
Input and Output Generation for the Verification of ALU: a Use Case

Ondrej Cekan, Richard Panek, Zdenek Kotasek

Brno University of Technology, Faculty of Information Technology,

Centre of Excellence IT4Innovations

Bozetechova 2, 612 66 Brno, Czech Republic

Tel.: +420 54114-{1361, 1362, 1223}

{icekan, ipanek, kotasek}@fit.vutbr.cz

Abstract

The paper presents the approach to universal

stimuli generation for an arithmetic-logic unit (ALU).

It is not focused only on input data generation, but it is

possible to generate also expected output in one

stimulus. The process of generation is based on a

probabilistic constrained grammar which is designed

to universally describe stimuli for various circuits. This

grammar is processed by our framework. The

experiment in functional verification, which shows the

quality of generated stimuli, is also presented.

1. Introduction

Random stimuli generation is currently a very

important process of checking the correct behavior of

various circuits [1]. Complex or also simple circuits

must be properly tested or verified before real

deployment to exclude design or implementation

errors. It is also necessary to verify the correct output

for expected and unexpected input combinations

(stimuli). Stimuli are typically randomly constructed

and may take many forms from binary values on simple

circuit pins to a complex program in the data memory

of a processor.

Each system is unique, and therefore, it requires

specific input stimuli for its operation. In order to

verify the correct behavior, it is necessary to create a

set of test cases (input stimuli and expected outputs) to

detect any possible mismatches in the circuit.

Depending on the complexity of the circuit, this

activity may be quite challenging, and therefore, tools

that allow to generate random inputs automatically are

created. These tools are targeted to a specific circuit

and their use is considerably limited for different

devices. Also, these tools do not allow the expected

output to be generated, and further efforts must be

made to create a reference system [2].

For the reasons outlined above, we have focused

on developing a framework for universal stimuli

generation that can be used for various circuits.

The paper is organized as follows. In section 2 our

previous research is described. In section 3 the related

work is summarized. Section 4 deals with our

definition of probabilistic constrained grammar that we

use for the generation process while section 5 devotes

to the grammar definition for the arithmetic-logic unit.

Experimental results are mentioned in section 6 and

finally in section 7 the paper is concluded.

2. Previous Research

In our previous research, we designed and

developed a framework for universal stimuli generation

based on a probabilistic (stochastic) context-free

grammar [3]. It is a common context-free grammar that

defines probabilities for its production rules with which

they are applied. We have extended this grammar by

restrictive conditions (constraints) and defined the new

grammar system - Probabilistic Constrained Grammar

(PCG) [4] that we use in our research. Constraints are

used to dynamically change the probabilities of

production rules during the generation.

We have also defined the architecture of universal

stimuli generation [5] that is shown in Fig. 1. This

architecture consists of two input structures

(Production Rules, Constraints) which are based on

PCG. The first structure defines the production rules of

a grammar, while the second structure includes

constraints for the application of production rules.

Together these two structures form the resultant

grammar. Grammar defined in this way is processed by

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 331

the Generator Core of the framework that assembles

the resultant stimulus on its output.

We applied this framework to more complex

circuits (e.g., RISC (Reduced Instruction Set

Computer) [6] processors, control unit) to verify the

possibility of generating stimuli using PCG. We

verified the quality of obtained stimuli from the point

of view of the generation speed and the achieved

coverage [7] in functional verification.

Probabilistic Constrained Grammar

Production Rules Constraints

Generator Core

Stimulus

Selection Application Modification

Fig. 1: The architecture of universal stimuli generation.

3. Related Work

The current trend in stimulus generation focuses

primarily on more complex circuits (e.g. processors),

because it is not trivial to construct a valid stimulus

(working program). Simpler stimuli, including test

vectors, can be generated directly in the simulation

environment where verification takes place (e.g.

Modelsim tool from Mentor Graphics [8]) or an

external tool.

A number of specific stimuli generators exists for

application-specific processors (ASICs) [9], digital

signal processors (DSPs) [10], protocol interfaces, field

programmable gate array (FPGA) converters [11], and

more. These tools and their approaches are complex

and their use is limited to the particular system.

As a universal stimuli generator, MicroGP tool [12]

can be mentioned which does not only generate stimuli

but it also finds the most optimal solution of hard

problems.

In this paper, we use test stimuli which can be

obtained directly from the verification environment

from Modelsim tool for comparison with our approach.

4. Probabilistic Constrained Grammar

A probabilistic constrained grammar is a pair G:

G = (H,C); where:

H is a probabilistic context-free grammar.

C is an ordered list of constraints for the grammar H.

A probabilistic context-free grammar is a 5-tuple H:

H = (N,T,R,S,P); where:

N is a finite set of non-terminal symbols.

T is a finite set of terminal symbols, N∩T = 0.

R is a finite set of production rules with form A→α,

where AϵN and α ϵ (NυT)*.

S is the starting non-terminal.

P is a finite set of probabilities for production rules.

Constraints restrict the grammar in the application

of production rules. The constraint is a 5-tuple C:

C = (RS,RD,P,[RE],[O]); where:

RS is the activation rule the application of which sets

this constraint.

RD is the target rule which probability is modified.

P is the new probability value.

RE (optional) is the stop rule which application cancels

this constraint.

O (optional) is the count of application of the rule RE

before canceling this constraint.

The constraints limit the application of production

rules for a given non-terminal through probabilities

which can be modified throughout the generation

process, and therefore, we are able to control the

resultant stimulus.

5. Arithmetic-Logic Unit

In general, this paper focuses on the principles of

random stimuli generation which can be used for many

simple circuits. It is not just generating input values for

these circuits, as in our previous work, but we would

like to show the expressive power of PCG and the

ability to simultaneously generate as input values as

output values that will be part of the resultant stimulus.

Thanks to this, it is possible to check quickly the

correctness of the output in case of circuit testing or

functional verification.

The arithmetic-logic unit (ALU) [13] is our test case

for which we show the random generation of input

stimuli and their result for the selected operation. An

arithmetic logic unit performs arithmetic and bitwise

operations on integer binary numbers. The symbolic

representation of ALU is shown in Fig. 2.

332 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

R

OP

A B

ALU

Fig. 2: The symbolic representation of ALU.

ALU has typically two input operands A and B

which are N bits long. Its operation is selected by OP

input bits. The R output represents the result of the

operation over the operands. ALU can be variously

complex, therefore, it can contain more input and

output bits (e.g. status and control bits), and its

supported operations can be also different in various

versions.

In this paper, we limit only to inputs and outputs as

shown in the figure. Among the operations under

consideration, we include two arithmetic operations –

addition with carry (ADD) and subtraction (SUB), and

four bitwise operations - AND, OR, XOR and NOT.

However, the principles that we use for the generation

are applicable to other operations.

5.1.1. Arithmetic operations. In this paper, we show

the generating of stimuli for the arithmetic addition

with carry operation. We can divide the process of

creating production rules into several sections - Input

values, Logic, and Result. Each section includes

specific rules that are applied during the generation.

The most complex section is Logic the production rules

of which must ensure the correct procedure for

calculating the result of this operation. The schematic

representation of these sections is shown in Fig. 3

which shows also the parts of resultant stimulus.

Stimulus

Input values

OPERATION

OPERAND A

LOGIC

CONSTRAINTS

OPERAND B

RESULT R

Fig. 3: The schematic representation of arithmetic

operation in our framework.

As can be seen in the figure, stimulus is composed

of four lines which are represented by integer binary

numbers. The lines are generated sequentially as

outlined, therefore, it is important to keep the context

in which the rules were applied. The first line is the

operation code followed by two operands (the numbers

which are summed up) and the last line is a final result.

The bit widths of inputs can be entered arbitrarily

based on used ALU, e.g. for our ALU 1 bit can be long

operation, 8 bits long operands, and 8 bits long result.

The constraints are also shown in the figure,

because they are involved in the selection of production

rules. Based on the random generation of input

operands, certain constraints are set, and therefore, the

logic is modified – the probabilities of production rules

are deterministically set to produce an unambiguous

result.

In the definition of production rules, each operand is

divided into N non-terminals (N is equal to operand bit

width). In our case, the operand A is divided into eight

bit non-terminals A7-A0, where A7 is the most

significant bit (MSB) and A0 is the least significant bit

(LSB). The same applies for the operand B. The rules

are as follows:

A -> A7 A6 A5 A4 A3 A2 A1 A0

B -> B7 B6 B5 B4 B3 B2 B1 B0

Each bit non-terminal A7-A0 can be zero or one,

therefore, it can take one of the following two terminals

(comma represents OR, terminals are in quotes):

A7 -> '0', '1'

A6 -> '0', '1'

…

A0 -> '0', '1'

Using these production rules, we have random value

in the first operand. At the moment, we have not

information about a carry bit propagation. The carry bit

is determined during the generation of the operand B.

For these purposes, it is necessary to keep the value of

operand A. Therefore, each bit non-terminal B7-B0 can

be replaced for non-terminal BiA0 (if Ai were zero),

BiA1 (if Ai were one), BiA0C (if Ai were zero and a

carry bit was set) or BiA1C (if Ai were one and a carry

bit was set). These possibilities have to be reflected in

production rules:

B7 -> B7A0, B7A1, B7A0C, B7A1C

B7A0, B7A1, B7A0C, B7A1C -> '0','1'

…
B0 -> B0A0, B0A1, B0A0C, B0A1C

B0A0, B0A1, B0A0C, B0A1C -> '0','1'

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 333

It remains to add production rules that will generate

the final result:

R -> R7 R6 R5 R4 R3 R2 R1 R0

R8, R7, …, R0 -> '0', '1'

Now it is known which values the input operands

have and whether the carry bits have been propagated.

These rules without any control would generate random

non-terminals and the result would not reflect the

operation addition with carry. Therefore, constraints

have to be utilized. The framework performs the right

derivations (substitution of the rightmost non-

terminals) for the both operands and result, therefore,

the substitution will start with the bit A0 to A7, then

with B0 to B7, and then R0 to R7.

The B0 does not have a carry bit, therefore, we

change the probability to zero for two rules with carry

on the start of generation (S is the default starting non-

terminal):

cons(->S, B0->B0A0C, 0);

cons(->S, B0->B0A1C, 0);

The context of the application of the rules for

operand A have to be stored in operand B, therefore,

we keep the context by limiting the selection of rules

for operand B and its corresponding bit:

cons(A0->'0', B0->B0A1, 0);

cons(A0->'0', B0->B0A1C, 0);

cons(A0->'1', B0->B0A0, 0);

cons(A0->'1', B0->B0A0C, 0);

...

cons(A7->'0', B7->B7A1, 0);

cons(A7->'0', B7->B7A1C, 0);

cons(A7->'1', B7->B7A0, 0);

cons(A7->'1', B7->B7A0C, 0);

After this limitation, we have two rules for each bit

B7-B1 which can be used after the generation of the

operand A. The bit B0 have only one deterministic rule

without the carry bit. After the generation of operand A

and the bit B0, we are able to determine the carry bit

(rule) for the following bit B1 and the result for bit R0.

The same applies for the other bits B2-B6:

cons(B0A0->'0', R0->'0', 100);

cons(B0A0->'0', B1->B1A0C, 0);

cons(B0A0->'0', B1->B1A1C, 0);

cons(B0A0->'1', R0->'1', 100);

cons(B0A0->'1', B1->B1A0C, 0);

cons(B0A0->'1', B1->B1A1C, 0);

cons(B0A1->'0', R0->'1', 100);

cons(B0A1->'0', B1->B1A0C, 0);

cons(B0A1->'0', B1->B1A1C, 0);

cons(B0A1->'1', R0->'0', 100);

cons(B0A1->'1', B1->B1A0, 0);

cons(B0A1->'1', B1->B1A1, 0);

...

In this logic, constraints for rules BiA0C and BiA1C

can be easily completed to obtain the correct result.

The selection of result bit after applying the rules is

based on the following Tab. 1 which defines the

classical addition with carry operation.

Tab. 1: Grammar truth table of addition with carry C.

Ai bit Bi bit Ri Ci+1

Ai->'0' BiA0->'0' Ri->'0' 0

Ai->'0' BiA0->'1' Ri->'1' 0

Ai->'0' BiA0C->'0' Ri->'1' 0

Ai->'0' BiA0C->'1' Ri->'0' 1

Ai->'1' BiA1->'0' Ri->'1' 0

Ai->'1' BiA1->'1' Ri->'0' 1

Ai->'1' BiA1C->'0' Ri->'0' 1

Ai->'1' BiA1C->'1' Ri->'1' 1

The final real result can be seen as in the following

example:

0 #OP

01101001 #A

10001011 #B

11110100 #R

This process of creation is useful and usable for

other arithmetic and bitwise operations. The main

condition is to cover all possible cases (creation of

corresponding production rules) which are then used or

disabled by means of constraints during generation.

The use of the constraints causes a fact that the defined

grammar is more deterministic and the output is valid.

5.1.2. Bitwise operations. The process of creation

grammar for the bitwise operations is very similar as in

the previous subsection in the case of arithmetic

operations. The basis is again to maintain the context

through several production rules and their non-

terminals. The difference is only in the generation of

results, respectively the limitation of the rules for

generating the partial bit of the result so that the output

is correct for the given operation.

334 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

6. Experimental Results

We performed an experiment in functional

verification in which we examined the highest coverage

of the key functions of the presented ALU. Functional

verification is the process of checking the correctness

of a system based on comparing its inputs and outputs

with reference model which implements the same

specification. We had implemented verification

environment in which we investigate the valid result of

the ALU and the code coverage. The code coverage

measures the system source code through typical

metrics like statements, branches, expressions,

conditions, and states. Through this information, we are

able to determine, when the ALU is sufficiently

verified. It is a percentage value suitable for

comparison or different generators.

The result of our experiment can be seen in Fig. 4.

From the experiment, it can be seen that there is a

difference between our generator (USG) and the Build-

in generator of test stimuli in verification environment.

The both of the generators work on random stimuli

construction but in our approach we are able to drive

the generation process to direct the convergence to the

better results. Verification environment checks also

corner cases for input data (e.g. all ones or zeros in

operands and result) and through probability values, we

are able to increase the ability to generate this

combinations. Therefore, the USG can hit this coverage

points faster than only with clean random generation.

The coverage was 94.91% for USG and 91.63% for

Built-in generator for 100 stimuli. For 200 stimuli, the

coverage was balanced for both generators on 94.91%.

60

70

80

90

100

0 50 100

C
O

D
E

C
O

V
ER

A
G

E
[%

]

NUMBER OF STIMULI

USG Build-in

Fig. 4: The code coverage in functional verification.

7. Conclusions and Future Research

The aim of this paper was to show the possibility of

generating as input as expected output. Automatic

generation of random stimuli facilitates the work and

time to test or verify a designed circuit. We showed on

an arithmetic logic unit the generation of input and

output together for which we defined our probabilistic

constrained grammar. The output stimulus was

composed of as randomly generated input operands as

the expected result for this unit. The introduced

mechanism has been shown on addition with carry

operation, however, the defined principles are general

and can be used for other arithmetic or bitwise

operations, cyclic redundancy check generation, and so

on. The experiment in functional verification showed

that this principle is ductile to get better results than

other ones.

This work is one of the partial goals for checking

fault tolerance in Field Programmable Gate Array

(FPGA). The main goal is to verify the correctness of

affected system under a fault and to determine the

importance of each of the configuration memory bits in

FPGA. The future research will address this topic.

8. Acknowledgements

This research was supported by The Ministry of

Education, Youth and Sports from the National

Programme of Sustainability (NPU II); JU ECSEL

Project SECREDAS (Product Security for Cross

Domain Reliable Dependable Automated Systems),

Grant agreement No. 783119; project IT4Innovations

excellence in science - LQ1602 and BUT project FIT-

S-17-3994.

9. References

[1] A. Meyer. Principles of Functional Verification. Elsevier

Science, 2003.

[2] N. Kitchen and A. Kuehlmann. Stimulus generation for

constrained random simulation. In 2007 IEEE/ACM

International Conference on Computer-Aided Design, pages

258-265, Nov 2007.

[3] R. Giegerich. Introduction to Stochastic Context Free

Grammars. Humana Press, Totowa, NJ, 2014.

[4] O. Cekan,, J. Podivinsky, and Z. Kotasek. Program

Generation Through a Probabilistic Constrained Grammar. In

2018 Euromicro Conference on Digital System Design

(DSD), accepted to conference, 8 pages, Aug 2018.

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 335

[5] J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova, M.

Krcma, and Z. Kotasek. Functional verification based

platform for evaluating fault tolerance properties.

Microprocessors and Microsystems, 52:145-159, 2017.

[6] D. A. Patterson. Reduced instruction set computers.

Commun. ACM, 28(1):8-21, January 1985.

[7] S. Tasiran and K. Keutzer. Coverage metrics for

functional validation of hardware designs. Design and Test of

Computers, IEEE, 18(4):36-45, May 2001.

[8] M. Graphics. Verification academy - the most

comprehensive resource for verification training, [Online]

(2013). Available: www.verificationacademy.com.

[9] J. Hudec. An efficient technique for processor automatic

functional test generation based on evolutionary strategies. In

Proceedings of the ITI, 33rd International Conference

on Information Technology Interfaces, 527-532, May 2011.

[10] B. Wess. Automatic code generation for integrated

digital signal processors. In 1991., IEEE International

Sympoisum on Circuits and Systems, pages 33-36 vol.1, Jun

1991.

[11] A. M. Amiri, A. Khouas, and M. Boukadoum.

Pseudorandom stimuli generation for testing time-to-digital

converters on an fpga. IEEE Transactions on

Instrumentation and Measurement, 58(7):2209-2215, July

2009.

[12] G. Squillero. Microgp-an evolutionary assembly

program generator. Genetic Programming and Evolvable

Machines, 6(3):247-263, 2005.

[13] J. G. Bartkowiak and M. A. Nix. Arithmetic logic unit,

Jan. 25 1994. US Patent 5,282,153.

336 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

