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Abstract—Network Intrusion Detection Systems have gained
popularity as one of the key technologies to secure communication
infrastructures. However, their high computational complexity
poses performance challenges for practical deployment in modern
high-speed networks. To achieve the highest quality of detection,
IDS should process as much relevant data as it can without be-
coming the bottleneck of a network connection. At the same time,
IDS implementation should be flexible enough to accommodate
detection methods of ever emerging new security threats.

This paper aims at an acceleration of IDS by means of
informed packet discarding, effectively focusing the available
resources of overloaded IDS to the most relevant parts of
analyzed traffic. Unlike previous works, the proposed scheme
does not move the IDS nor any specific portion of it into the
hardware accelerator. Rather it uses smart software based or
hardware accelerated offload (bypass) of the traffic parts that
are not likely to represent a security threat. The flexible nature
of software-based IDS is therefore fully maintained, while the
quality of threat detection remains sufficiently high even when
processing high-speed traffic. We show that controlled (informed)
discarding of well-defined portions of input traffic yields better
detection rates, compared to the default uncontrolled (blind)
buffer overflow discarding in high throughput scenarios. Our
results show that it is entirely possible to run an IDS on a high-
speed network link using single CPU with an FPGA accelerated
packet pre-filtering.

I. INTRODUCTION

Intrusion Detection Systems significantly contribute to net-
work security by providing a deeper insight into transferred
packets and their payloads. These systems often use some
form of deep packet inspection, such as pattern matching or
other methods, to detect characteristic signatures of malicious
activity present in the network data. A common property of
these inspection methods is their overwhelming computational
complexity, leading to challenges in meeting the performance
requirements of modern high-speed networks. Running a prac-
tical pattern matching algorithm at 100 Gbps or even tens of
Gbps is an unreachable goal for current CPUs.

On the other hand, the ever-changing nature of security
landscape requires the IDS to be able to react quite rapidly to
newly emerging threats and attack vectors. The flexibility of
software implementation is therefore highly desirable and the
use of considerably less flexible hardware processing offload
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that accelerates only a specific IDS application directly is
therefore not so feasible.

To aid the performance of a general software-based IDS
without hindering its flexibility, we propose and explore a
different approach to IDS acceleration. The key idea of our
concept is not to directly accelerate the speed of data process-
ing in the IDS, but rather to intelligently reduce the amount
of input traffic that the IDS must process. Based on a few
basic characteristics some packets are deemed interesting and
selected for processing, while others are discarded. Also, this
selection of packets for processing/discarding is done in such
a controlled way so that negative impacts on IDS detection
abilities are minimized. We expect and experimentally prove
that only a considerably small percentage of all threats on the
network is overlooked this way, while the IDS can operate at
much higher speeds as originally possible.

We present an IDS acceleration based on these assumptions:

1) The packet rate performance of software-based IDS is
limited and insufficient. The IDS is not fast enough to
sufficiently process all of the packets that are transmitted
in a monitored high-speed network, such as 40 Gbps or
100 Gbps Ethernet line.

2) The default packet discarding mechanism is a blind input
buffer overflow that behaves in an effectively random
manner. In an overloaded IDS, incoming packets are
discarded right after they arrive without any chance of
further examination. As a result, a number of threats are
overlooked and remain unreported.

3) The most relevant information regarding security is
present in several packets at the beginning of each
network connection (flow). These packets should be,
therefore, preferred for processing over others, when
IDS becomes overloaded.

4) Basic packet examination can be performed and the
obtained information subsequently used to selectively
discard some of the following packets. Furthermore,
such packet discarding mechanism exists, that lets the
IDS yield a better quality of detection than the default
(blind) discarding. This holds, even though the raw
packet rate of the IDS itself stays unchanged.

5) Majority of the network traffic is carried by a quite small
number of relatively large flows. So, selection of only
a few flows for discarding (bypass) can significantly
reduce input packet rate of IDS.
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In the following text, we basically assume that points (1) and
(2) hold true based on our previous experiences with IDS
deployment (more in section III). The validity of point (5)
has been already shown in several other papers, so we simply
check if this feature is also present in our network data. The
main focus of this paper is placed on thoroughly exploring
and proving points (3) and (4).
The main contribution of this paper is three-fold:

o Design of an input acceleration concept (heuristic) that
considerably reduces the amount of data sent to any
general IDS in a controlled and beneficial manner. The
concept idea enables that both software and hardware-
based implementations are possible.

o Examination of real network traffic traces to show that
the overall quality of threat detection remains sufficiently
high even when only short flows and several initial
packets of large flows are observed. In other words,
proving that only a minute fraction of network threats
is present in the latter parts of the connection contents.

o Implementation and experimental evaluation of the pro-
posed informed discarding concept to demonstrate its
effectivity under real network deployment conditions.

II. RELATED WORK

There are several commonly used software implementations
of IDS, which we list here with a brief description. Snort
[1] is an open source software network intrusion detection
and prevention system. It relies heavily on regular expression
matching. Similarly to Snort, L7-filter [2] also operates with
regular expressions. It is a Linux based packet classification
software aiming primarily at application layer (L7) processing.
A software library for application layer traffic processing
called nDPI [3] can serve as an example showing that regular
expression matching alone is not enough. It should be only one
component of a more complex set to form a robust IDS. Bro
[4] is a flexible framework that allows specification of custom
detection rules using its own scripting language. This feature
makes it very powerful, but also rather complex. Suricata [5] is
functionally quite similar to Snort, but supports multithreaded
processing and is, overall, built to achieve higher performance.

Apart from software implementations, there is a large
number of papers proposing partial or full IDS functionality
offload to a hardware accelerator, for example [6], [7], [8].
The most common way of doing that is by converting regular
expressions to an FPGA firmware structure, thus offloading
the time-consuming pattern matching from the CPU. Such
approach poses a disadvantage of lowered flexibility. Most
proposed methods require recompiling of the FPGA firmware
when the regular expression set changes. That may take hours
to complete and meeting FPGA timing constraints is never
guaranteed. Also, advanced techniques like TCP stream re-
assembling are often missing in FPGA-based IDS accelerators,
leaving open back doors for covert attacks. Finally, for IDS
that use more complex threat detection methods than just
pattern matching, such acceleration is of little use.

An example of a more flexible acceleration is provided
by The Shunt system [9]. It is a hardware accelerator that
cab divert a suspicious (interesting) traffic to the software
for further analysis. To this end, it somehow resembles our
work. Of course, our work uses a more powerful accelerator,
resulting in throughput of tens of Gbps, while the Shunt was
demonstrated at only 1 Gbps links. The main differentiation of
our work is that it is much more complete. While the Shunt
paper describes almost exclusively the hardware architecture
and its implementation, we primarily aim to provide analysis
of real network traces together with extensive experimental
results of achieved IDS acceleration. Moreover, we provide
results showing the benefits of a pure software implementation
of our proposed controlled packet discarding method.

Another more sophisticated hardware acceleration concept
is our previous work — Software Defined Monitoring (SDM)
system [10]. It is a hardware accelerator aimed primarily
at flow-based network monitoring. It supports offloading of
NetFlow statistics computation of uninteresting and large flows
into the hardware, while sending packets of short, interesting
and unknown flows to the CPU for a more detailed analysis.
SDM also includes a software controller with easy to use API,
which accepts offload requests from the monitoring (security)
applications and commands the hardware accelerator accord-
ingly. It has been shown to effectively accelerate network flow
measurement up to application layer processing, but no clear
benefits have been demonstrated when used to offload traffic
from more computationally complex IDS.

A research published in [11] proposes a Time Machine con-
cept. This concept exploits the heavy-tailed nature of network
traffic and also assumes that the most relevant information
is present at the beginning of each network flow. But, their
approach aims at a packet capture system which enables
storage of suspicious traffic for later offline (i.e. retrospective)
forensics. Also, the Time Machine system is only controlled
by an IDS and do not in any way accelerates its operation.
That is distinctly different from our proposed concept. We
deal with an online analysis of suspicious traffic and employ
an accelerated pre-filter to directly aid the IDS performance
by reducing the amount of data on its input.

An attempt at creating a high-speed IDS was performed
at Berkeley Lab [12] using Bro. In this approach, the traffic
is distributed to multiple IDS servers by a pair of switches.
To achieve high throughput, five servers with 10 Gbps input
lines each are running Bro in parallel. If some Bro instance
detects a bulk transfer, the switches are set to discard the
subsequent packets of that flow. Therefore, the amount of
input traffic to Bro servers is reduced. Our work is similar
to [12] in that it uses software IDS and a controlled packet
discarding. However, our work aims at achieving similar IDS
performance in a single box deployment. Furthermore, our
paper also focuses on a detailed analysis of the controlled
packet discarding influence on the achieved quality of de-
tection, which is completely missing in [12]. Finally, our
discarding algorithm is much finer and IDS agnostic as it does
not rely solely on the information from the IDS.
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Fig. 1. Percentage of dropped packets and detected events at different speeds.

III. PROOF OF CONCEPT

In this section, we analytically support our claim that
controlled packet discarding results in sufficiently high IDS
detection quality, while IDS can handle traffic at much higher
speeds. For this evaluation, we use unsampled packet data
from one of the lines in our nation-wide network. The captured
PCAP file contains 285 833 947 packets of 8 642744 flows in
over 200 GB of data. It was captured at around 2 Gbps link uti-
lization over a duration of 826 seconds. The traffic is replayed
on its original capture speed. To perform measurements with
higher bandwidths, we still replay the PCAP at the original
speed (to maintain flow timing characteristics), but replicate
each packet several times. To avoid changing flow data, we
deterministically modify each packet’s IP address when repli-
cating, which effectively results in new flows being created. As
an IDS, we choose Suricata [5] because of its affinity to high-
performance multi-threaded implementation. We use 13 642
detection rules from the public EmergingThreats database [13].

To support our claims of insufficient IDS performance or
detection quality for high-speed deployment, we provide some
basic results in Fig. 1. An out-of-the-box version of Suricata
is used. A packet drop rate on its input (blue) and detection
accuracy (red) are measured for different traffic speeds. We can
see that a packet loss of around 10 % is present even at 4 Gbps.
The loss is consistently rising with input speed and at 10 Gbps
it already reaches more than 60 %. For the overall detection
quality of tested IDS at various input speeds and related drop
rates, the 100 % baseline is given by offline (non-discarding)
analysis of the acquired network data. All of the expected
events are reliably detected only at the speed of 2 Gbps. The
presence and increase of uncontrolled packet discarding for
higher speeds causes the percentage of successfully detected
events to drops rapidly. Even at 6 Gbps (40% drop) only
around 60 % of all events are detected and at the speeds of
10 Gbps and more (above 60 % drop) only fewer than 40 %
of events is detected. Therefore, there is definitely a reason to
utilize some kind of IDS acceleration.

Findings already presented in various papers like [10]
suggest that high-speed network traffic has a heavy-tailed char-
acter of flow (communication) size distribution. The heavy-
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Fig. 2. Percentage of packets carried by the largest flows on the network.
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Fig. 3. Processed packets and detected events in them for different N.

tailed character of flow size distribution derived from the
captured PCAP file is shown in Fig. 2. The graph shows the
percentage of all packets carried by the specific portion of
the largest (heaviest) flows from the file. It can be seen that
even 0.1 % of the largest flows carry as many as nearly 60 %
of all packets and 1% carry more than 80 %. The observed
heavy-tailed character of flow sizes has a potentially positive
consequence for an achievable efficiency of the proposed
controlled discarding concept. Even if only a small percentage
of all flows is selected for controlled discarding, processing of
majority of the packets by IDS is still avoided. In other words,
this enables to focus the IDS’s effort primarily to short flows
and several initial packets of larger flows with potential for
considerable benefits in achievable performance.

Fig. 3 shows (in blue) the percentage of packets that have
to be processed by IDS when only the first NV packets of
each network flow are analyzed and the rest is discarded
(flows shorter than N are analyzed entirely). The discarding
decision threshold N is shown on the horizontal axis, while
the percentage of packets is drawn in blue, one dot for each
considered value of N. We can see that the first 50 packets
of all flows carry less than 20 % of all packets, therefore
the remaining 80 % of packets are found in later packets of
flows larger than 50 packets. These results only confirm the
expected implications of the heavy-tailed character of flow size
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Fig. 4. A number of processed packets per detected event for different N.

distribution stated in the previous paragraph.

Fig. 3 also shows (in red) the number of events detected
by Suricata when the processing of the input file is reduced
to NN initial packets of each flow. The results are shown in
relative form (as a percentage), where the base value (100 %)
was obtained similarly as before —by running Suricata offline
analysis on the original 200 GB file (i. e. N = oo). We can see
that more than 80 % of all security threats are detected even
when only the initial 5 packets of all flows are considered and
more than 90 % when N > 30. Furthermore, with forwarding
of more packets into the IDS (a further increase of V) the
detection rate increases only rather slowly. Therefore, we argue
that if the IDS system is able to process only part of the
network traffic due to insufficient performance, it should focus
primarily on the processing of the first several packets of each
flow and the rest should be preferred for discarding.

A different view of the same data is provided in Fig. 4.
The number of processed packets is divided by the number
of detections for each analyzed value of N. We can see that
by lowering the threshold N, considerably fewer and fewer
packets must be, on average, analyzed to detect a security
threat. Just for comparison, when the whole PCAP file is
processed by Suricata (i. e. N = 00) the value of packets per
detection ratio rises to over 2000. These findings further prove
the conclusion of the previous paragraph, that the IDS can be
tuned to higher detection efficiency under heavy loads by the
controlled preference of initial packets of flows for analysis.

IV. SYSTEM DESIGN

As already mentioned in the Introduction, the design of
our IDS acceleration concept is mainly motivated by the
need to reduce input packet rate to the IDS, while retaining
as much relevant information as possible to maintain high
detection accuracy. Since we assume that the most relevant
information regarding security is present in several packets at
the beginning of a network connection, we design our concept
to drop all packets that follow the first V packets of each
network flow. The value of threshold N can be arbitrarily
altered depending on momentary network situation. Of course,
because of this design choice, the system does not detect
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Flow cache

>=N Check flow state
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cache counter cache counter record

: /
Drop packet Send IpDaScket to

Fig. 5. Flowchart of packet processing in the proposed IDS acceleration.

attacks which arise after the first IV packets of the flow, but
as the analysis results from the previous section have shown,
the number of such attacks is very small (less than 10 % even
for N = 30). Furthermore, the value of N should be set to
oo when IDS is processing input data at sufficient rate and
gradually lowered only to prevent blind buffer overflow as
input traffic volume starts to overwhelm the IDS.

To perform the described decision, a system implementing
the proposed concept must maintain very basic flow statistics.
This requires two main additional modules: packet header
parser and flow cache. Packet header parser is required to
obtain packet header fields that uniquely identify a network
flow. We use the standard five-tuple of IP addresses, port
numbers, and L4 protocol number to identify flows. Network
flow cache is necessary to store and update records of actual
flow lengths. Every incoming packet either creates a new flow
record or increments a size counter in an existing one.

A flowchart of the proposed IDS input system operation
is shown in Fig. 5. Every input packet is firstly parsed and
flow identification fields are extracted. Then the associated
flow record is searched in the flow cache. A new flow record
is created for unknown (not found) flows, packet counter
is incremented for known flows. The packet is dropped if
the counter for appropriate flow exceeds configured threshold
N otherwise, the packet is forwarded to IDS for normal
processing. Furthermore, there is an independent housekeeping
process (not shown in the flowchart) that removes old entries
from the flow cache. It operates with configurable inactive and
active timeout periods of flow records.

This scheme of operation is general and independent on the
particular features of IDS used. It is therefore applicable to any
software IDS for which it is possible to alter the input path.
Since most software IDS employ extensible modular design,
their input modules or plugins are often a convenient place for
the implementation of our acceleration method.
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Fig. 6. Packet processing in the proposed IDS acceleration with HW offload.

A. Hardware Accelerated Offload

Utilization of the proposed input system inevitably requires
some additional processing from the CPU, adding to its
total load. To further explore the performance limits of our
approach and achieve even better results, we employ hardware
accelerator that drops unwanted packets before they reach
the CPU. To enable this functionality, both the packet parser
and the network flow cache must be present in the hardware
accelerator, so that the decision whether to drop or pass
packets can be offloaded and made directly by the accelerator.

The updated scheme of system operation with the utilization
of hardware acceleration is shown in Fig. 6. The hardware ac-
celerator (grey blocks) parses packets, searches for appropriate
flow records in its flow cache and drops all matching packets.
Then the software path (white blocks) only passes packets
to IDS and maintains flow records in its software flow cache.
The housekeeping process (not shown) replicates (offloads) the
heavy flow records that exceed configured threshold N from
the software flow cache to the hardware one and also removes
outdated flow records from the software and hardware cache
according to the configured timeouts.

While it would be certainly possible to move the packet
parser and the flow cache to the hardware entirely, we rather
replicate them. The main reason for this decision is to maintain
the flexibility of utilization. By maintaining a software flow
cache, alternative packet discarding mechanisms can be easily
used and fine-tuned. By choosing which flows will be of-
floaded from the software flow cache to the hardware one, the
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Fig. 7. Our hardware accelerated IDS input concept utilizing subset of SDM.

system can, for example, use different discarding thresholds
N for individual traffic types or IP subnets. Also, the packet
parser is typically present in IDS anyway, so that it can be
shared and presents no additional computation load for CPU.
Finally, due to the fact that most of the traffic is discarded
in the hardware, the performance penalty of maintaining a
software flow cache is significantly reduced.

To implement the proposed hardware accelerated version
of our concept, we utilize the Software Defined Monitoring
(SDM) system [10]. Although SDM is primarily designed to
accelerate flow-based network monitoring, a subset of its func-
tionality can be easily utilized also for our IDS acceleration
concept. This utilization is outlined in Fig. 7. SDM uses FPGA
accelerator cards with 10, 40 or 100 Gbps Ethernet interfaces
connected to a host server via PCI Express bus. The SDM
FPGA firmware itself (on the left) already implements capture
of input packets from Ethernet links, hardware packet parser, a
cuckoo hashing based form of flow cache with packet filtering
capabilities, as well as fast DMA transfers with the support
for flow-based traffic distribution among CPU cores, enabling
effortless multi-threaded IDS operation. The hardware flow
cache is realized using on-card QDR memories and has a
total capacity of over 250 000 rules (flows). Because network
traffic has a heavy-tailed character of flow sizes and we want
to offload only the heaviest of the flows, the cache capacity
should not be a very limiting factor. However, if it proves
to be an obstacle, on-chip URAMs can be used to further
enlarge the cache in newer UltraScale+ FPGAs. The SDM
software (on the right) includes mainly the SDM Controller,
which implements software flow cache and presents a simple
C language API for easy integration into existing IDS. As
depicted, only input modules/plugins of accelerated IDS are
communicating with software flow cache of SDM Controller
maintaining its records and requesting offload of selected flows
into hardware cache. The offloading process is optimized for
latency and throughput, the whole hardware cache can be filled
with new records in less than a second. The capacity of the
software flow cache is considerably larger compared to the
hardware one and it can store tens of millions of flow records.

V. EXPERIMENTAL RESULTS

Evaluation of the proposed acceleration concept presented
in this paper uses Suricata IDS [5] running on a commodity
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Fig. 8. Percentage of incoming packets processed for different input speeds.

SuperMicro server with 8 core Intel Xeon E5-2670 CPU
operating at 2.6 GHz and with 64 GB of RAM. The same
200 GB PCAP file with real network traffic that we used for
initial analysis is also used for these experiments.

Three deployment scenarios are evaluated and compared:

o Without acceleration, when Suricata is executed as it
is, without any modifications whatsoever. This creates a
baseline to evaluate acceleration benefits against.

o Software accelerated, where Suricata input software plu-
gins discard packets according to the scheme from Fig.
5, implementing their own software cache.

e Hardware accelerated scenario utilizes SDM to discard
packets according to the scheme from Fig. 6. Input
plugins of Suricata are altered to communicate with SDM
Controller and instruct it to offload selected heavy flows
(flows that exceed configured N) into the hardware cache.

In both software and hardware accelerated versions, the value
of offload threshold [V is hand-picked and optimized to obtain
the best results. We assume that in a real deployment, N can be
automatically adjusted on the fly by the SDM system to adapt
to changing network traffic characteristics as already shown
in [10]. Basic idea is to lower the value of NV (i.e. offloading
more) whenever an input buffer overflow (blind discard) is
detected and raise it again (i.e. offloading less) when the input
traffic rate drops. The threshold adaptation must also consider
the current load of the hardware flow cache, which has a
limited size. For the best offload ratio, it is advantageous to
keep the flow cache nearly full of active records. On the other
hand, to maximize the quality of detection we want to forward
as many packets to the IDS as it can handle.

A. Complete Ruleset Detection

In the first experiment, we test Suricata with all of the
13642 rules from the EmergingThreats database [13] (the
same as in section III). This configuration enables the most
detailed and precise threat detection but it is also extremely
demanding on consumed CPU performance per packet.

Fig. 8 shows packet drop rates for each of the tested
scenarios. For non-accelerated version (blue), Suricata starts
uncontrolled packet drops at input rate between 2 and 4 Gbps.
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For software accelerated version (orange), the software input
plugin actively performs controlled packet discarding reducing
the load of the tested IDS (orange dotted line), which signifi-
cantly helps in reducing uncontrolled packet drops at the input
(shown as the decline of the solid orange line from the 100 %
edge). The limited CPU performance forces the system to start
dropping packets uncontrollably at input rate between 6 and
8 Gbps. With the hardware acceleration, most of the packets
never even arrive at the CPU. This is shown as the dotted
red line with circles in the graph— CPU (software IDS) needs
to process only around 30 % of all packets at high speeds
(maximum acceleration rate). At the input speed of around
10 Gbps, the rate of packets passed by the accelerator to the
CPU becomes still too high to process, and uncontrollable
discarding occurs. Further reducing the rate of packets that are
sent to the CPU (increasing the controlled packet discarding)
would require lowering of the threshold N to extremely low
values. That, however, was not possible, because the hardware
flow cache size of SDM implementation is limited to around
250000 items (flows). Furthermore, reduction of N below
a certain point itself can also considerably lower detection
quality of IDS (see the left side of Fig. 3).

More important numbers are shown in Fig. 9, which plots
the percentage of detected events, related to the 100 % baseline
given by offline (non-discarding) analysis of the used PCAP
file. This ultimately represents the detection quality of tested
IDS for given input rate. Only for the speed of 2 Gbps, when
no packets are dropped, all events present in the input data
are detected by non-accelerated version (blue). The percentage
of all events detected in all scenarios lowers rapidly as the
uncontrolled packet drops shown in the previous graph rises.
However, the increase in controlled discarding, present in both
accelerated versions (orange and red), causes only a moderate
decline of detection quality.

With the controlled discarding, the system maintains good
detection quality for much higher input packet rate. In hard-
ware accelerated scenario (red), the detection rate drops under
80% only at speeds higher than 12Gbps, while without
acceleration (blue) this drop occurs right after 4 Gbps mark
(3x sooner). From a different perspective, the detection quality



of Suricata IDS is enhanced up to 2 or 3x by the proposed
hardware acceleration at higher input speeds.

Furthermore, it is worth noting that for 2 Gbps input rate, the
software accelerated version still performed some controlled
discarding, which reduced detection quality. In hardware ac-
celerated scenario, we employed on the fly accommodation of
decision threshold N to higher values for lower speeds based
on actual CPU load (note that red dotted line follows blue line
in Fig. 8). That is why the hardware accelerated version can
reach 100 % detection rate when the system is not overloaded.
To further show the benefit of the threshold accommodation,
the software accelerated version was left to discard packets
unnecessarily even at lower data rates (steady orange dotted
line in Fig. 8). This is exactly why the detection rate is lower
(only 90 %) even at low input rates. In a real deployment, this
configuration can easily be avoided. We also want to point out
the fact that in the accelerated versions, only a small portion
of packets is actually sent to Suricata for processing (dotted
lines in Fig. 8). The detection quality remains still considerably
high—around 90 % —due to the increased IDS efficiency, as
already predicted by Fig. 4 in section III.

Now we return back to our assumption number 4) from
the Introduction and use Fig. 10 to supports its claim. Each
measured value from the previous experiment is drawn as one
point in the (processed packets x detected events) space. For
unaccelerated version (blue), we can see a strong linear corre-
lation (blue dotted line), which supports our initial assumption
that uncontrolled discarding is effectively random. This is also
our baseline since it represents the default IDS deployment use
case. With the hardware accelerated (controlled discarding)
version (red), all our measured points are above the baseline,
which means that for a given amount of packets processed
by the IDS, more events were detected. Note that darker red
dots are from measurements at highest speeds, which are
negatively influenced by blind discarding. Theoretical data
from our analysis in section III are shown as the dotted red
line. The reason for the measured data being slightly worse is
that there is a small latency in installing packet discarding rules
to the SDM hardware. Therefore, the accelerator sometimes
lets more than NN packets in, which causes the difference
between the model and our implementation.

B. Malware Detection

In real network deployments of IDS, it is common to select
only a specific subset of available detection rules to focus
only on the most critical threats or relevant threats [14],
[15]. In the wake of recent massive outbreaks of malware
infections, especially ransomware like WannaCry or Petya
[16], we focused on malware detection rules here. This way,
we select a total of 967 malware oriented rules from the
original 13642. As a result, virtually all reported events are
only of ET MALWARE type while other (previously more
prevalent) types like ET SCAN, ET DOS or ET POLICY are
not detected. With smaller ruleset used in Suricata, a reduction
in CPU performance demands per packet is expected to lead
to higher achievable speeds.

100 T T “‘.
‘‘‘‘‘‘‘‘ o °
""""""" s ©
ot L )
or L 1
S ; e e
£ S S N A R R ol
€ 6op: ® ]
o) - N B,
2 R e
° . ’
2 R R R P
g 40 Pt ]
ko i o
a Lo
7 """""" @ Blind discarding (measurement) | ]
T Blind baseline interpolation
‘‘‘‘‘‘‘ @ Accelerated measurements
-------------- Informed discarding (analysis)
0 3 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Software processed packets [%]

Fig. 10. The relation between processed packets and detected events.
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Fig. 11 shows packet drop rates for each of the tested scenar-
ios with the smaller ruleset. For non-accelerated version (blue),
Suricata starts uncontrolled packet drops at input rate between
10 and 12 Gbps. For accelerated versions the speeds are higher,
the software version starts dropping packets uncontrollably at
input rate between 16 and 18 Gbps and hardware version starts
only at around 20 Gbps. These numbers show that reduced
ruleset enables Suricata to reach speeds about 10 Gbps higher
as in the previous experiment, while other basic characteristics
of these graphs remain the same.

More important numbers are shown in Fig. 12, which again
plots the percentage of detected events, related to the 100 %
baseline obtained from the offline analysis. For the speeds of
up to 10Gbps, when no packets are dropped, all expected
events are detected by non-accelerated version (blue). The
percentage of all events detected in all scenarios lowers even
more rapidly as before with the rise of uncontrolled packet
drops shown in the previous graph. And again, even the high
rate of controlled discarding, causes only a rather slow drop in
detection quality —detection quality drops under 80 % 2 x later.
At the highest input rates, detection capabilities are enhanced
up to 2 or 3x compared to non-accelerated version.

Interesting information can be seen from Fig. 13. Again
each measured value from this experiment is drawn as a
point in the (processed packets x detected events) space. For
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unaccelerated version (blue), a strong exponential baseline
correlation (blue dotted line) is now present instead of linear.
This further favors the use of acceleration for IDS, as blind
discarding has an even worse impact on malware detection
rate as on general detections. The exponential correlation here
is due to the common need to process multiple subsequent
packets of a flow in order to detect a single malware threat.
Loss of even one of these packets often leads to failed
detection. Theoretical data from an offline PCAP analysis
are shown as the dotted red line. Here, the detection rate
is even more dependent on the first packets from flows
as in the first experiment—all detections occurred between
the 4th and 10th packets of all flows. Hardware accelerated
(controlled discarding) version (red) again shows that all our
measured points are well above the baseline, even the darker
red dots representing measurements at highest speeds, which
are significantly negatively influenced by blind discarding.

VI. CONCLUSION

We have designed and tested a new concept of Intrusion De-
tection System acceleration based on a controlled (informed)
reduction of incoming traffic while retaining sufficiently good
overall threat detection capabilities. Based on the analysis
results showing that the first packets of network flows are
the most important for security detections, in our concept, we

propose to drop all packets that follow the first N packets of
each network flow, where the value of N is optimized on-
the-fly based on current IDS load. In other words, if an IDS
is overloaded and have to skip processing of some packets,
we propose a system for informed selection of which packets
to skip (ends of heavy flows) instead of reliance on random
buffer overflow mechanism. The proposed concept can be
implemented as a pure software system, but can also take
advantage of hardware acceleration to achieve even higher IDS
speed up. Furthermore, the concept is general enough to be
deployable with any software based IDS.

In this paper, we use Suricata IDS for experimental test-
ing on captured data from a real high-speed network. We
have tested two basic configurations of Suricata—full ruleset
(13642 rules) and smaller ruleset optimized for malware
detections (967 rules). Achieved experimental results conclu-
sively show that our proposed form of informed discarding is
considerably better compared to default blind buffer overflow.
Utilizing our acceleration concept, we are able to achieve pro-
cessing of 2 or 3x higher input link speeds compared to non-
accelerated IDS, while high detection quality is maintained. Or
from a different point of view, our acceleration enables the IDS
to detect up to 3x more events at given high-load compared
to deployment without acceleration.
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