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Abstract:For every positive integer n, we introduce anddiscuss an isotoneGalois connection between the sets
of paths of lengths n in a simple graph and the closure operators on the (vertex set of the) graph.We consider
certain sets of paths in a particular graph on the digital line Z and study the closure operators associated,
in the Galois connection discussed, with these sets of paths. We also focus on the closure operators on the
digital planeZ2 associated with a special product of the sets of paths considered and show that these closure
operators may be used as background structures on the plane for the study of digital images.
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Introduction
It is useful to �nd new relationships between di�erent mathematical structures or theories because they
demonstrate the interconnectedness of mathematics and enable us to use tools of one theory to solve
problems of another. In the present paper, we will discuss certain relationships between graph theory and
topology. We will introduce and study Galois connections between the sets of paths of the same length in
a graph and closure operators on the vertex set of the graph. We will focus on the connectedness provided
by the closure operators associated, in the Galois connections introduced, to certain sets of paths in the 2-
adjacency graphon thedigital lineZ. The closure operatorswill be shown to generalize the connectedordered
topologies [1], hence the Khalimsky topology, on Z. Further, we will discuss the closure operators on the
digital planeZ2 associated with special products of the sets of paths with the same length in the 2-adjacency
graph on Z. These closure operators include the Khalimsky topology on Z2 and we will show that they allow
for a digital analogue of the Jordan curve theorem (recall that the classical Jordan curve theorem states that
a simple closed curve in the real (Euclidean) plane separates the plane into precisely two components). It
follows that the closure operators may be used as background structures on the digital planeZ2 for the study
of digital images.

The idea of studying connectedness in a graphwith respect to sets of paths is taken from [2] where certain
special sets of paths, called path partitions, were used to obtain connectedness with a convenient geometric
behavior. In the present note, we will employ arbitrary sets of paths (of given lengths) and investigate
connectedness with respect to the closure operators associated with the sets in a Galois connection.

For the graph-theoretic terminology, we refer to [3]. By a graph G = (V , E), we understand an (undirected
simple) graph (without loops) with V ≠ ∅ as the vertex set and E ⊆ {{x, y}; x, y ∈ V , x ≠ y} as the set
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of edges. We will say that G is a graph on V. Two vertices x, y ∈ V are said to be adjacent (to each other) if
{x, y} ∈ E. Recall that a path in G is a (�nite) sequence (xi| i ≤ n), i.e., (x0, x1, ..., xn), of pairwise di�erent
vertices of V such that xi is adjacent to xi+1 whenever i < n. The non-negative integer n is called the length
of the path (xi| i ≤ n). A sequence (xi| i ≤ n) of vertices of G is called a circle if n > 2, x0 = xn, and (xi| i < n)
is a path. Given graphs G1 = (V1, E1, ) and G2 = (V2, E2), we say that G1 is a subgraph of G2 if V1 ⊆ V2 and
E1 ⊆ E2. If, moreover, V1 = V2, then G1 is called a factor of G2.

Recall [4] that the strong product of a pair of graphs G1 = (V1, E1, ) and G2 = (V2, E2, ) is the the graph
G1 ⊗ G2 = (V1 × V2, E) with the set of edges E = {{(x1, x2), (y1, y2)} ⊆ V1 × V2; there exists a nonempty
subset J ⊆ {1, 2} such that {xj , yj} ∈ Ej for every j ∈ J and xj = yj for every j ∈ {1, 2} − J}. Note that
the strong product di�ers from the cartesian product of G1 and G2, i.e., from the graph (V1 × V2, F) where
F = {{(x1, x2), (y1, y2)}; {xj , yj} ∈ Ej for every j ∈ {1, 2}} (the cartesian product is a factor of the strong
product).

By a closure operator u on a set X, we mean a map u: exp X → exp X (where exp X denotes the power set
of X) which is
(i) grounded (i.e., u∅ = ∅),
(ii) extensive (i.e., A ⊆ X ⇒ A ⊆ uA), and
(iii) monotone (i.e., A ⊆ B ⊆ X ⇒ uA ⊆ uB).
The pair (X, u) is then called a closure space. Closure spaces were studied by E. Čech [5] (who called them
topological spaces).

A closure operator u on X that is
(iv) additive (i.e., u(A ∪ B) = uA ∪ uB whenever A, B ⊆ X) and
(v) idempotent (i.e., uuA = uA whenever A ⊆ X)
is called a Kuratowski closure operator or a topology and the pair (X, u) is called a topological space.

Given a cardinal m > 1, a closure operator u on a set X and the closure space (X, u) are called an Sm-
closure operator and an Sm-closure space (brie�y, an Sm-space), respectively, if the following condition is
satis�ed:

A ⊆ X ⇒ uA =
⋃
{uB; B ⊆ A, card B < m}.

In [6], S2-closure operators and S2-closure spaces are called quasi-discrete. S2-topologies (S2-topological
spaces) are usually called Alexandro� topologies (Alexandro� spaces) - see [7]. Every S2-closure operator is of
course additive and every Sα-closure operator is an Sβ-closure operator whenever α < β. If α ≤ ℵ0, then every
additive Sα-closure operator is an S2-closure operator.

Many concepts de�ned for topological spaces (see, e.g., [8]) can naturally be extended to closure spaces.
Let us mention some of them. Given a closure space (X, u), a subset A ⊆ X is called closed if uA = A, and
it is called open if X − A is closed. A closure space (X, u) is said to be a subspace of a closure space (Y , v) if
uA = vA ∩ X for each subset A ⊆ X. We will brie�y speak about a subspace X of (Y , v). A closure space (X, u)
is said to be connected if ∅ and X are the only clopen (i.e., both closed and open) subsets of X. A subset X ⊆ Y
is connected in a closure space (Y , v) if the subspace X of (Y , v) is connected. Amaximal connected subset of
a closure space is called a component of this space. The connectedness graph of a closure operator u on a set
X is the graph with the vertex set X whose edges are the connected two-element subsets of X. All the basic
properties of connected sets and components in topological spaces are also preserved in closure spaces. In
particular, we will employ the fact that the union of a sequence (�nite or in�nite) of connected subsets is
connected if every pair of consecutive members of the sequence has a nonempty intersection.

If u, v are closure operators on a set X, then we put u ≤ v if uA ⊆ vA for every subset A ⊆ X (clearly, ≤ is
a partial order on the set of all closure operators on X).

In this note, the concept of a Galois connection is understood in the isotone sense. Thus, a Galois
connection between partially ordered sets G = (G, ≤) and H = (H, ≤) is a pair (f , g) where f : G → H and
g : H → G are isotone (i.e., order preserving) maps such that f (g(y)) ≤ y for every y ∈ H and x ≤ g(f (x)) for
every x ∈ G. For more details concerning Galois connections see [9].
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1 Closure operators associated with sets of paths
In the sequel, n will denote a positive integer.

Given a graph G, we denote by Pn(G) the set of all paths of length n in G. For every subsetB ⊆ Pn(G), we
put B̂ = {(xi| i ≤ m); 0 < m ≤ n and there exists (yi| i ≤ n) ∈ B such that xi = yi for every i ≤ m} (so that the
elements of B̂ are the paths of lengths less than or equal to n that are initial parts of the paths belonging to
B; we clearly haveB ⊆ B̂).

Let Gj = (Vj , Ej) be a graph and Bj ⊆ Pn(Gj) for every j = 1, 2. Then, we put B1 ⊗ B2 = {((x1i , x2i )| i ≤
n); (x1i , x2i ) ∈ V1 × V2 for all i ≤ n, there is a nonempty subset J ⊆ {1, 2} such that (xji| i ≤ n) ∈ Bj for
every j ∈ J, and (xji| i ≤ n) is a constant sequence for every j ∈ {1, 2} − J}. We will need the obvious fact that
B1 ⊗B2 ⊆ Pn(G1 ⊗ G2).

Let G = (V , E) be a graph. Given a subsetB ⊆ Pn(G) (n > 0 an ordinal), we put fn(B)X = X∪{x ∈ V; there
exists (xi| i ≤ m) ∈ B̂ with {xi; i < m} ⊆ X and xm = x} for every X ⊆ V. It may easily be seen that fn(B) is an
Sn+1-closure operator on G. Thus, denoting by U(G) the set of all closure operators on G (i.e., on the vertex
set V of G), we get a map fn : exp Pn(G) → U(G). The closure operator fn(B) is said to be associated toB. It is
evident that every path belonging to B̂ is a connected subset of the closure space (V , fn(B)).

Further, given a closure operator u on G, we put gn(u) = {(xi| i ≤ n) ∈ Pn(G); xj ∈ u{xi; i <
j} for every j with 0 < j ≤ n}. Thus, we get a map gn : U(G) →exp Pn(G).

Theorem 1.1. Let G = (V , E) be a graph. Then, the pair (fn , gn) constitutes a Galois connection between the
partially ordered sets (exp Pn(G),⊆) and (U(G), ≤).

Proof. It is evident that fn and gn are isotone. Let B ⊆ Pn(G) and let (yi| i ≤ n) ∈ B be a path. Put fn(B) = u.
Then, u is the closure operator on G given by uX = X ∪ {x ∈ V; there exists (xi| i ≤ m) ∈ B̂ with {xi; i <
m} ⊆ X and xm = x} for every X ⊆ V. We have (yi| i ≤ j) ∈ B̂ for every j, 0 < j ≤ n, hence yj ∈ u{yi; i < j}.
Consequently, (yi| i ≤ n) ∈ gn(u). Therefore,B ⊆ gn(u) = gn(fn(B)).
Let u ∈ U(G) and let X ⊆ V be a subset. Put gn(u) = B and let y ∈ fn(gn(u))X be an element. If y ∈ X,
then y ∈ uX. Let y ∉ X. Then, there exists (xi| i ≤ m) ∈ B̂ such that {xi; i < m} ⊆ X and xm = y. Since
(xi| i ≤ m) ∈ B̂, there is (yi| i < n) ∈ B = gn(u) with xi = yi for every i ≤ m. Thus, yj ∈ u{xi; i < j} for every j,
0 < j < n. In particular, y = ym ∈ u{xi; i < m} ⊆ uX. Therefore, fn(gn(u)) ≤ u.�

In what follows, we will investigate, for a given graph G, the (isomorphic) partially ordered sets
fn(exp Pn(G)) and gn(U(G)). If the graph G is complete, then of course f1(exp P1(G)) is the set of all S2-closure
operators on G.

Proposition 1.2. Let G = (V , E) be a graph and B ⊆ Pn(G). Then, B ∈ gn(U(G)) if and only if the following
condition is satis�ed:

(*) If (xi| i ≤ n) ∈ Pn(G) has the property that, for every i0, 0 < i0 ≤ n, there exist (yj| j ≤ n) ∈ B and j0,
0 < j0 ≤ n, such that xi0 = yj0 and {yj; j < j0} ⊆ {xi; i < i0}, then (xi| i ≤ n) ∈ B.

Proof. Let B ∈ gn(U(G)), let (xi| i ≤ n) ∈ P(G), and let, for any i0, 0 < i0 ≤ n, there be (yj|j ≤ n) ∈ B and
j0, 0 < j0 ≤ n, such that xi0 = yj0 and {yj; j < j0} ⊆ {xi; i < i0}. Then, xi0 ∈ fn(B){yj; j < j0} ⊆ fn(B){xi; i < i0}
for every i0, 0 < i0 ≤ n. Therefore, (xi| i ≤ n) ∈ gn(fn(B)) = B. Thus, the condition (*) is satis�ed.
Conversely, let the condition (*) be satis�ed and let (xi|i ≤ n) ∈ gn(fn(B)). Then, xi0 ∈ fn(B){xi; i < i0} for
each i0, 0 < i0 ̸= n. Hence, for every i0, 0 < i0 ≤ n, there exist (yj| j ≤ n) ∈ B and j0, 0 < j0 ≤ n, such that
xi0 = yj0 and {yj; j < j0} ⊆ {xi; i < i0}. Therefore, (xi| i ≤ n) ∈ B and we have shown that gn(fn(B)) ⊆ B.
Consequently,B = gn(fn(B)), so thatB ∈ gn(U(G)). The proof is complete.�

Example 1.3. Note that every subsetB ⊆ P1(G) satis�es the condition (*). A subsetB ⊆ P2(G) satis�es (*) if
and only if each of the following six conditions implies (x, y, z) ∈ B:
(1) (x, y, t) ∈ B, (x, z, u) ∈ B,
(2) (x, y, t) ∈ B, (y, z, u) ∈ B,
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(3) (x, y, t) ∈ B, (y, x, z) ∈ B.

The following assertion is obvious:

Proposition 1.4. Let G = (V , E) be a graph and u ∈ U(G). Then u ∈ fn(exp Pn(G)) if and only if the following
condition is satis�ed:

If X ⊆ V and x ∈ uX − X, then there exist (xi|i ≤ n) ∈ Pn(G) and a positive integer m ≤ n, such that
{xi; i < m} ⊆ X, xj ∈ u{xi; i < j} for each j, 0 < j ≤ n, and xm = x.

Though fn(B) is neither additive nor idempotent in general, we have:

Proposition 1.5. Let G = (V , E) be a graph and B ⊆ Pn(G) a subset. The union of a system of closed subsets
of (V , fn(B)) is a closed subset of (V , fn(B)).

Proof. Put fn(B) = u. Let {Xj; j ∈ J} be a system of closed subsets of (V , u) and let x ∈ u
⋃
j∈J Xj. Then, there

are (xi| i ≤ n) ∈ B and i0, 0 < i0 ≤ n, such that xi0 = x and xi ∈
⋃
j∈J Xj for all i ≤ i0. In particular, we have

x0 ∈
⋃
j∈J Xj so that there is j0 ∈ J such that x0 ∈ Xj0 . If there exists k, 0 < k ≤ n, such that xi ∈ Xj0 for all i < k,

then xk ∈ u{xi; i < k} ⊆ uXj0 = Xj0 . Consequently, we have {xi; i ≤ n} ⊆ Xj0 . Thus, x = xi0 ∈ Xj0 ⊆
⋃
j∈J Xj.

We have shown that u
⋃
j∈J Xj ⊆

⋃
j∈J Xj, which completes the proof.�

Proposition 1.6. Let G = (V , E) be a graph and B ⊆ Pn(G) a subset. Then, the closure operator fn(B) is
idempotent if and only if (V , fn(B)) is an Alexandro� space.

Proof. Put fn(B) = u. Let u be idempotent and let X ⊆ V be a subset and x ∈ u a point. If x ∈ X, then
x ∈ u{x} ⊆

⋃
y∈X u{y}. Suppose that x ∈ ̸ X. Then there are (xi| i ≤ n) ∈ B and i0, 0 < i0 ≤ n, such

that xi0 = x and xi ∈ X for all i ≤ i0. Clearly, we have x ∈ u{xi; i < i0}. If i0 = 1, then x ∈ u{x0}. Let
i0 > 1. We have u{xi; i < k} ⊆ uu{xi; i < k − 1} = u{xi; i < k − 1} for every k, 1 < k ≤ n. Consequently,
u{xi; i < i0} ⊆ u{xi; i < i0 − 1} ⊆ ... ⊆ u{x0}, so that x ∈ u{x0}. Therefore, x ∈

⋃
y∈X u{y} and the proof is

complete.�

2 Sets of paths in and the associated closure operators on the
2-adjacency graph

Recall that the 2-adjacency graph (on Z) is the graph Z2 = (Z, A2) where A2 = {{p, q}; p, q ∈ Z, |p − q| = 1}.
For every l ∈ Z, we put

Il =
{
(ln + i| i ≤ n) if l is odd,
((l + 1)n − i| i ≤ n) if l is even.

Throughout this section,B ⊆ Pn(Z2) will denote the setB = {Il; l ∈ Z}. Thus, all paths Il belonging toB are
just the arithmetic sequences (xi|i ≤ n) of integers with the di�erence equal to 1 or −1 and with x0 = ln if l is
odd and x0 = (l + 1)n if l is even. Note that each element z ∈ Z belongs to at least one and at most two paths
in B. It belongs to two (di�erent) paths from B if and only if there is l ∈ Z with z = ln (in which case z is the
�rst member of each of the paths Il and Il−1 if l is odd, and z is the last member of each of the two paths if l is
even). The graph Z2 with the setB of paths is demonstrated in Figure 1 where only the vertices kn, k ∈ Z, are
marked (by bold dots) so that, between any two neighboring vertices marked, there are n − 1 more vertices
that are not marked out. The paths in B are represented by the line segments oriented from the �rst to the
last members of the paths (and every directed line segment represents n edges of the graph).

Clearly, the closure operator fn(B) is additive if and only if n = 1. The closure operator f1(B) coincides
with the Khalimsky topology on Z generated by the subbase {{2k − 1, 2k, 2k + 1}; k ∈ Z} - cf. [1].

Unauthenticated
Download Date | 1/27/19 12:40 AM



Galois connections between sets of paths and closure operators | 1577

Figure 1: A section of the graph Z2 with the setB of paths demonstrated.
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Proposition 2.1. In the closure space (Z, fn(B)), the points ln, l ∈ Z odd, are open while all the other points
are closed.

Proof. Let l0 ∈ Z be an arbitrary odd number and put z = l0n. Let x ∈ fn(B)(Z − {z}) be a point and suppose
that x /∈ Z − {z}, i.e., that x = z. Then, there are (xi| i ≤ n) ∈ B and i0, 0 < i0 ≤ n, such that x = xi0 and
{xi; i < i0} ∈ Z − {z}. Let m ∈ Z be the odd number with xi = mn + i for all i ≤ n or xi = mn − i for all
i ≤ n. Then, xi0 = mn + i0 or xi0 = mn − i0. Since 0 < i0 ≤ n, we have 0 < i0 < 2n and, consequently,
mn < xi0 < (m + 2)n or (m − 2)n < xi0 < mn. Hence, xi0 ≠ ln for any odd number l ∈ Z. Thus, xi0 ≠ z, so that
x ∈ Z − {z}. Therefore, the set Z − {z} is closed, i.e., {z} is open in (Z, fn(B)).
Let z ∈ Z be an arbitrary point with z ≠ ln for any odd number l ∈ Z. Let x ∈ fn(B){z} and suppose that x ≠ y.
Then, there are (xi| i ≤ n) ∈ B and i0, 0 < i0 ≤ n, such that x = xi0 and {xi; i < i0} = {z}. Thus, x0 = z, which
contradicts the existence of an odd number l0 ∈ Z with x0 = l0n. Hence, x = y and, therefore, {z} is closed
in (Z, fn(B)).�

Theorem 2.2. (Z, fn(B)) is a connected closure space.

Proof. Since every path belonging toB is connected in (Z, fn(B)), the set A = I0 ∪ I1 ∪ I2 ∪ ... of non-negative
integers and the set B = I−1 ∪ I−2 ∪ I−3 ∪ ... of non-positive integers are connected (note that Ik ∩ Ik+1 = {kn}).
Thus, Z = A ∪ B is connected because A ∩ B = {0}.�
Given a totally ordered set (X, ≤) and a point x ∈ X, we put L(x) = {y ∈ Z; y < x} and U(x) = {y ∈ Z; y > x}.
The set of integers Z is considered to be totally ordered by the natural order. Clearly, for every z ∈ Z, both
L(z) and U(z) are closed in the subspace Z − {z} of (Z, fn(B)).

Theorem 2.3. Let z ∈ Z be a point. Then, there are points z1, z2 ∈ Z such that L(z1) and U(z2) are components
of the subspace Z − {z} of (Z, fn(B)) and all the other components of Z − {z} are singletons. If z = ln + i where
l, i ∈ Z, l even and |i| ≤ 1, then z1 = z2 = z (so that Z − {z} has no singleton components).

Proof. There are l0, i0 ∈ Z, l odd and |i0| ≤ n, such that z = l0n + i0. Let |i0| = n. Then, z = (l0 + 1)n
or z = (l0 − 1)n so that there is an even number m ∈ Z with z = mn. We clearly have L(z) =

⋃
{Il; l ≤

(m−2)n}∪{i; (m−1)n ≤ i < z}. L(z) is connected in (Z, fn(B)) because (Il| l ≤ (m−2)n) is a sequence of paths
belonging toBwith every pair of consecutive paths having a point in common, {i; (m − 1)n ≤ i < z} ∈ B̂ and
(m − 1)n ∈ I(m−2)n ∩ {i; (m − 1)n ≤ i < z}. Similarly, U(z) =

⋃
{Il; l ≥ (m + 1)n} ∪ {i; z < i ≤ (m + 1)n} is

connected in (Z, fn(B)). Since L(z) and U(z) are closed, disjoint, and satisfying L(z)∪U(z) = Z−{z}, they are
the components of Z − {z}.
Let |i0| < n and suppose that i0 ≥ 0. Then, L(l0n) is connected in (Z, fn(B)) because it is the union of a
sequence of paths belonging to B, namely the sequence (Il| l ≤ l0) in which every pair of consecutive paths
has a point in common. Further, since (l0n + i| i < l0n + i0) ∈ B̂ and L(l0n) ∩ {l0n + i; i < l0n + i0} ≠ ∅, the
set L(z) = L(l0n) ∪ {l0n + i; i < l0n + i0} is connected in (Z, fn(B)). It is also evident that L(z) is closed in
the subspace Z − {z}. Further, U((l0 + 1)n − 1) is connected because it is the union of a sequence of paths
belonging to B, namely, the sequence (Il| l ≥ l0 + 1) in which every pair of consecutive paths has a point in
common. It is also evident that U(z) is closed in the subspaceZ−{z}. Clearly, we haveZ−{z} = L(z)∪{i; z <
i < 2l0n} ∪ U((l0 + 1)n − 1) where the sets L(z), {i; z < i < 2l0n}, and U((l0 + 1)n − 1) are pairwise disjoint.
The singleton subsets of {i; z < i < (l0 + 1)n} are closed in Z − {z}. We have shown that L(z), U((l0 + 1)n − 1),
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and the singletons {i}, z < i < (l0 + 1)n, are the components of Z − {z}. We may show in an analogous way
that U(z), L((l0 + 1)n − 1), and the singletons {i}, (l0 − 1)n < i < z, are the components of Z − {z} if i0 ≤ 0.

To prove the second part of the Theorem, suppose that z = ln + i where l, i ∈ Z, l even and |i| ≤ 1. It was
shown in the �rst part of the proof that L(z) and U(z) are the (only) components of Z − {z} if i = 0 (because
then z = l0n + i0 where l0 = l1 is odd and i0 = n). Suppose that i = 1. Then, z = l0n + i0 where l0 = l + 1 and
i0 = 1 − n. We have (l0 − 1)n + 1 = ln + 1 = z, so that L((l0 − 1)n + 1) = L(z). Since {i; (l0 − 1)n < i < z} ≠ ∅,
L(z) and U(z) are the (only) components of Z − {z} according to the previous part of the proof. Using similar
arguments, we may show that L(z) and U(z) are the (only) components of Z − {z} if i = −1. The proof is
complete.�

Remark 2.4. Recall [1] that a connected topological space (X, u) is called a connected ordered topological
space (COTS for short) if, for any three-point subset Y ⊆ X, there is a point x ∈ Y such that Y meets two
components of the subspace X − {x}. It was shown in [1] that a connected topological space (X, u) is a COTS
if and only if there is a total order on X such that, for every x ∈ X, the sets L(x) and U(x) are components of
the subspace X − {x}. Thus, Theorem 3 results in the well-known fact that the Khalimsky space (Z, f1(B)) is
a COTS ([1]). Hence, the closure operators fn(B) may be regarded as generalizations of the connected ordered
topologies on Z.

3 Closure operators associated with sets of paths in the digital
plane

In the sequel, we will discuss the graph Z2 ⊗ Z2 with the set B ⊗ B of paths of length n. The graph is
demonstrated in Figure 2 where, as in Figure 1, only the vertices (kn, ln), k, l ∈ Z, are marked (by bold dots)
and only the paths between these vertices are marked (by line segments oriented from the �rst to the last
members of the paths). Thus, between any pair of neighboring parallel horizontal or vertical line segments
(having the same orientation), there are n − 1 more parallel line segments with the same orientation that are
not displayed in order tomake the Figure transparent. And, of course, every oriented line segment represents
n edges of the graph.

Observe that the closure space (Z2, fn(B⊗B)) is connected. Indeed, the setZ×{k} is connected for every
k ∈ Z by applying arguments similar to those used in the proof of Theorem 2 Therefore, the set Z2 = A ∪ B
where A = (Z × {0})∪ (Z × {1})∪ (Z × {2})∪ ... and B = (Z × {0})∪ (Z × {−1})∪ (Z × {−2})∪ ... is connected,
again, by applying arguments similar to those used in the proof of Theorem 2.

Note thatZ2⊗Z2 is nothing but the well-known 8-adjacency graph onZ2. Let Hn denote the factor of the
graph Z2 ⊗ Z2 with exactly those edges {(x1, y1), (x2, y2)} of Z2 ⊗ Z2 that satisfy one of the following four
conditions for some k ∈ Z:

Figure 2: A section of the graph Z2 ⊗ Z2 with the setB⊗ B of paths demonstrated.
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Figure 3: A section of the graph Hn.
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Figure 4: A section of the connectedness graph of the Khalimsky topology on Z2.
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x1 − y1 = x2 − y2 = 2kn,
x1 + y1 = x2 + y2 = 2kn,
x1 = x2 = 2kn,
y1 = y2 = 2kn.
A section of the graph Hn is shown in Figure 3 where only the vertices (2kn, 2ln), k, l ∈ Z, are marked (by
bold dots) and thus, on every edge drawn between two such vertices, there are 2n − 1 more (non-displayed)
vertices so that the edges represent 2n edges in the graph Hn. Note that every circle C in Hn is a connected
subset of (Z2, fn(B⊗B)). Indeed, C consists (is the union) of a �nite sequence of paths in Z2 ⊗Z2 belonging
toB⊗B such that every pair of consecutive paths in the sequence has a point in common.

The closure operator f1(B ⊗ B) (which is a topology) is called the Khalimsky topology on Z2 and the
topological space (Z2, f1(B ⊗ B)) is called the Khalimsky plane (cf. [1]). The connectedness graph of the
Khalimsky topology is demonstrated in Figure 4.

It is a basic problem of digital geometry (cf. [10]) to �nd a structure on the digital plane Z2 convenient
for the study of digital images. The convenience means that such a structure satis�es parallels of some basic
geometric and topological properties of the Euclidean topology on the real plane R2. Of these parallels, the
validity of ananalogueof the Jordan curve theoremplays a crucial role becausedigital Jordan curves represent
the borders of objects in digital images - see [11, 12]. It is well known that the Khalimsky topology provides
such a structure on Z2 (cf. [1]). But it was shown in [13, 14] that there are some other topologies and closure
operators on Z2 with this property.

According to [1], a circle C in the connectedness graph of the Khalimsky topology f1(B⊗B) is said to be
a Jordan curve in the Khalimsky plane if the following two conditions are satis�ed:
(1) with each of its points, C contains precisely two points adjacent to it,
(2) C separates the Khalimsky plane into exactly two components (i.e., the subspaceZ2−C of (Z2, f1(B⊗B))

consists of exactly two components)..
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Figure 5: A digital image of M.
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As an immediate consequence of Theorem 5.6 proved in [1], we get the following digital Jordan curve theorem
for the Khalimsky space (Z2, f1(B⊗B)): A circle C in the graph H1 is a Jordan curve in the Khalimsky plane
if and only if, at none of its points, it turns at an acute angle of π4 .

For every n > 1, we de�ne (digital) Jordan curves in (Z2, fn(B⊗B)) to be the circles C in Hn that separate
(Z2, fn(B⊗B)) into exactly two components.

Now the problem arises to determine, for every n > 1, those circles in Hn that are Jordan curves in
(Z2, fn(B ⊗ B)). The following solution of the problem results from Theorem 3.19 proved in [15] (in quite a
laborious way based on using quotient closure spaces and the Jordan curve theorem for the Khalimsky plane,
namely, Theorem 5.6 in [1]):

Theorem 3.1. Every circle in Hn that does not turn at any point ((2k+1)n, (2l+1)n), k, l ∈ Z, is a Jordan curve
in (Z2, fn(B⊗B)) whenever n > 1.

Thus, the closure operators fn(B ⊗ B), n > 1, may be used as background structures on Z2 for the study of
digital images. The advantage of using these closure operators rather than the Khalimsky topology f1(B⊗B)
is that the Jordan curves with respect to them, i.e., circles in Hn, may turn at an acute angle of π

4 at some
points - see the following example:

Example 3.2. Consider the set of points of Z2 demonstrated in Figure 5, which represents the (border of)
letter M (the points may be regarded as centers of pixels in a computer screen). This set is not a Jordan curve
in the Khalimsky plane (Z2, f1(B ⊗ B)). For it to be a Jordan curve in the Khalimsky plane, the eight points
that are ringed have to be deleted. But this would lead to a certain deformation (loss of sharpness) of the
letter - the eight pixels will belong to the white background of the black image of M. On the other hand, the
set is a circle in the graph H2 satisfying the assumption of Theorem 4 and, therefore, it is a Jordan curve in
(Z2, f2(B⊗B)).
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