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a b s t r a c t 

Image enhancement tasks can highly benefit from depth information, but the direct estimation of outdoor 

depth maps is difficult due to vast object distances. This paper presents a fully automatic framework for 

model-based generation of outdoor depth maps and its applications to image enhancements. We leverage 

3D terrain models and camera pose estimation techniques to render approximate depth maps without 

resorting to manual alignment. Potential local misalignments, resulting from insufficient model details 

and rough registrations, are eliminated with our novel free-form warping. We first align synthetic depth 

edges with photo edges using the as-rigid-as-possible image registration and further refine the shape 

of the edges using the tight trimap-based alpha matting. The resulting synthetic depth maps are accu- 

rate, calibrated in the absolute distance. We demonstrate their benefit in image enhancement techniques 

including reblurring, depth-of-field simulation, haze removal, and guided texture synthesis. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

A limited configuration in taking photographs does not al-

ays lead to the highest quality, and often motivates enhance-

ent of photographs. Computational photography has addressed

uch limitations, which introduces additional flexibility on focus,

xposure, and depth [1–3] . Among them, depth information, on

hich we focus here, can greatly facilitate diverse image manipu-

ations, such as refocusing, dehazing, texture synthesis, and image

diting [4–7] . 

Outdoor photographs (e.g., natural landscapes) represent by far

he biggest group in many media services [8] , but their direct

epth estimation poses a challenge. They are usually monocu-

ar, which has a low chance to work with typical structure-from-

otion. Within-image features, such as airlights or textures [9,10] ,

elp, but are not always available. Range sensors [11] are applica-

le only to limited distance ranges (only up to tens of meters). 

One better alternative can be an indirect estimation from a 3D

errain model, which renders the reference depth map as previ-

usly suggested by Kopf et al. [12] . The terrain model is already

vailable for the whole planet and recent photographs are usually
� This article was recommended for publication by Dr M Kim. 
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s  

a  

g  

W  

f  

s

ttps://doi.org/10.1016/j.cag.2018.05.001 

097-8493/© 2018 Elsevier Ltd. All rights reserved. 
eo-tagged (e.g., the global positioning system; GPS), which can

erve as a strong external cue. Further, this approach can be dis-

inguished for its higher resolution and accuracy; the direct esti-

ation may yield a coarser resolution or wrong outcomes. 

However, the 3D terrain model may be insufficient in its

esolution and details (e.g., textures and objects). Also, a pre-

ise registration between real and virtual views is challenging,

here the alignment errors result in visible artifacts in edited

mages. Manual registration starting at a rough initial guess can

elp [13] , but is laborious and inappropriate for massive batch

rocessing. 

In this work, we present a fully automatic framework for depth-

ap generation and alignment for an outdoor photograph. A vir-

ual camera is first localized with the geo-tagging information of

 photo and recent camera pose estimation techniques. Then, the

D terrain model is rendered at the virtual camera to produce an

nitial approximate depth map. Local inaccuracies, resulting from

he rough registration and insufficient details of the model, are

ubsequently reduced using our novel automatic free-form warp-

ng. We first align discontinuities in the synthetic depths with

hoto edges using the as-rigid-as-possible image registration. The

hape of the edges is further refined using the tight trimap-based

lpha matting. The resulting depth map, synthesized from the

eo-referenced terrain model, is absolute (calibrated in meters).

e show its benefit in image enhancement tasks, including re-

ocusing, defocus manipulation (see Fig. 1 ), dehazing, and texture

ynthesis. 

https://doi.org/10.1016/j.cag.2018.05.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.05.001&domain=pdf
mailto:cadik@fit.vutbr.cz
mailto:sungkil@skku.edu
https://doi.org/10.1016/j.cag.2018.05.001
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Fig. 1. Transforming an outdoor photograph into a model-like look. An automatically generated synthetic depth map is used to calculate plausible blur kernel size map 

(middle) to simulate shallow depth-of-field (right) in landscape images (left), where such an effect cannot be achieved using standard optics for physical reasons. Virtual 

camera: full-frame, f-number = 1.0, focal length = 1200 mm, focus distance = 5 km. 
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2. Related work 

We briefly review previous work on depth map reconstruction

and its major applications including defocus manipulation and de-

hazing. 

2.1. Depth map reconstruction 

Robust depth map reconstruction is an ongoing subject of inter-

est. A typical approach is to rely on stereo image pairs [18,19] or

multiple/multiview images [20–22] . More recently, short-distance

range-sensing devices, such as Kinect [11] , improved the availabil-

ity of depth maps in indoor environments [23] . 

Multiple images are not easily available in practice, and

single-image processing has also been intensively studied. Semi-

automatic user interaction often helps [24–26] , and further modifi-

cation to hardware or light patterns proved its utility, such as light

fields [27–31] , coded aperture [32] or structured light method [33] .

Depth maps can further be generated semi-automatically using

sparse samples (seeds) provided by the user [34–37] . In these ap-

proaches, anisotropic diffusion is used to propagate depth informa-

tion from seeds to the rest of the image. The key assumption here

is that the gradient of the resulting depth map should roughly cor-

respond to the color gradient. 

The previous methods are not applicable to ours which is tar-

geting on single outdoor photographs. The stereo vision techniques

require multiple images, while the range sensors work only for a

small range of distances. Computational photography requires spe-

cial hardware or modification to the aperture. For the diffusion-

based techniques, real photos often violate their main assumption

about compatible depth and color gradients, and also, the positions

of depth seeds require to be accurate. Otherwise, the diffusion will

propagate small misalignments to a notably larger area and lead to

notable artifacts. 

Kopf et al. showed the combination of geo-tagging and 3D mod-

els can be used for fairly accurate geo-registration and many ap-

plications including dehazing and relighting [12] . The geo-tagging

already allows us to select an effective subset for structure from

motion [38] , but when combining with the available 3D models,

we can directly render a depth map. The combination even enables

to assign geo-locations and labels onto pixels [39] , point clouds

[38,40] , or annotate photos [41] . Nevertheless, the depth map is

not pixel-perfect and requires fine alignment; we address this is-

sue in the present work. 

While the majority of previous approaches estimate relative

depth maps, our solution can generate absolute depth map from

the geo-referenced digital terrain model. This is highly benefi-

cial in many image enhancement applications; for instance, there

are more chances in estimating kernels for defocus blur or other

effects. 
Similarly to our goals, the method proposed by Kopf et al.

12] allows to synthesize absolute depth maps. However, it requires

 user-assisted interaction for registration, which motivates for our

ovel depth free-form warping step ( Section 3 ). 

.2. Defocus manipulation 

The defocus blur, caused by shallow depth of field (DOF), is pro-

ounced in indoor photos or films, but hardly exhibited in out-

oor photography (even with large lenses). Its capture is inherently

estricted to a particular configuration (e.g., focus and f -number).

hus, its post-reproduction for novel configurations (with compu-

ational photography) drew attention for refocusing [32,33] or de-

ocus magnification [42] . 

Another mainstream is the postprocessing of a usual single-

iew image, which comprises deblur and refocusing. Typically, the

eblur involves blind deconvolution using known priors to esti-

ate kernels [24,43] . However, a precise solution requires to con-

ider geometric visibilities similarly to the distributed ray tracing

44] . Our solution and its absolute depth information can facilitate

he estimation of per-pixel local blur kernels to some extents, en-

bling non-blind deconvolution. Refocusing can also benefit from

urs, which can use a precise rendering technique [45] . 

.3. Dehazing 

Outdoor photographs are often hazed by atmospheric scattering

hat can be characterized by medium transmission maps , depend-

ng heavily on depths. Most previous work has focused on depth

stimation and radiance recovery, including Markov random fields

MRF) [46] , independent component analysis [47] , dark channel

rior [48] , factorial MRF [49–52] , and machine-learning approaches

sing random forests [53,54] , and convolutional neural networks

55] . In our case, geo-referenced absolute depth maps are used

or dehazing, which can be more precise than the previous ones.

e obtain such maps automatically without the previous manual

mage-to-model registration [12] . 

. Automatic depth-map generation and alignment 

In this section, we describe our fully-automatic approach to

epth-map generation from a single color image as well as a tech-

ique used for the final depth map refinement (see Figs. 2 and 3

or summary). 

etrieval of 3D terrain model. A Google-Earth-like digital terrain

odels are currently available for the whole planet. They are ac-

uired from satellites and/or planes and published in form of geo-

eferred digital elevation maps (DEMs) even for less accessible re-

ions. Such models are sufficient for our purposes (i.e., outdoor

hotographs ), however in general case, a 3D model might not be
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Fig. 2. Overview of our fully automatic depth-map generation framework from a single landscape photograph. Based on the EXIF information of the photograph, the camera 

pose to render the 3D terrain model is automatically aligned with the image. Then, the initial coarse depth map is rendered from the model using the estimated camera 

pose; some inaccuracies may show up due to insufficient precision of the model or due to camera alignment errors. The final depth map is refined using the free-form 

warping to match the local features of the input photograph. 

Fig. 3. Aligning model depth map with the input photograph—the 3D model (a) is roughly aligned with an input photo (b), the depth map (c) is extracted using the 

estimated camera location and an intrinsic image [14] of the input photo (d) is computed. Depth discontinuities are extracted in the depth map (e) and edges are detected 

in the intrinsic image (f). Initially, model edges are misaligned with respect to photo edges (g), to reduce this misalignment as-rigid-as-possible image registration [15] is 

used (h), then edges are subdivided into individual segments (i) and tight trimap is constructed for each segment (j), alpha matte [16] is computed (k) and thresholded (l) 

to get the final refined shape of the photo edge (m). Given the initial model edge (n) and the refined photo edge (o), deformable image registration [17] is used (p) to obtain 

the final sub-pixel accurate alignment (q). 
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vailable (e.g., for indoor environments). We experimented with

he following publicly available DEM terrain datasets: the Alps

24 m spaced samples (px) 1 ), National Elevation Dataset (8 m/px,

SGS 2 ), and Eastern Europe models (10 m/px 3 and 5 m/px 4 ). In

ase of an areal overlap of the terrain models, we used the one

ith the highest available resolution. 

In case of an outdoor scene, the DEM is generally sufficient for

amera localization and pose estimation , and a synthetic depth map

ay then be generated easily. However, existing elevation models

till do not capture trees, small buildings, cars, and other man-

ade features in a sufficient detail. For this reason, we propose

o finally refine the generated depth map using the free-form regis-

ration with the input photograph. 

ocalization of Virtual Camera. To render the initial depth map, the

ocation of a real camera (used to capture the outdoor photograph)

equires to be known in advance. By default, we can locate the po-

ition of unknown camera using the structural features of an input

hoto. Specifically, we use skyline/contours and further geomet-

ic constraints as proposed by Baatz et al. [56] , when the image

acks information about camera location. Other possibilities include

ross-view image geolocalization [57] , direct data-driven regression

58] or classification [59] of the camera location, image registra-

ion into the 3D structure acquired by structure from motion [40] ,

mage retrieval from a geo-referenced image database [60] , and

thers [61] . However, they are exhaustive and inaccurate in some
1 http://www.viewfinderpanoramas.org . 
2 http://ned.usgs.gov . 
3 http://www.geoportal.sk . 
4 http://geoportal.cuzk.cz . 

a  

a  

i

ases. Fortunately, approximate locations can be easily found from

he picture itself in many cases; GPS is integrated with many re-

ent cameras and smartphones and its information is recorded in

XIF tags. Hence, we assume the approximate location of the cam-

ra is already known and in the following steps we sample only

ear proximity of the known location. 5 

amera pose estimation. Given the camera location, we automati-

ally estimate its pose , i.e. all the unknown camera orientation an-

les (yaw, pitch, and roll). We implemented a visual camera ori-

ntation estimation in a way similar to that of Baboud et al. [41] .

he method is based on matching the edges detected in the pho-

ograph with the synthetic silhouettes rendered from the terrain

odel. 

More specifically, we first exploit the image EXIF data (assisted

y a camera database) to perform rectilinear projection with the

nown field-of-view. We then render model silhouettes as depth

iscontinuities into a 2D cylindrical image, which is vectorized into

 silhouette edge map. This map is then aligned with the im-

ge edges by means of vector cross-correlation followed by a non-

inear matching metric [41] (see Fig. 2 ). 

For the image edge detection, we developed a novel weighted

dge estimator using the learning-based framework [62] . During

atching process described above, the edges are thus assigned

elative importance according their visual appearance. For finding

alient silhouette edges, we predict a 16 × 16 px edge map from

 larger 32 × 32 px image patch. Individual predictions are aver-

ged to produce a soft edge map for the whole input image. The
5 The area is sampled uniformly as a grid of 9 × 9 samples with 0.001 ° resolution 

n both N-S and W-E directions. 

http://www.viewfinderpanoramas.org
http://ned.usgs.gov
http://www.geoportal.sk
http://geoportal.cuzk.cz
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Fig. 4. Dehazing artifacts due to coarse synthetic depth map (left) can be partially 

mitigated by blurring the depth map (middle), and fully removed using the pro- 

posed free-form depth warping (right). 
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6 The new dataset is available for download at: http://cphoto.fit.vutbr.cz/depth/ . 
learning problem is solved using structured random forests. In or-

der to use standard node splitting criteria, the structured space of

labels Y is mapped to a discrete set of labels C by a two-stage

mapping via an intermediate space Z at each node. The learning-

based framework [62] assumes segmentation maps being available

for training. Instead, we use pre-rendered depth maps. To be able

to use depth maps as labels, we redefine the intermediate map-

ping � : Y → Z to produce a vector that encodes depth difference

y ( j 1 ) − y ( j 2 ) for every unique pair of indices j 1 � = j 2 within a la-

bel patch y ∈ Y . In practice, we sample m = 256 dimensions of Z,

resulting in a node-specific reduced mapping ��, which is then

further discretized as in the original paper. 

The camera pose estimation procedure is repeated for each can-

didate in the proximity of the approximate camera location, and

the result with the highest matching score is selected for further

processing. 

Depth map rendering. Given the camera parameters estimated in

the steps described above, we can easily render the depth map

from the terrain model (in our case, using ray casting). The ob-

tained depths calibrated in meters are finally stored in an image

file of high-dynamic-range format (to facilitate the absolute dis-

tance estimation). 

However, the synthesized depths may exhibit local misalign-

ment between the depth map and the photo, resulting from the

coarse resolution of the 3D model, unknown non-rigid projection

parameters of the photos, or other inaccuracies in the alignment

process (e.g., occlusion of silhouette edges). This problem may be

alleviated by blurring the depth map ( Fig. 4 ), but for better regis-

tration, we propose free-form depth map warping in what follows. 

Automatic free-form warping of depth map. To register the model’s

depth map with the input photo ( Fig. 2 ), we propose a novel au-

tomatic free-form warping solution that resolves two key chal-

lenges: (1) cross-domain registration between the color image and

the depth map and (2) potentially large misalignments. 

For the first challenge, we unify the registration domains by ex-

tracting dominant discontinuities in the depth image ( Fig. 3 c) as

well as the photo ( Fig. 3 b). The model’s depth map expresses the

discontinuities with model edges ( Fig. 3 e), which is extracted by

hard-thresholding the magnitude of a gradient field of the depth

map. Corresponding photo edges are computed from the intrin-

sic image [14] ( Fig. 3 d), which removes spurious edges caused by

shading. Then, we again extract the gradient magnitude in the

color domain with thresholding ( Fig. 3 f). 

To cope with the second challenge (the large mismatches be-

tween model and photo edges), we use a previous iterative as-
igid-as-possible deformation method [15] ( Fig. 3 h). Its key ad-

antage here is its block matching that allows us to find a glob-

lly optimal registration on a small neighborhood, while as-rigid-

s-possible regularization suppresses the excessive deformation of

dges. 

Once the model edges ( Fig. 3 j) are roughly aligned around the

hoto edges, we further refine the shape of the photo edges us-

ng a trimap-based matting. To do so, we detect junctions and

nd points on the model’s edge map and subdivide edges into

ndividual segments. Edges of each segment are eroded to build

he trimap by setting three distinct regions: apparent background

black), apparent foreground (white), and unknowns. Then, we

ompute an alpha matte ( Fig. 3 k) using a closed-form approach

16] . The matte is thresholded around 0.5 ( Fig. 3 l) to refine the

hape of the photo edges ( Fig. 3 m). 

Finally, we warp the depth map by aligning the roughly aligned

odel edges to the refined photo edges. We perform the sub-

ixel accurate deformable registration [17] with the input photo

 Fig. 3 q). Then, the resulting deformation field is used to warp the

nitial depth map to the final depth map ( Fig. 2 ). 

. Experimental results 

ualitative evaluation. Our system produces absolute depth maps

n high quality; see Fig. 5 (right). Unlike ours, the previous meth-

ds operating directly on image pixels [48,63] may result in relative

nd noisy distances; Fig. 5 (middle). The depth map quality com-

arable to our rigid alignment can be achieved with the manual

odel-to-photo alignment [12] , but our results can be produced

utomatically and in a shorter time, as discussed below. Moreover,

he manual alignment may also benefit from our free-form warp-

ng, because the input terrain model is hardly perfect in terms of

bject details. 

The spatial accuracy of the resulting depth maps depends on

he resolution of the terrain model and on the distances captured

n the photo (i.e., the visual angle subtended by a pixel). Hence,

he farther the area to the camera, the higher quality achieved.

ig. 6 shows depth map edges overlaid on the photo with differ-

nt resolutions of the DEMs. Our experiences show that currently

vailable DEMs ( < 8 m spaced samples) constitute sufficient reso-

utions for objects farther than 500 m from the camera. This issue

an be partially mitigated by blurring the depth map, however this,

n general, motivates for our free-form warping; see Fig. 4 . 

Finally, we compared our free-form depth warping with Deep-

atching [64] , a recent correspondence matching method (to fa-

ilitate further warping); see Fig. 7 . DeepMatching uses multi-level

orrelation architecture to handle non-rigid deformations and to

etermine dense correspondences. Our warping well aligns syn-

hetic depth edges with the details captured in the photo re-

ulting in correct depth map ( Fig. 7 , right column). In contrast,

eepMatching ( Fig. 7 , middle column) fails to establish relevant

orrespondences between the depth map and photo due to their

ifferent modalities. 

uantitative evaluation. Quantitative evaluation of our free-form

epth map warping is difficult, because there exist no ground-

ruth datasets (i.e., accurate depth maps for real natural landscape

hotos). Instead, we used manually-aligned synthetic depth maps

s reference depth maps for comparison. The depth values are as-

igned by our technique for depth map generation, but the depth

aps are aligned manually. 6 

The evaluation used three photos and their reference depth

aps. For each photo, we then generated 10 0 0 depth maps (in-

uts to the automatic warping) randomly distorted in yaw, pith,

http://cphoto.fit.vutbr.cz/depth/
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Fig. 5. Given a single color input image, our system creates more plausible absolute depth maps (right) unlike previous depth map estimations (e.g., dark channel prior [48] , 

or deep learning based method [63] ; middle). 

Fig. 6. The effect of DEM resolution on the spatial quality of the depth map. DEM 

resolutions of 480 m, 48 m, and 24 m (left to right). 

Fig. 7. Comparison of DeepMatching algorithm [64] (middle column) with our free- 

form warping (right column). Left column: input photograph and original mis- 

aligned depth map. While ours well aligns edges which results in a correctly 

warped depth map, DeepMatching fails to establish dense correspondences making 

warping impossible (colored crosses denote correspondences). 

Fig. 8. Experimental evaluation set-up. In reading order: test images 1–3 with 

example distortions in camera yaw ( α = +0 . 05 rad ), pith ( β = +0 . 05 rad ), and roll 

( γ = +0 . 05 rad ). 
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Table 1 

Quantitative evaluation of depth map accuracy ( E absr ). 

Method Image1 Image2 Image3 Average 

Monodepth [63] 2.647 0.476 2.247 1.790 

Dark-channel-prior [48] 9.462 0.601 6.932 5.665 

Our method 0.335 0.026 0.134 0.165 
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w  
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a  
nd roll; see Fig. 8 . Each rotation angle was altered by an indepen-

ent random additive coefficient drawn from normal distribution

standard deviation σ= 0.01rad). The input depth maps with the

riginal photo were fed into our free-form warping algorithm to

roduce output depth maps. 

We compared the accuracy of outputs of our depth map warp-

ng against the recent single-image depth-map synthesis tech-

iques, monodepth [63] and dark-channel-prior methods [48] ;
here exists no competitive automatic depth-map warping method.

s the other two methods give only relative depth values , we

ormalized all the predicted depths (including ours and ground-

ruths) linearly to the interval of [0,1] for the following evalua-

ion. For each method, difference with the reference depth maps is

uantified using commonly-used abs relative difference [66] : E absr =
1 
| T | 

∑ 

i ∈ T | d i − d ∗
i 
| / d ∗

i 
, where T is the resolution of input image, d 

nd d ∗ are the estimated depth and reference depth, respectively.

able 1 shows errors (lower is better). As shown in the table, the

rrors of our depth map warping are order of magnitude better

han the other two methods. 

Moreover, we also quantify the robustness of the proposed

ree-form warping to particular errors in camera pose estima-

ion. Fig. 9 shows alignment errors with regard to camera mis-

lignment specified by angular distortions. The sensitivity of our

ethod to errors in yaw, pith, and roll is similar; i.e., all three

amera rotations affect the error to the same degree. To test

his statistically, we use 3-way analysis of variance (ANOVA) [67] ,

hich includes factors of yaw, pitch, and roll. The null hypoth-

sis is “there is no significant difference in warping error be-

ween camera orientation distortions in yaw, pitch, and roll.” The

NOVA results showed that the null hypothesis is not rejected

 F yaw 

(1 , 2999) = 0 . 88 , p yaw 

= 0 . 81 ; F pitch (1 , 2999) = 1 . 22 , p pitch =
 . 18 ; F roll (1 , 2999) = 0 . 75 , p roll = 0 . 86 ). 

erformance. Our unoptimized C++ implementation (on Intel i7

.4 GHz, 8 GB memory) requires on average 1 and 4 min. for

mage-to-model alignment and free-form warping, respectively;

epth map rendering is marginal. The free-form warping spends

ost of time on the L1 intrinsic decomposition. This can be accel-

rated using a better edge detector (e.g., data-driven method [62] ),

hich is a good avenue for future work. 

For comparison, we implemented the manual alignment in a

ay similar to Kopf et al. [12] . Our experience is in accord with

revious measurements [13] ; the interactive session requires on

verage 3 min. for a skilled user to align the photo with the model.
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Fig. 9. Depth map alignment error ( E absr ) for our free-form warping given distortions in camera yaw, pith, and roll. 
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Note that a final depth refinement (i.e., our free-form warping) is

still required to reduce misalignments from insufficient details of

the terrain model against the photo. 

5. Applications of absolute depth maps 

This section demonstrates several applications that profit from

our automatic depth map generation. In particular, we present a

novel image refocusing/defocusing algorithm that benefits from the

known absolute distances stored in the depth map. We also show

further benefits of our approach in dehazing, and guided texture

synthesis. 

5.1. Image refocusing and defocusing 

The image refocusing/defocusing algorithm we propose works

in three steps. First, the unknown focal plane is estimated from

detected focused pixels whose absolute distances are given in our

depth map. Then, space-variant blur kernels are calculated to refo-

cus the input photograph using non-blind deconvolution. Finally,

the depth-of-field effects are simulated via post-processing or

image-based ray-tracing. Please note that both the focal plane es-

timation and space-variant deconvolution steps are feasible thanks

to the absolute depth estimated in Section. 3 . 

Estimation of focal plane distance. The distance to the focal plane

from the camera, usually denoted as point of focus (PoF) in photog-

raphy, is crucial for subsequent refocusing steps. Since it is difficult

to precisely measure the focal plane distance without knowing the

accurate capture conditions, we instead estimate the focal plane

distance using a focus measure . 

The idea of our focus measure is to select a median depth of

focused pixels in the image, which is a reasonable approximation

to the true focal distance. We detect (sharply) focused pixels using

Laplacian of Gaussian (LoG), which performs well in shape-from-

focus evaluations [68] . We apply thresholding to the LoG response

of the image, and keep only the sharpest pixels (i.e., top 2%). We
hen query the synthetic depth map for the absolute distances of

he detected focused pixels, and use their median depth as the fo-

al plane distance. 

efocusing by space-variant non-blind deconvolution. While outdoor

hotographs are less affected by the defocusing, some of them

ight still exhibit slight defocus blur. In such a case, a refocus-

ng/deblur is required to recover the sharpness of the photographs,

esulting in all-focused images suitable for further processing. 

In general, the deconvolution kernel (point-spread function,

SF) is unknown (so, we call blind deconvolution), and multiple

ernels or images can produce the same output. Thus, the blind

econvolution for refocusing, in particular with a single image, is

n ill-posed and challenging problem. Previous single image-based

ethods simultaneously assessed the spatially-varying blur kernel

nd the sharp image [69–72] . 

Depth information available from our absolute depth maps is

reatly helpful in enhancing the accuracy of deconvolution or fa-

ilitating non-blind deconvolution. Assuming the image blur comes

olely from the defocus (i.e., no motion blur), we can calculate the

xtents of the spatially-varying PSFs, as it varies depending on the

epth and the focal distance (estimated in the previous step). 

Unlike general (motion) blur, the defocus blur does not have

uch variation in the shape of PSF. The PSF generally resem-

les the shape of the aperture, and the parameters are often

vailable from EXIF information (f-number or aperture stop, focal

ength, and sensor size). Assuming diffraction-free and aberration-

ree imaging, the PSF can be a simple circular or polygonal shape

ith the constant/Gaussian intensity profile. This information al-

ows us to approximate the spatially-variant PSFs, as illustrated

n Figs. 1 and 10 . For text brevity, the formulae to calculate the

patially-variant PFSs are given in Appendix A . 

Having the approximate PSFs for the image, we proceed with

he non-blind deconvolution. Importantly, the deblurring algorithm

ust accommodate PSFs with discontinuities, because the depth

ay vary significantly in outdoor images. To this end, we imple-

ented a space-variant deblurring method based on constrained
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Fig. 10. Simulation of shallow depth-of-field effects. The input image (first) has been artificially defocused using synthetic depth map, focusing on 6 km, 30 km, and 70 km 

(in the reading order). The virtual full-frame DSLR camera used f-number = 1.0, and focal length = 1200 mm. 

Fig. 11. Image refocusing results (best viewed in electronic version). In the reading order: original image, deblurring using regularized intensity [65] , maximum likelihood 

blind deconvolution using our largest estimated blur kernel as a prior, and the proposed space-variant deblurring result. Right: an illustration of the space-variant kernels. 

The deconvolution techniques, that assume only single kernel, oversharpen the foreground. Our method refocuses the image adaptively and does not suffer from this problem. 

Fig. 12. Comparison of ray-traced defocus blur (b–d) and Gaussian blur (f–h) generated from the color (a) and depth inputs (e). The black-edged boxes show blur kernel 

sizes (in pixels). The ray tracing better handles discrete depth boundaries than Gaussian blur does (see the red insets). 
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east square method with total variation regularization [73] . In con-

rast to previous approaches which resorted to estimations of PSFs

nd/or assumed only a uniform PSF, we directly calculate the space-

ariant kernels using absolute distances encoded in the depth map.

his improves image refocusing results, as shown in Fig. 11 . The

ull refocusing process requires on average 1.5 min. for 1M pixel

mage (on Intel i7, 2.4 GHz, 8 GB memory). 

efocus manipulation and depth-of-field simulation. Finally, we can

e-blur the refocused sharp image as the user wishes. Besides

aithful reproduction of the depth-of-field (DoF) to real cameras,

hallower DoFs can be expressed to enhance saliency of objects,

hich would normally be impossible to capture in real ones

 Figs. 10 and 12 ). 

An accurate depth map, which we acquire in Section. 3 , is uti-

ized again for an adaptive kernel. Similarly to the refocusing, the

hape of the PSF is given by the depth map, point of focus, and

arameters of, this time, the simulated camera ; see Appendix A for

etails. 

We first experimented with a separable filtering with Gaussian-

ernel, but such a simple convolution-based blur often fails around
iscontinuous depth boundaries ( Fig. 12 ). The depth transition

an be better handled by incorporating precise geometric visibil-

ty, which can be derived from the depth information. For this

urpose, we also implemented the state-of-the-art GPU-based ray

racer [45] , which can blend multiview images precisely and de-

iver better quality ( Fig. 12 ). We implemented both methods using

PU (on Intel i7 2.4 GHz with NVIDIA GTX 980 Ti and OpenGL),

nd they performed in real time (e.g., 1–2 ms for 1024 × 680 reso-

ution). 

.2. Single image haze removal 

Natural landscape images are often degraded by haze due to

tmospheric absorption and scattering. Image dehazing for remov-

ng such phenomena is generally a challenging problem, because

he amount of haze depends on the distance from the camera.

he main effort of single image dehazing algorithms [48,51] was

irected to depth estimation. In our case, however, the absolute

epth is given in an accurate depth map and we can directly pro-

eed to the recovery of the scene radiance. Having solved the main

ehazing issue implicitly via the estimated depth map, we proceed
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Fig. 13. Effect of the automatically estimated dehazing parameter β . In the reading order: β = 0 , 1 . 5 ×10 −6 and 3 . 5 ×10 −6 . 

Fig. 14. Example of the single-image haze removal (right) for the input photo (left) using synthetic depth map (middle). Notice the spiky peak on the horizon, which has 

been completely obscured by clouds in the input photo. 
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Fig. 15. Example of guided texture synthesis. From the source texture, its depth 

map and shading, we automatically synthesize a novel texture (the red box) for the 

target depth and shading. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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similarly to He et al. [12,48] . We recover the scene radiance on

per-pixel basis as follows: J x = A + (I x − A ) / ( max (t x , t 0 )) , where J x
is the recovered radiance in the pixel x , A is the global atmospheric

light, I x is the observed pixel irradiance, t x is the medium trans-

mission given by the depth map, and t 0 = 0 . 1 . More specifically,

 x = e −βd , where d is the depth of the point x , and β is the scat-

tering coefficient. We set β so that t x = 0 . 75 for the furthest point

in the photo, i.e. β = 0 . 3 /d, which leads to good results ( Fig. 13 ).

The coefficient A is initialized automatically with the average color

of the 0.1% brightest pixels from the dark channel [48] in the sky

area. The dehazing results are obtained at interactive speeds and

they are shown in Fig. 14 . 

5.3. Guided texture synthesis 

Guided texture synthesis (texture-by-numbers) is a variant of

popular image analogies framework [74] . It allows us to transfer a

texture from a given exemplar to a target image using guiding fea-

ture maps. In our scenario, range data (depth map) and synthetic

shading can be used to guide semantically meaningful transfer of

texture from the existing photograph to a virtual scene ( Fig. 15 ).

Note how the corresponding values in the range map and shading

image help the algorithm to synthesize proper texture at particu-

lar locations, e.g., snowcapped peaks or shadows in lowlands. To

implement this, we used StyLit method [75] (current state-of-the-

art in guided texture synthesis). However, we replaced LPE-based

guiding channels used in StyLit with our depth map and shading

and run the synthesis algorithm, which resulted in faithful syn-

thetic images as shown in Fig. 15 . The advantage of StyLit as com-

pared to the original greedy approach of Hertzmann et al. [74] is

that it performs texture optimization which jointly satisfies texture

coherence as well as matching of guiding channels. In addition to

that it also adaptively encourages uniform usage of source texture

patches which significantly improves the overall quality of the syn-

thesis. 
. Conclusions and discussions 

In this paper, we proposed an automatic approach to acquire

epth maps of natural landscape images. The absolute depth is

endered from a digital elevation model, that is automatically

ligned with the input photograph. To match the tiny details of

he photograph, which are not necessarily captured in the model,

e proposed a free-form warping step. In this way, we obtained

ccurate depth maps calibrated in absolute distances. We showed

his was beneficial in image editing and enhancement, in partic-

lar for refocusing and defocus manipulation. We further showed

he benefit of our synthetic depths in dehazing, and guided texture

ynthesis. 
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Fig. 16. Foreground objects, which are not depicted in the synthetic depth map, 

may adversely affect the results of our algorithms (left: input image, right: biased 

dehazing result). 
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Fig. A1. Definition of variables and illustration of the depth-of-field for a symmet- 

rical lens. 
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imitations and future work. The main limitation of our approach

esides in large foreground objects, which are often captured in the

hotograph but not in the model. The free-form warping step can-

ot cope with this case and artifacts may show up in subsequent

mage processing ( Fig. 16 ). This could be potentially alleviated by

oreground object classifiers, which may direct further research. 

The depth map rendering step assumes a correctly estimated

amera pose, i.e. camera location and orientation. This estimation

s rather stable and efficient, when the approximate position of the

amera is known (e.g. given the GPS reading stored as an EXIF

ag). However, when camera positions are completely unknown,

he pose estimation is much less reliable due to a large-scale ex-

austive search. In that case, our pipeline resorts to purely visual

amera geo-localization [56] . This is an extremely difficult task es-

ecially in outdoor environments, and as such, it is a topic of in-

ensive ongoing computer vision research. 

Our as-rigid-as-possible deformation method relies on the exis-

ence of sufficiently strong gradients to align mismatches between

he model and photo edges in the input photograph. This assump-

ion may lead to lower accuracy for internal depths that corre-

pond to the structures of weak color contrast. To alleviate this

ssue, one may consider to replace the computation of intrinsic

mages [14] with an advanced CNN-based segmentation technique

e.g. [76] ). 

In the future, we will exploit our automatic depth map syn-

hesis in image quality assessment task, where the depth infor-

ation improved the state-of-the-art significantly [77] . We believe

hat other fields such as image completion, in painting, restoration,

nd panorama stitching will benefit from automatically generated

epth maps as well. 
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ppendix A. Spatially-variant point spread function 

To assess the spatially-variant defocus kernel size b , we pro-

eed as follows. The important variables are illustrated in Fig. A1 .

irst, the circle of confusion ( c ) is calculated using the “Zeiss for-

ula” (modern standard) [78] : c = d S / 1500 , where d S is the sen-

or diagonal size in millimeters. Then, the hyperfocal distance ( H )

s calculated as follows: H = f 2 / (N · c) , where f is focal length, N
enotes the f-number, and c is the circle of confusion limit. The

epth-of-field ( DOF ) is then: DOF = D F − D N , where D F and D N is

he near- and the far-limit, respectively (the nearest and farthest

istances in a scene that appear acceptably sharp in an image).

 N = H · S / (H + S) , and D F = H · S / (H − S) , where H is hyperfocal

istance, and S is focus distance. Finally, the kernel diameter ( b )

t the given point is calculated as follows: b = 

f ·m s 
N 

x d 
s ±x d 

, where m s 

s magnification of the object in focus, and x d is the distance be-

ween the current point from the focus plane. More specifically,

 s = f/ (s − f ) , and x d = | x − s | . The diameter b is finally converted

o pixels: b px = d i /d s · b, where d i is the image diagonal in pixels. 
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