
High-Speed Computation of CRC Codes for FPGAs

Lukáš Kekely, Jakub Cabal
CESNET, a. l. e.

Zikova 4, 160 00 Prague 6

Czech Republic

{kekely, cabal}@cesnet.cz

Jan Kořenek
IT4Innovations Centre of Excellence, FIT BUT

Božetěchova 2, 612 66 Brno

Czech Republic

korenek@fit.vutbr.cz

Abstract—As the throughput of networks and memory inter-
faces is on a constant rise, there is a need for ever-faster error-
detecting codes. Cyclic redundancy checks (CRC) are a common
and widely used to ensure consistency or detect accidental
changes of data. We propose a novel FPGA architecture for the
computation of the CRC designed for general high-speed data
transfers. Its key feature is allowing a processing of multiple
independent data packets (transactions) in each clock cycle,
what is a necessity for achieving high overall throughput on
very wide data buses. Experimental results confirm that the
proposed architecture reaches an effective throughput sufficient
for utilization in multi-terabit Ethernet networks (over 2 Tbps or
over 3000 Mpps) on a single Xilinx UltraScale+ FPGA.

I. INTRODUCTION

The Cyclic Redundancy Check (CRC) codes are widely de-

ployed in digital communications and storage systems [1], [2]

to detect accidental error introduced into data. The binary data

are divided into transactions (packets) and each transaction

is subjected to a CRC which results in a fixed-length binary

check sequence. The computed check sequence value is then

attached to the original data to determine its correctness.

The mathematical background of CRC and forms of its

hardware representation have been extensively studied [3], [4],

[5] and they are not the focus of this paper. All we need

to know is that processing of multiple bits is possible for

any given CRC polynomial based on XOR equations set up

for each output (code) bit that together form a CRC table.

Furthermore, results of multiple CRC tables can be aggregated

(accumulated) together to obtain code value of longer data.

Data packets usually have variable lengths and are not

aligned with data bus words. Handling of unaligned ends/starts

requires additional logic and more complex architectures than

simple CRC table. Furthermore, as the data buses width is

growing with throughput, multiple packets per clock cycle

(data bus word) need to be processed. High-speed implemen-

tation addressing this issues is the main focus of our work.

We propose a novel FPGA architecture of CRC computation

for general high-speed transfers of data packets with variable

lengths. The architecture can produce multiple CRC values

per clock cycle in a single pipeline thus allows direct han-

dling of multiple packets in each data word. Furthermore, it

supports configurable pipelining so optimal tradeoff between

frequency (throughput) and resources can be selected. When

fully pipelined, the proposed architecture achieves unprece-

dented throughput of over 2 Tbps (over 3000 Mpps).

II. RELATED WORK

As already mentioned, the mathematical background of

CRC has been extensively studied [3], [4], [5], [6] and it is

not our focus. Rather, we want to use results of these papers

to construct a new architecture for practical high-speed CRC

computation for variable-length data packets.

Attempts to address the challenges of variable-length data

packets are made for example in [7], [8], [9], [10]. All of

them propose some kind of advanced architecture based on

parallelization and pipelining. When implementing Ethernet

CRC-32, they report throughputs sufficient for wire-speed

traffic processing of up to 100 Gbps. But scaling for higher

speeds is not properly addressed in any of these works and

it would bring exponential growth in FPGA area and/or

significant degradation of throughput on short packets (i.e. data

rate limited by packet rate).

Interesting CRC architecture [11] uses similar approaches

as the works above, but it also partially addresses the packet

rate limitation on short packets. The architecture can process

parts of two packets in a single clock cycle (data word). The

reported throughput of 40 Gbps can be thus easily scaled up

to 100 or even 200 Gbps. But the structural limit of only two

packet parts pre-word means that further scaling would hit the

same obstacles as mentioned above.

Fastest commercially available CRC is [12]. Authors claim

that it achieves line-rate processing of up to 400 Gbps. But

no throughput measurements nor resource requirements are

provided to back up those claims. Furthermore, further details

about architecture or its parameters are also lacking.

III. ARCHITECTURE DESIGN

This section describes the CRC architecture concept. It

starts with the definition of data bus format which supports

multiple packets per word. This is crucial for throughput

scaling above 100 Gbps. Then, basic CRC computation blocks

used in our concept are introduced. Finally, the architecture

itself is presented in serial and parallel version.

A. Input Bus Format

The bus format as illustrated in Fig. 1. An example of packet

placement is shown at the top with the format itself at the

bottom. Each word is divided into regions. These define the

maximum number of packets per word as at most one packet

can start and one can end in each region. Regions are further

237

2018 International Conference on Field-Programmable Technology (FPT)

978-1-7281-0214-6/18/$31.00 ©2018 IEEE
DOI 10.1109/FPT.2018.00042



Fig. 1. Data bus format and packet placements example (n = r = b = 2).

separated into blocks of basic data elements. Each packet must

start aligned to a block boundary, but can end on any data

element (A and B end inside a block). Notice, that without

the support of multiple packets per clock cycle, each packet

would occupy a separate word (5 words required), but we are

able to achieve more dense packing (only 3 words used).

To support this format, additional metadata must accompany

each data word. For each region, we need to know: presence

and position of a packet start (SOP and SOP POS); presence

and position of a packet end (EOP and EOP POS). Further-

more, multiple versions of the bus with different parameters

can be defined. We formally describe a specific version by

four attributes: the number of regions in a word n; region

size r as the number of blocks per region; block size b as

the number of elements per block; element width e in bits.

Using these attributes, we derive bus word width in bits like

dw = n× r× b× e. Now, we can also specify that illustration

in Fig. 1 shows a bus version with n = r = b = 2.

B. Basic Blocks

We define 4 basic blocks: CRC table for fixed input width;

accumulation logic to aggregate intermediate CRC values;

input correction for packet start position; CRC finalization

based on packet end position. Thanks to the division of CRC

computations into blocks, the designed architecture is usable

for any CRC polynomial. The change of the polynomial only

requires re-generation of CRC equations inside these blocks

but do not affect the top-level structure of the architecture.

As already mentioned, based on given polynomial and input

width a specific CRC table can be generated [3]. It has a form

of parallel XOR equations on input bits, one for each code

(output) bit. The table basically converts the input data into

an intermediary CRC value with no regard to packet borders.

CRC accumulator can be similarly generated for any

polynomial. It aggregates two or more intermediary CRC

values computed from separate parts of data by CRC tables.

This enables handling of long packets in multiple small steps.

CRC start correction based on packet position is done by

masking – i.e. the part of the word before packet start is filled

with zeros. As CRC is based on XOR operations and zero is

a neutral value for them (0 xor a = a), it is possible to show

that prepending any number of leading zeros before data has

no effect on the computed value [6]. Note, that also the initial

value of CRC register must be shifted accordingly.

a)

FF
>

Input Bus Serial CRC
Submodule

Serial CRC
Submodule

Serial CRC
Submodule

Serial CRC
Submodule

CRC[0]

CRC[1]

CRC[2]

CRC[3]

b)

FF
>

Input Bus Parallel CRC
Submodule

CRC[0]

CRC[1]

CRC[2]

CRC[3]

Parallel CRC
Submodule

Parallel CRC
Submodule

Parallel CRC
Submodule

Fig. 2. CRC top-level architectures in serial and parallel version for n = 4.

Fig. 3. The internal structure of one CRC submodule in the serial architecture.

Handling of CRC end is a bit more complicated. Masking

cannot be directly applied, as appending zeros to data will

change the CRC value. A workaround is to use a barrel-shifter

to align the end of the packet with the end of the word. This

way, the masking operation is converted from trailing into

leading zeros and can be applied as in CRC start.

C. Top-Level Architecture

Fig. 2 shows the top-level structure of the proposed archi-

tecture. Processing of input bus word is divided between n
submodules – one for each region. Serial (a) and parallel (b)

architecture versions differ in the distribution of intermediate

CRC values (red). In serial version, each submodule is passing

its intermediate CRC result only to the next submodule and

the last is passing its result to the first over a register. A poten-

tially long critical path exists here that cannot be pipelined –

from the top-level register, through CRC aggregation in all

submodules, and back to the register. This is the reason for

the parallel version, where each intermediate CRC is shared

with each subsequent submodule. Consequently, more logic is

required as each submodule performs more complicated CRC

aggregation but the serial critical path is removed.

In Fig. 3 we can see the internal structure of one serial

submodule. Base CRC table is used as a core computational

block and corrections required for starting, ending or contin-

uing packets is realized by separate blocks around it. They

are controlled by metadata in the assigned region of the bus.

The CRC start block masks input data before the packet start

238



and if there is no packet start present, the input data word

is not altered. If a packet is continuing from the previous

words, the output value of the CRC table is aggregated with

an intermediate CRC value from the previous submodule.

Otherwise (starting packet), the input CRC value is masked

and no aggregation is performed. The output of accumulation

is used as the intermediate CRC value on the input of the next

submodule. Finally, CRC end block performs CRC calculation

if the packet ends in the region assigned to this submodule.

In the parallel submodule, the output value of CRC ac-

cumulation is used only locally (for CRC end). So, the

intermediate CRC results are not accumulated in steps through

all submodules rather, each accumulation block independently

aggregate values from all previous submodules (and CRC

register). Other parts of the parallel implementation remain

the same as in the serial version.

IV. MEASURED RESULTS

We evaluate the proposed CRC architecture for high-speed

Ethernet, where CRC is utilized as FCS field to ensure

consistency of frames. Ethernet uses a 32 bit version of CRC

with the CRC-32 division polynomial [1]. As discussed in

the Related Work, published architectures can be used for

Ethernet at speeds up to 200 Gbps and commercially available

solutions promise throughputs of up to 400 Gbps. Their scaling

towards higher speeds is limited by insufficient packet rates

on the shortest packets for wider data buses. The proposed

architecture addresses exactly this issue and therefore should

be able to scale well even at higher throughputs.

Adjustment of the proposed architecture for Ethernet starts

with the configuration of the bus format parameters from

subsection III-A. Ethernet operates with bytes (octets) as

the smallest data elements (element size e = 8). Lower

(PCS/PMA) layers of Ethernet usually align frame starts with

8 B wide lanes (block size b = 8). Region size should

correspond with the smallest allowed frames (64 B, so r =
64/b = 8). Smaller regions would needlessly allow more

packets per word and larger regions would reduce effective

bus saturation for the shortest packets. Using these attributes

(r = b = e = 8) and expecting the shortest frames to be

64 B long, the bus format impose no more than b − 1 = 7
bytes of overhead per packet. Lower layers of Ethernet operate

with larger overhead per packet (20 B of preamble and IFG).

Therefore, the effective throughput of our bus is sufficient for

wire-speed processing of Ethernet even in the worst case.

We measure results for different data bus widths (dw =
512, 1024, 2048, 4096) and various combinations of enabled

pipeline registers in both versions of the proposed CRC archi-

tecture. In all cases, we use data bus parameters r = b = e = 8
(sufficient for wire-speed processing), only the value of n is

changing with dw. The synthesis results form the state space

of CRC implementations with different throughput, working

frequency, latency, and resource usage. All values are obtained

for the Xilinx UltraScale+ XCVU7P FPGA using the Xilinx

Vivado 2017.3 design tool.

0 100 200 300 400 500 600 700
0

20000

40000

60000

80000

Input bus throughput [Gbps]

S
lic

e 
Lo

gi
c 

[-]

512b, UltraScale+
1024b, UltraScale+
2048b, UltraScale+
4096b, UltraScale+

Fig. 4. Throughput and used resources of the serial version.

0 500 1000 1500 2000 2500
0

20000

40000

60000

80000

Input bus throughput [Gbps]

S
lic

e 
Lo

gi
c 

[-]

512b, UltraScale+
1024b, UltraScale+
2048b, UltraScale+
4096b, UltraScale+

Fig. 5. Throughput and used resources of the parallel version.

Figures 4 and 5 show resource utilization and achieved

throughput. Each point in the graphs represents one specific

CRC implementation with a different combination of param-

eters (data width and pipeline registers enabling). The FPGA

resources utilization linearly increases with the achieved

throughput in the parallel implementation. In the best cases,

we are able to reach effective throughputs of well over 2 Tbps

(3000 Mpps). Unfortunately, in the serial implementation, the

FPGA resources utilization increases considerably faster with

throughput. This is because of notably lower frequencies due

to the longer critical paths in CRC accumulation process.

Figures 6 and 7 bring the latency of different implemen-

tations into the picture. The latency depends on the number

of enabled pipeline stages and achieved frequency. From the

graphs, we can see that the latencies of the serial implementa-

tions are increasing notably with throughput (word width). On

the other hand, the latencies of the parallel implementations

remain approximately within the same bounds. This is again

239



0 100 200 300 400 500 600 700
0

10

20

30

40

50

Input bus throughput [Gbps]

La
te

nc
y 

[n
s]

512b, UltraScale+
1024b, UltraScale+
2048b, UltraScale+
4096b, UltraScale+

Fig. 6. Throughput and processing latency of the serial version.

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

Input bus throughput [Gbps]

La
te

nc
y 

[n
s]

512b, UltraScale+
1024b, UltraScale+
2048b, UltraScale+
4096b, UltraScale+

Fig. 7. Throughput and processing latency of the parallel version.

due to the higher frequency of parallel implementations.

Finally, Fig. 8 compares the best (Pareto optimal) serial

and parallel implementations. We can more clearly see the

difference between the serial (blue) and the parallel (red) im-

plementations in achieved throughput (2 Tbps vs. 600 Gbps).

V. CONCLUSION

This paper introduces a novel FPGA architecture of gen-

eral CRC computation that achieves very high processing

throughputs. The proposed architecture can process multiple

packets per clock cycle, can be easily adjusted for any CRC

polynomial, and scale well even for very wide data buses. Ac-

cording to evaluation, the proposed concept enables to achieve

unprecedented wire-speed throughput when computing CRC

for Ethernet frames. At a cost of just a few percents of

UltraScale+ FPGA resources, the achieved throughput can be

over 2 Tbps (over 3000 Mpps). This is thanks to favorable

frequency scaling of the designed parallel version of the

0 500 1000 1500 2000 2500
0

10000

20000

30000

40000

50000

60000

Throughput [Gbps]

S
lic

e 
Lo

gi
c 

[-]

Paraller, UltraScale+
Serial, UltraScale+

Fig. 8. Pareto optimal CRC implementations (throughput vs. resources).

proposed architecture. The proposed architecture has been

verified in simulations and is currently tested on a real FPGA.

ACKNOWLEDGMENTS

This research has been supported by the project Reg.

No. CZ.02.1.01/0.0/0.0/16 013/0001797 by the MEYS of the

Czech Republic; the IT4Innovations excellence in science

project IT4I XS – LQ1602; and by the Ministry of the Interior

of the Czech Republic project VI20172020064.

REFERENCES

[1] IEEE Computer Society, “Amendment 10: Media access control param-
eters, physical layers and management parameters for 200 Gb/s and 400
Gb/s operation,” IEEE Standard 802.3bs-2017, pp. 1–372, 2017.

[2] Hybrid Memory Cube Consortium, Hybrid Memory Cube Specification
2.1, Altera Corporation, October 2015.

[3] M.-D. Shieh, M.-H. Sheu, C.-H. Chen, and H.-F. Lo, “A systematic ap-
proach for parallel CRC computations,” Journal of Information Science
and Engineering, vol. 17, no. 3, pp. 445–461, May 2001.

[4] T. B. Pei and C. Zukowski, “High-speed parallel CRC circuits in VLSI,”
IEEE Transactions on Communications, vol. 40, no. 4, 1992.

[5] A. Perez, “Byte-wise CRC calculations,” IEEE Micro, vol. 3, no. 3, pp.
40–50, June 1983.

[6] C. Kennedy and A. Reyhani-Masoleh, “High-speed parallel CRC cir-
cuits,” in 2008 42nd Asilomar Conference on Signals, Systems and
Computers, October 2008, pp. 1823–1829.

[7] T. Henriksson and D. Liu, “Implementation of fast CRC calculation,”
in Proceedings of the Asia and South Pacific, Design Automatation
Conference, February 2003, pp. 563– 564.

[8] H. F. A. Hamed, F. Elmisery, and A. A. H. A. Elkader, “Implemen-
tation of low area and high data throughput CRC design on FPGA,”
International Journal of Advanced Research in Computer Science and
Electronics Engineering (IJARCSEE), vol. 1, no. 9, 2012.

[9] M. Walma, “Pipelined cyclic redundancy check (CRC) calculation,”
in 16th International Conference on Computer Communications and
Networks, 2007, pp. 365–370.

[10] Bajarangbali and P. A. Anand, “Design of high speed CRC algorithm
for ethernet on FPGA using reduced lookup table algorithm,” in IEEE
Annual India Conference, 2016, pp. 1–6.

[11] J. Mitra and T. Nayak, “Reconfigurable very high throughput low latency
VLSI (FPGA) design architecture of CRC32,” Integration, the VLSI
Journal, vol. 56, pp. 1–14, 2017.

[12] Tamba Networks, Datacenter Ethernet, Tamba Networks, LLC, 2018,
http://www.tambanetworks.com/products/datacenter-ethernet/.

240


