
2LS: Memory Safety and Non-termination

(Competition Contribution)

Viktor Maĺık1,3, Štefan Martiček1,3, Peter Schrammel1,2(B),
Mandayam Srivas4, Tomáš Vojnar3, and Johanan Wahlang4

1 Diffblue Ltd., Oxford, UK
2 University of Sussex, Brighton, UK

p.schrammel@sussex.ac.uk
3 FIT BUT, IT4Innovations Centre of Excellence, Brno, Czech Republic

4 Chennai Mathematical Institute, Chennai, India

Abstract. 2LS is a C program analyser built upon the CPROVER
infrastructure. 2LS is bit-precise and it can verify and refute program
assertions and termination. 2LS implements template-based synthesis
techniques, e.g. to find invariants and ranking functions, and incremen-
tal loop unwinding techniques to find counterexamples and k-induction
proofs. New features in this year’s version are improved handling of heap-
allocated data structures using a template domain for shape analysis and
two approaches to prove program non-termination.

1 Overview

2LS is a static analysis and verification tool for sequential C programs that
is based on an algorithm called kIkI (k-invariants and k-induction) [1], which
combines bounded model checking, k-induction, and abstract interpretation into
a single, scalable framework. 2LS relies on incremental SAT solving to employ
all these techniques simultaneously in order to find proofs and refutations of
assertions, as well as to perform termination analysis [2].

This year’s competition version introduces a new abstract shape domain
allowing 2LS to reason about properties of programs manipulating heap and
dynamic data structures, and a non-termination analysis, which serves as a
counterpart to the existing termination analysis and allows 2LS to prove non-
termination of a program.

Architecture. 2LS is built upon the CPROVER infrastructure [3] and thus uses
GOTO programs as the internal program representation. It first performs vari-
ous static analyses and transformations of the program, including resolution of
function pointers, points-to analysis, and insertion of assertions guarding against

The Czech authors were supported by the Czech Science Foundation project 17-
12465S, the IT4IXS: IT4Innovations Excellence in Science project (LQ1602), and
the FIT BUT internal project FIT-S-17-4014.
P. Schrammel—Jury member.

c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 417–421, 2018.
https://doi.org/10.1007/978-3-319-89963-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_24&domain=pdf


418 V. Maĺık et al.

invalid pointer and memory operations. The analysed program is then translated
into an acyclic, over-approximate single static assignment (SSA) form, in which
loops are cut at the edges returning to the loop head. Subsequently, 2LS refines
this over-approximation by computing inductive invariants in various abstract
domains represented by parametrised logical formulae, so-called templates [1].
The competition version uses the interval domain for numerical variables and
the new shape domain for pointer-typed variables described below.

The kIkI algorithm [1] operates on the SSA form, which is translated into
a CNF formula over a bitvector representation of program configurations and
given to a SAT solver. This formula is incrementally extended and amended to
perform loop unwindings and abstract domain operations. The model returned
by the solver is then used either to refine the predicates representing abstract
values or to find a counterexample refuting the property to be checked. A more
detailed description of the 2LS architecture can be found in the tool paper [7].

2 New Features

For SV-COMP’18, apart from various bug fixes and minor improvements, two
major improvements of 2LS have been implemented: namely, a support for deal-
ing with inductive list-like data structures and a support for proving program
non-termination. Although 2LS supports certain interprocedural analyses, the
competition version performs both analyses in a monolithic way, i.e. after inlin-
ing function calls. These improvements tackle weaknesses observed in previous
years in the heap and memory safety categories, as well as they give a boost to
2LS’ capabilities in non-termination analysis.

2.1 Memory Safety and Heap Invariants

Fig. 1. A singly-linked list with nodes allo-
cated at two different program locations.

To support shape analysis of
dynamic data structures, a new
abstract domain has been added to
2LS to express invariants describ-
ing heap configurations in the con-
text of the bitvector logic used
by 2LS [4]. The domain is based
on recording (1) information about
abstract heap objects pointed to by pointer variables and (2) information
about reachability of abstract objects using pointer access paths [6]. Here,
an abstract heap object represents all objects allocated at a given program
location. The access paths then record which target abstract objects can be
reached from a given source abstract object while going through some set
of intermediary objects. For instance, the list in Fig. 1 would be encoded as
list = &o1 ∧ path(o1, nxt, {o1, o2}, NULL), meaning that list points to an
object o1 and there is a path from o1 via nxt fields of abstract objects o1 and o2 to
NULL. This representation is integrated as a template over pointer-typed variables



2LS: Memory Safety and Non-termination 419

and fields of dynamic objects into kIkI. The template is a parametrised logical
formula. The parameters encode sets of memory objects that can be pointed by
each pointer-typed variable as well as the set of paths that can lead from each
dynamic object to other objects. 2LS computes these sets using an incremental
SAT solver. This allows 2LS to prove or to refute assertions related to manipu-
lation of dynamically linked data structures. The supported properties include
null-pointer dereferencing, double-free, or memory leaks, for instance. Assertions
for these properties are automatically instrumented into the code.

2.2 Proving Non-termination

Last year’s version of 2LS provided a technique for proving termination based on
linear lexicographic ranking functions synthesised using templates over bitvec-
tors [2], but the tool was unable to prove non-termination except for trivial
cases. For SV-COMP’18, two techniques for proving non-termination have been
added [5]. Both of the approaches are relatively simple, yet appear to be reason-
ably efficient on the SV-COMP benchmarks.

The first approach is based on finding singleton recurrence sets. All loops
are unfolded k times (with k being incrementally increased), followed by a check
whether there is some loop L and a program configuration that can be reached
at the head of L after both k′ and k unwindings for some k′ < k. Such a
check can be easily formulated in 2LS as a formula over the SSA representation
of programs with loops unfolded k times. This technique is able to find lasso-
shaped executions in which a loop returns to the same program configuration
every k − k′ iterations after k′ initial iterations.

The second approach tries to reduce the number of unwindings by looking
for loops that generate an arithmetic progression over every integer variable.
More precisely, it looks for loops L for which each integer variable x can be
associated with a constant cx such that every iteration of L changes the value
of x to x + cx, keeping non-integer variables unchanged. Two queries are used
to detect such loops: the first one asks whether there is a configuration x and
a constant vector c (with the vectors ranging over all integer variables modified
in the loop and constants from their associated bitvector domains) such that
one iteration of L ends in the configuration x + c, while the second makes sure
that there is no configuration x′ over which one iteration of L would terminate
in a configuration other than x′ + c. If such a loop L and a constant vector c
are found, non-termination of L can be proved as follows: First, we gradually
exclude each configuration x reachable at the head of L for which there is some k
such that L cannot be executed from x+k.c (intuitively meaning that L cannot
be executed k + 1 times from x). Second, we check whether there remains some
non-excluded configuration reachable at the head of L.

The termination and non-termination analyses are run in parallel, and the
first definite answer is used. Among the new non-termination analyses, several
rounds of unwinding are first tried with the singleton recurrence set approach. If
that is not sufficient, the arithmetic progression approach is tried. If that does not
succeed either, further rounds of unwinding with the former approach are run.



420 V. Maĺık et al.

3 Strengths and Weaknesses

2LS’ core algorithm, kIkI, is designed to be efficient for simultaneously finding
proofs as well as refutations. Our SSA encoding allows us to introduce abstrac-
tions only at certain program points where these are necessary to infer the pred-
icates required to construct proofs (e.g. invariants, ranking functions, recurrence
sets). The remaining program is represented in a bit-precise large-block encoding.

Compared to the previous editions of the competition, 2LS is now able to
reason about dynamic linked data structures. The approach used is currently
able to handle various forms of linked lists (singly- or doubly-linked, a subset
of nested or circular lists). However, more elaborate template domains will be
required to handle other dynamic data structures such as trees and more general
graph structures.

2LS’ template-based approach to abstract interpretation allows easy combi-
nation of domains. We combine the heap domain with intervals over bitvectors,
which is sufficient for many benchmarks. However, some benchmarks, e.g. those
requiring reasoning about arrays contents, demand stronger invariants than we
are currently able to infer.

The termination analysis scales well, but is currently limited to rather sim-
ple termination conditions (lexicographic linear). The newly implemented non-
termination analyses are surprisingly effective on many SV-COMP termination
benchmarks (638 out of 657 non-termination benchmarks proved). However, if
a larger number of unwindings is needed the approach becomes quite inefficient.
kIkI does not yet support recursion, which is another limitation, in particular
w.r.t. the SV-COMP termination benchmark set, which contains a large number
of recursive programs. The output of witnesses in the new categories (memory
safety and termination) is still lacking (more than 550 points have been lost
there).

4 Tool Setup

The competition submission is based on 2LS version 0.6.1 Installation instruc-
tions are given in the file COMPILING. The executable 2ls is in the directory
src/2ls. See the 2ls wrapper script (contained in the tarball) for the relevant
command line options given to 2LS. The BenchExec script is called two ls.py
and the benchmark definition file 2ls.xml. As a back end, the competition
submission of 2LS uses Glucose 4.0. 2LS competes in all categories except
Concurrency.

5 Software Project

2LS is maintained by Peter Schrammel with pull requests contributed by the
community. It is publicly available under a BSD-style license. The source code
is available at http://www.github.com/diffblue/2ls.
1 Executable available at https://gitlab.com/sosy-lab/sv-comp/archives/tags/svco

mp18.

http://www.github.com/diffblue/2ls
https://gitlab.com/sosy-lab/sv-comp/archives/tags/svcomp18
https://gitlab.com/sosy-lab/sv-comp/archives/tags/svcomp18


2LS: Memory Safety and Non-termination 421

References

1. Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety verification and refutation
by k -invariants and k -induction. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS,
vol. 9291, pp. 145–161. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48288-9 9

2. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-precise
procedure-modular termination proofs. TOPLAS, 40 (2017)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

4. Maĺık, V.: Template-based synthesis of heap abstractions. Master’s thesis, Brno
University of Technology, Brno (2017)

5. Martiček, Š.: Synthesizing non-termination proofs from templates. Master’s thesis,
Brno University of Technology, Brno (2017)

6. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for procedure
local heaps and its abstractions. In: POPL. pp. 296–309. ACM (2005)

7. Schrammel, P., Kroening, D.: 2LS for program analysis (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 905–907.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 56

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-662-49674-9_56
http://creativecommons.org/licenses/by/4.0/

	-12LS: Memory Safety and Non-termination
	1 Overview
	2 New Features
	2.1 Memory Safety and Heap Invariants
	2.2 Proving Non-termination

	3 Strengths and Weaknesses
	4 Tool Setup
	5 Software Project
	References




