. 25, no. 9,
1976, pp. 893–907.

[17] T. Nakagawa, “A branch-and-bound algorithm for optimal AND-OR
networks (The algorithm description),” Dep. Comput. Sci., Univ.
of Illinois, Urbana, Rep. UIUCDCS-R-71-462, June 1971.

[18] E. A. Ernst, “Optimal combinational multi-level logic synthesis,” PhD
thesis, The University of Michigan, 2009.

[19] R. Drechsler and W. Günther, “Exact circuit synthesis,” in Proc.
of International Workshop on Logic & Synthesis (IWLS), 1998.

[20] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding efficient
circuits using SAT-solvers,” in Int’l Conf. on Theory and Applications of
Satisfiability Testing, 2009, pp. 32–44.

[21] P. Fiser, I. Halecek, and J. Schmidt, “SAT-Based Generation of Optimum
Function Implementations with XOR Gates”, in Proc. of 20th Euromicro
Conference on Digital Systems Design (DSD), Vienna, Austria, August
31-September 1, 2017, pp. 163-170.

[22] M. Soeken et al. “Exact Synthesis of Majority-Inverter Graphs and Its
Applications”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 36, No. 11, 2017, pp. 1842-1855.

[23] P. A. Abdullah, P. Bjesse, and N. Een, “Symbolic reachability analysis
based on SAT-solvers,” in Proc. TACAS’00, 9th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, 2000.

[24] P. Bjesse, A. Borlv, “DAG-aware circuit compression for formal
verification,” in IEEE/ACM International Conference on Computer-
Aided Design, 2004, pp. 42–49.

[25] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in Proc. of the
43th Design Automation Conference, San Francisco, 2006, pp. 532-535.

[26] I. Halecek, P. Fiser, J. Schmidt, “Are XORs in logic synthesis really
necessary?,” in Proc. of the IEEE 20th Int. Symposium on Design and
Diagnostics of Electronic Circuit & Systems, 2017, pp. 134–139.

[27] N. Een, N. Sorensson, “An extensible SAT-solver,” in Lecture Notes
in Computer, Science 2919 - Theory and Applications of Satisability
Testing. Springer Verlag, 2004, pp. 333-336.

[28] N. Een, N. Sorensson, “Translating Pseudo-Boolean Constraints into
SAT”, in Journal on Satisfiability, Boolean Modeling and Computation,
vol. 2, pp. 1-26, Nov. 2006.

[29] P. Fiser, “MinCirc: Optimum Circuits Generator”, 2017. Available from:
http://ddd.fit.cvut.cz/prj/MinCirc/

[30] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” MCNC Technical Report, Tech. Rep., Jan. 1991.

[31] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” in IEEE Design Test of Computers, 2000.

[32] A. Mishchenko et al., “ABC: A system for sequential synthesis and
verification,” 2012.

[33] L. Amaru et al. “New Logic Synthesis as Nanotechnology Enabler”,
Proceedings of the IEEE , vol. 103, no. 11, Nov. 2015, pp. 2168-2195.

[34] K. Brayton, Robert, A. Mishchenko, and S. Chatterjee, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in 43rd
ACM/IEEE Design Automation Conference. ACM, 2006, pp. 532–535.

[35] I. Halecek, P. Fiser, J. Schmidt, “On XAIG Rewriting,” in Proc. of 26th
International Workshop on Logic & Synthesis (IWLS), Austin, TX, June
17–18, 2017, pp. 89-96.

!

!

