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Abstract: For every positive integer n, we introduce and discuss an isotone Galois connection between the sets
of paths of lengths n in a simple graph and the closure operators on the (vertex set of the) graph. We consider
certain sets of paths in a particular graph on the digital line Z and study the closure operators associated,
in the Galois connection discussed, with these sets of paths. We also focus on the closure operators on the
digital plane Z? associated with a special product of the sets of paths considered and show that these closure
operators may be used as background structures on the plane for the study of digital images.
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Introduction

It is useful to find new relationships between different mathematical structures or theories because they
demonstrate the interconnectedness of mathematics and enable us to use tools of one theory to solve
problems of another. In the present paper, we will discuss certain relationships between graph theory and
topology. We will introduce and study Galois connections between the sets of paths of the same length in
a graph and closure operators on the vertex set of the graph. We will focus on the connectedness provided
by the closure operators associated, in the Galois connections introduced, to certain sets of paths in the 2-
adjacency graph on the digital line Z. The closure operators will be shown to generalize the connected ordered
topologies [1], hence the Khalimsky topology, on Z. Further, we will discuss the closure operators on the
digital plane Z? associated with special products of the sets of paths with the same length in the 2-adjacency
graph on Z. These closure operators include the Khalimsky topology on Z? and we will show that they allow
for a digital analogue of the Jordan curve theorem (recall that the classical Jordan curve theorem states that
a simple closed curve in the real (Euclidean) plane separates the plane into precisely two components). It
follows that the closure operators may be used as background structures on the digital plane Z? for the study
of digital images.

The idea of studying connectedness in a graph with respect to sets of paths is taken from [2] where certain
special sets of paths, called path partitions, were used to obtain connectedness with a convenient geometric
behavior. In the present note, we will employ arbitrary sets of paths (of given lengths) and investigate
connectedness with respect to the closure operators associated with the sets in a Galois connection.

For the graph-theoretic terminology, we refer to [3]. By a graph G = (V, E), we understand an (undirected
simple) graph (without loops) with V' # 0 as the vertex set and E C {{x,y}; x,y € V, x # y} as the set

*Corresponding Author: Josef Slapal: IT4Innovations Centre of Excellence, Brno University of Technology, 612 66 Brno, Czech
Republic, E-mail: slapal@fme.vutbr.cz

3 Open Access. © 2018 Slapal, published by De Gruyter. This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 License. Unauthenticated

Download Date | 1/27/19 12:40 AM


https://doi.org/10.1515/math-2018-0128

1574 — ). Slapal DE GRUYTER

of edges. We will say that G is a graph on V. Two vertices x,y € V are said to be adjacent (to each other) if
{x,y} € E.Recall that a path in G is a (finite) sequence (x;| i < n), i.e., (xo, X1, ..., Xn), of pairwise different
vertices of V such that x; is adjacent to x;.; whenever i < n. The non-negative integer n is called the length
of the path (x;| i < n). A sequence (x;| i < n) of vertices of G is called a circleif n > 2, xo = xn, and (x;| i < n)
is a path. Given graphs G; = (V1, E1,) and G, = (V>, E,), we say that G is a subgraph of G, if V; C V, and
E, C E,. If, moreover, V; = V;, then G; is called a factor of G,.

Recall [4] that the strong product of a pair of graphs G, = (V1, E1,) and G, = (V>, E,, ) is the the graph
G1 ® G, = (V1 x V,, E) with the set of edges E = {{(x1, x2), (¥1,¥2)} C Vi x V3; there exists a nonempty
subset ] C {1, 2} such that {x;,y;} € E;foreveryj € Jand x; = y; for every j € {1, 2} - J}. Note that
the strong product differs from the cartesian product of G; and G», i.e., from the graph (V; x V,, F) where
F = {{(x1,x2), (y1,¥2)}; {x;,y;} € Ejforeveryj e {1,2}} (the cartesian product is a factor of the strong
product).

By a closure operator u on a set X, we mean a map u: exp X - exp X (where exp X denotes the power set
of X) which is
(i) grounded (i.e., ud = 0),

(ii) extensive (i.e., A C X = A C uA), and

(iii) monotone (i.e., A C B C X = uA C uB).

The pair (X, u) is then called a closure space. Closure spaces were studied by E. Cech [5] (who called them
topological spaces).

A closure operator u on X that is
(iv) additive (i.e., u(A U B) = uA U uB whenever A, B C X) and
(v) idempotent (i.e., uuA = uA whenever A C X)
is called a Kuratowski closure operator or a topology and the pair (X, u) is called a topological space.

Given a cardinal m > 1, a closure operator u on a set X and the closure space (X, u) are called an S;-
closure operator and an Sp-closure space (briefly, an Sm-space), respectively, if the following condition is
satisfied:

ACX=uA=J{uB;B C A,card B < m}.

In [6], S,-closure operators and S,-closure spaces are called quasi-discrete. S,-topologies (S,-topological
spaces) are usually called Alexandroff topologies (Alexandroff spaces) - see [7]. Every S,-closure operator is of
course additive and every Sq-closure operator is an Sg-closure operator whenever a < f.If a < X, then every
additive S4-closure operator is an S;-closure operator.

Many concepts defined for topological spaces (see, e.g., [8]) can naturally be extended to closure spaces.
Let us mention some of them. Given a closure space (X, u), a subset A C X is called closed if uA = A, and
it is called open if X — A is closed. A closure space (X, u) is said to be a subspace of a closure space (Y, v) if
uA = vA n X for each subset A C X. We will briefly speak about a subspace X of (Y, v). A closure space (X, u)
is said to be connected if ) and X are the only clopen (i.e., both closed and open) subsets of X. A subset X C Y
is connected in a closure space (Y, v) if the subspace X of (Y, v) is connected. A maximal connected subset of
a closure space is called a component of this space. The connectedness graph of a closure operator u on a set
X is the graph with the vertex set X whose edges are the connected two-element subsets of X. All the basic
properties of connected sets and components in topological spaces are also preserved in closure spaces. In
particular, we will employ the fact that the union of a sequence (finite or infinite) of connected subsets is
connected if every pair of consecutive members of the sequence has a nonempty intersection.

If u, v are closure operators on a set X, then we put u < v if uA C vA for every subset A C X (clearly, < is
a partial order on the set of all closure operators on X).

In this note, the concept of a Galois connection is understood in the isotone sense. Thus, a Galois
connection between partially ordered sets G = (G, <) and H = (H, <) is a pair (f, g) where f : G > H and
g : H > G are isotone (i.e., order preserving) maps such that f(g(y)) < y for every y € H and x = g(f(x)) for
every x € G. For more details concerning Galois connections see [9].
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1 Closure operators associated with sets of paths

In the sequel, n will denote a positive integer.

Given a graph G, we denote by P»(G) the set of all paths of length n in G. For every subset B C Px(G), we
put B = {(x;] i < m); 0 < m < nand there exists (y;| i < n) € B such that x; = y; for every i < m} (so that the
elements of B are the paths of lengths less than or equal to n that are initial parts of the paths belonging to
B; we clearly have B C B).

Let G; = (V;, E;) be a graph and B; C Pn(G;) for every j = 1, 2. Then, we put By ® B, = {((xl-l,xiz)\ is
n); (x}, xl-z) € VixV, foralli < n, thereis a nonempty subset /] C {1, 2} such that (x’l:| i <n)e Bjfor
everyj € J, and (x’l.| i < n) is a constant sequence for every j € {1, 2} — J}. We will need the obvious fact that
B1® Bz C Pn(G1 ® G2).

Let G = (V, E) be a graph. Given a subset B C P»(G) (n > 0 an ordinal), we put fn(B)X = XU {x € V; there
exists (x;| i < m) € B with {x;; i < m} C X and x;n = x} for every X C V. It may easily be seen that f,(B) is an
Sp+1-closure operator on G. Thus, denoting by U(G) the set of all closure operators on G (i.e., on the vertex
set V of G), we get a map fr : exp Pn(G) - U(G). The closure operator f,(B) is said to be associated to B. It is
evident that every path belonging to B is a connected subset of the closure space (V, fa(B)).

Further, given a closure operator u on G, we put gn(u) = {(x;] i < n) € Pa(G); x; € u{x;; i <
j} for every j with 0 < j < n}. Thus, we get a map gn : U(G) ~exp Pn(G).

Theorem 1.1. Let G = (V, E) be a graph. Then, the pair (f., gn) constitutes a Galois connection between the
partially ordered sets (exp Pn(G), C) and (U(G), <).

Proof. 1t is evident that f, and gn are isotone. Let B C P»(G) and let (y;| i < n) € B be a path. Put fu(B) = u.
Then, u is the closure operator on G given by uX = X U {x € V; there exists (x;] i < m) € B with {xj5 1 <
m} C Xand x,y = x} forevery X C V. We have (y;]i < j) € B for every j, 0 < j < n, hence yj € u{y; 1< j}
Consequently, (y;| i < n) € gn(u). Therefore, B C gn(u) = gn(fn(B)).
Let u € U(G) and let X C V be a subset. Put gn(u) = B and let y € fa(gn(u))X be an element. If y € X,
then y € uX. Lety ¢ X. Then, there exists (x;] i < m) € B such that {xj; i < m} C Xand xm = y. Since
(xi] i < m) € B, there is (y;| i < n) € B = gn(u) with x; = y; for every i < m. Thus, y; € u{x;; i < j} for every j,
0 <j < n.Inparticular, y = ym € u{x;; i < m} C uX. Therefore, fn(gn(u)) < u.O

In what follows, we will investigate, for a given graph G, the (isomorphic) partially ordered sets
fn(exp Pn(G)) and gn(U(G)). If the graph G is complete, then of course f; (exp P1(G)) is the set of all S,-closure
operators on G.

Proposition 1.2. Let G = (V, E) be a graph and B C Pn(G). Then, B € gn(U(G)) if and only if the following
condition is satisfied:

(*) If (x;] i < n) € Pn(G) has the property that, for every iy, O < iy < n, there exist (y;| j < n) € B and jo,
0 < jo < n, such that x;, = yj, and {yj; j < jo} C {x; i <io}, then (x;| i< n) € B.

Proof. Let B € gn(U(G)), let (x;] i < n) € P(G), and let, for any ip, 0 < iy < n, there be (y;|j < n) € B and
jo, 0 < jo < n, such that x;; = y;, and {y;;j < jo} C {x;;i <io}. Then, x;; € fu(B){y;;j <jo} C fa(B){xs;i<io}
for every ig, O < ig < n. Therefore, (x;| i < n) € gn(fn(B)) = B. Thus, the condition (*) is satisfied.

Conversely, let the condition (*) be satisfied and let (x;|i < n) € gn(fa(B)). Then, x;, € fu(B){x;; i < ip} for
each ip, 0 < ig/= n. Hence, for every ig, O < ig < n, there exist (y,~|j < n) € Band jy, 0 < jo < n, such that
Xiy = Vj, and {yj; j < jo} C {x;; i < io}. Therefore, (x;| i < n) € B and we have shown that gn(fa(B)) C B.
Consequently, B = gn(fn(B)), so that B € gn(U(G)). The proof is complete. (I

Example 1.3. Note that every subset B C P;(G) satisfies the condition (*). A subset B C P,(G) satisfies (*) if
and only if each of the following six conditions implies (x, y, z) € B:

1 x,y,t)eB, (x,z,u) € B,

@ Oy, )eB, (y,z,u) € B,
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B) &y, t)eB, (y,x,2) € B.
The following assertion is obvious:

Proposition 1.4. Let G = (V, E) be a graph and u € U(G). Then u € fa(exp Pn(G)) if and only if the following
condition is satisfied:

IfX C Vand x € uX - X, then there exist (x;|i < n) € Pn(G) and a positive integer m < n, such that
{xis i<m} C X, xj € u{x;; i <j}foreachj,0<j<n,andxm = x.

Though f(B) is neither additive nor idempotent in general, we have:

Proposition 1.5. Let G = (V, E) be a graph and B C Pn(G) a subset. The union of a system of closed subsets
of (V, fn(B)) is a closed subset of (V, fn(B)).

Proof. Put fo(B) = u. Let {Xj; j € J} be a system of closed subsets of (V, u) and let x € u U]-e 7 Xj- Then, there
are (x;| i < n) € Band ip, 0 < iy < n, such that x;, = xand x; € Uje]XJ' for all i < ig. In particular, we have
Xg € Uje] Xj so that thereis jo € Jsuchthatxo € X;j,.If thereexists k, O < k < n, such that x; € X;, foralli < k,
then x; € u{x;; i < k} C uX;, = X;,. Consequently, we have {x;; i < n} C Xj,. Thus, x = x;, € X;, C U]-E]X}-.
We have shown that u{J;¢; Xj € U;¢; X, which completes the proof. U]

Proposition 1.6. Let G = (V, E) be a graph and B C Pn(G) a subset. Then, the closure operator fn(B) is
idempotent if and only if (V, fn(B)) is an Alexandroff space.

Proof. Put fn(B) = u. Let u be idempotent and let X C V be a subset and x € u a point. If x € X, then
x € u{x} C Uyexu{y}. Suppose that x ¢ X. Then there are (x;| i < n) € B and ip, 0 < ip < n, such
that x;, = x and x; € X forall i < ip. Clearly, we have x € u{x;; i < ip}. If ip = 1, then x € u{xp}. Let
ip > 1. We have u{xj; i < k} C uu{x;; i < k—1} = u{x;; i < k- 1} for every k, 1 < k < n. Consequently,
u{x;; i<io} Cu{x;; i<ip-1} C ... Cufxo}, sothat x € u{xo}. Therefore, x € | J,.x u{y} and the proofis
complete. (]

yeX

2 Sets of paths in and the associated closure operators on the
2-adjacency graph

Recall that the 2-adjacency graph (on Z) is the graph Z, = (Z, A;) where A, = {{p, q}; p,q € Z, |p-q| = 1}.
For every [ € Z, we put

_J (n+i]i<n)iflis odd,
! ((I+1)n—-1i|iz<n)ifliseven.

Throughout this section, B C Pn(Z,) will denote the set B = {I;; | € Z}. Thus, all paths I; belonging to B are
just the arithmetic sequences (x;|i < n) of integers with the difference equal to 1 or -1 and with xo = Inif l is
odd and xo = (I + 1)n if  is even. Note that each element z € Z belongs to at least one and at most two paths
in B. It belongs to two (different) paths from B if and only if there is | € Z with z = In (in which case z is the
first member of each of the paths I; and I;_; if I is odd, and z is the last member of each of the two paths if [ is
even). The graph Z, with the set B of paths is demonstrated in Figure 1 where only the vertices kn, k € Z, are
marked (by bold dots) so that, between any two neighboring vertices marked, there are n — 1 more vertices
that are not marked out. The paths in B are represented by the line segments oriented from the first to the
last members of the paths (and every directed line segment represents n edges of the graph).

Clearly, the closure operator f,(B) is additive if and only if n = 1. The closure operator f;(B) coincides
with the Khalimsky topology on Z generated by the subbase {{2k - 1, 2k, 2k + 1}; k € Z} - cf. [1].
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Figure 1: A section of the graph Z, with the set B of paths demonstrated.

Proposition 2.1. In the closure space (Z, fn(B)), the points In, | € Z odd, are open while all the other points
are closed.

Proof. Let lp € Z be an arbitrary odd number and put z = lyn. Let x € fu(B)(Z - {z}) be a point and suppose
that x ¢ Z - {z}, i.e,, that x = z. Then, there are (x;| i < n) € B and ip, 0 < ip < n, such that x = x;, and
{x;; i <ip} € Z - {z}. Let m € Z be the odd number with x; = mn +iforalli < nor x; = mn - i forall
i < n.Then, x;; = mn +ip or x;, = mn - ip. Since 0 < iy < n, we have O < iy < 2n and, consequently,
mn < x;, < (m+2)nor (m - 2)n < x;, < mn. Hence, x;, # In for any odd number ! € Z. Thus, x;, # z, so that
X € Z - {z}. Therefore, the set Z — {z} is closed, i.e., {z} is open in (Z, fu(B)).

Let z € Z be an arbitrary point with z # In for any odd number [ € Z. Let x € fn(B){z} and suppose that x # y.
Then, there are (x;] i < n) € B and ip, O < ip < n, such that x = x;, and {x;; i < io} = {z}. Thus, x¢ = 2z, which
contradicts the existence of an odd number I, € Z with x¢ = lyn. Hence, x = y and, therefore, {z} is closed
in (Z, fa(B)). O

Theorem 2.2. (Z, fn(B)) is a connected closure space.

Proof. Since every path belonging to B is connected in (Z, fn(B)), the set A = Iy UI; UI, U ... of non-negative
integers and the set B = I_; UI_, UI_3 U... of non-positive integers are connected (note that I} N [;,; = {kn}).
Thus, Z = A U B is connected because A N B = {0}. O

Given a totally ordered set (X, <) and a point x € X, weputL(x) ={y € Z; y < x}and U(x) = {y € Z; y > x}.
The set of integers Z is considered to be totally ordered by the natural order. Clearly, for every z € Z, both
L(z) and U(z) are closed in the subspace Z - {z} of (Z, fu(B)).

Theorem 2.3. Let z € Z be a point. Then, there are points z1, z, € Z such that L(z,) and U(z,) are components
of the subspace 7. - {z} of (Z, fn(B)) and all the other components of Z — {z} are singletons. If z = In + i where
l,icZ,levenand|i| < 1, then zy = z; = z (so that Z - {z} has no singleton components).

Proof. There are ly,ip € Z, 1 odd and |ig| < n, such that z = lon + ip. Let |ip] = n. Then, z = (Ip + 1)n
or z = (lp — 1)n so that there is an even number m € Z with z = mn. We clearly have L(z) = [J{I}; [ <
(m-2)n}u{i; (m-1)n <i < z}. L(z) is connected in (Z, fn(B)) because (I;| I < (m-2)n) is a sequence of paths
belonging to B with every pair of consecutive paths having a point in common, {i; (n-1)n<i<z} € B and
(m-1)n € Iy, N {i; (m-1)n < i < z}. Similarly, U(z) = J{I;; [ 2 (m+ D)n} U {i; z < i< (m+ n}is
connected in (Z, fn(B)). Since L(z) and U(z) are closed, disjoint, and satisfying L(z) U U(z) = Z - {z}, they are
the components of Z - {z}.

Let |ip| < n and suppose that iy = 0. Then, L(lgn) is connected in (Z, f,(B)) because it is the union of a
sequence of paths belonging to B, namely the sequence (I;| [ < ly) in which every pair of consecutive paths
has a point in common. Further, since (Ion + i| i < lon + ip) € B and L(lon) N {lon + i; i < lon + io} # 0, the
set L(z) = L(lon) U {lopn + i; i < lon + ip} is connected in (Z, fu(B)). It is also evident that L(z) is closed in
the subspace Z - {z}. Further, U((lo + 1)n — 1) is connected because it is the union of a sequence of paths
belonging to B, namely, the sequence (I;| I = lp + 1) in which every pair of consecutive paths has a point in
common. It is also evident that U(z) is closed in the subspace Z - {z}. Clearly, we have Z - {z} = L(z) U{i; z <
i <2lpn} U U((Ip + 1)n — 1) where the sets L(2), {i; z < i < 2lpn}, and U((lp + 1)n — 1) are pairwise disjoint.
The singleton subsets of {i; z < i < (I + 1)n} are closed in Z - {z}. We have shown that L(z), U((lp + 1)n - 1),
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and the singletons {i}, z < i < (I + 1)n, are the components of Z - {z}. We may show in an analogous way
that U(z), L((lp + 1)n - 1), and the singletons {i}, (Ip - 1)n < i < z, are the components of Z - {z} if iy < 0.

To prove the second part of the Theorem, suppose that z = In + i where l,i € Z, l even and |i| < 1. It was
shown in the first part of the proof that L(z) and U(z) are the (only) components of Z — {z} if i = O (because
then z = lyn + iy where ly = 11 is odd and iy = n). Suppose that i = 1. Then, z = lyn + iy where Iy = [ + 1 and
ip=1-n.Wehave(lp-1)n+1=In+1=2zsothat L((l - 1)n+ 1) = L(z). Since {i; (lp - )n <i<z} #0,
L(z) and U(z) are the (only) components of Z - {z} according to the previous part of the proof. Using similar
arguments, we may show that L(z) and U(z) are the (only) components of Z — {z} if i = —1. The proof is
complete. (]

Remark 2.4. Recall [1] that a connected topological space (X, u) is called a connected ordered topological
space (COTS for short) if, for any three-point subset Y C X, there is a point x € Y such that Y meets two
components of the subspace X — {x}. It was shown in [1] that a connected topological space (X, u) is a COTS
if and only if there is a total order on X such that, for every x ¢ X, the sets L(x) and U(x) are components of
the subspace X - {x}. Thus, Theorem 3 results in the well-known fact that the Khalimsky space (Z, f1(B)) is
a COTS ([1]). Hence, the closure operators fn(B) may be regarded as generalizations of the connected ordered
topologies on Z.

3 Closure operators associated with sets of paths in the digital
plane

In the sequel, we will discuss the graph Z, ® Z, with the set B ® B of paths of length n. The graph is
demonstrated in Figure 2 where, as in Figure 1, only the vertices (kn, In), k, | € Z, are marked (by bold dots)
and only the paths between these vertices are marked (by line segments oriented from the first to the last
members of the paths). Thus, between any pair of neighboring parallel horizontal or vertical line segments
(having the same orientation), there are n — 1 more parallel line segments with the same orientation that are
not displayed in order to make the Figure transparent. And, of course, every oriented line segment represents
n edges of the graph.

Observe that the closure space (Z?, fa(B ®B)) is connected. Indeed, the set Z x {k} is connected for every
k € Z by applying arguments similar to those used in the proof of Theorem 2 Therefore, the set Z?> = A U B
where A = (Zx {0 U(Zx{1}HUZx{2})U...and B=(Zx{0})U(Zx{-1})U(Zx{-2})U...1is connected,
again, by applying arguments similar to those used in the proof of Theorem 2.

Note that Z, ® Z, is nothing but the well-known 8-adjacency graph on Z?. Let H, denote the factor of the
graph Z, ® Z, with exactly those edges {(x1, y1), (x2, y2)} of Z, ® Z, that satisfy one of the following four
conditions for some k ¢ Z:

Figure 2: A section of the graph Z; ® Z, with the set B ® B of paths demonstrated.

4n

3n

2n
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Figure 3: A section of the graph Hj.

6n

4n

2n

0 2n 4n 6n

Figure 4: A section of the connectedness graph of the Khalimsky topology on Z2.

X1 -y1=Xx2 - Y2 = 2kn,

X1+ Y1 =X2+Yy, =2kn,

X1 =X = 2kn,

y1 =Yy2 = 2kn.

A section of the graph H, is shown in Figure 3 where only the vertices (2kn, 2In), k, | € Z, are marked (by
bold dots) and thus, on every edge drawn between two such vertices, there are 2n — 1 more (non-displayed)
vertices so that the edges represent 2n edges in the graph Hy. Note that every circle C in Hy, is a connected
subset of (Z2, fu(B ® B)). Indeed, C consists (is the union) of a finite sequence of paths in Z, ® Z, belonging
to B ® B such that every pair of consecutive paths in the sequence has a point in common.

The closure operator f;(B @ B) (which is a topology) is called the Khalimsky topology on Z? and the
topological space (Z2, fi(B ® B)) is called the Khalimsky plane (cf. [1]). The connectedness graph of the
Khalimsky topology is demonstrated in Figure 4.

It is a basic problem of digital geometry (cf. [10]) to find a structure on the digital plane Z? convenient
for the study of digital images. The convenience means that such a structure satisfies parallels of some basic
geometric and topological properties of the Euclidean topology on the real plane R?. Of these parallels, the
validity of an analogue of the Jordan curve theorem plays a crucial role because digital Jordan curves represent
the borders of objects in digital images - see [11, 12]. It is well known that the Khalimsky topology provides
such a structure on Z? (cf. [1]). But it was shown in [13, 14] that there are some other topologies and closure
operators on Z? with this property.

According to [1], a circle C in the connectedness graph of the Khalimsky topology f1(B ® B) is said to be
a Jordan curve in the Khalimsky plane if the following two conditions are satisfied:

(1) with each of its points, C contains precisely two points adjacent to it,
(2) Cseparates the Khalimsky plane into exactly two components (i.e., the subspace Z? - C of (Z2, f1(B® B))
consists of exactly two components)..
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Figure 5: A digital image of M.
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As an immediate consequence of Theorem 5.6 proved in [1], we get the following digital Jordan curve theorem
for the Khalimsky space (Z2, f1(B ® B)): A circle C in the graph H; is a Jordan curve in the Khalimsky plane
if and only if, at none of its points, it turns at an acute angle of %

For every n > 1, we define (digital) Jordan curves in (Z?, fn(B ® B)) to be the circles C in H, that separate
(72, fa(B ® B)) into exactly two components.

Now the problem arises to determine, for every n > 1, those circles in H, that are Jordan curves in
(Z?, fa(B ® B)). The following solution of the problem results from Theorem 3.19 proved in [15] (in quite a
laborious way based on using quotient closure spaces and the Jordan curve theorem for the Khalimsky plane,
namely, Theorem 5.6 in [1]):

Theorem 3.1. Every circle in Hy that does not turn at any point ((2k + 1)n, (21+1)n), k, 1 € Z, is a Jordan curve
in (Z?, fo(B @ B)) whenever n > 1.

Thus, the closure operators fn(B ® B), n > 1, may be used as background structures on 72 for the study of
digital images. The advantage of using these closure operators rather than the Khalimsky topology f; (B ® B)
is that the Jordan curves with respect to them, i.e., circles in Hy, may turn at an acute angle of % at some
points - see the following example:

Example 3.2. Consider the set of points of Z? demonstrated in Figure 5, which represents the (border of)
letter M (the points may be regarded as centers of pixels in a computer screen). This set is not a Jordan curve
in the Khalimsky plane (Z2, f1(B ® B)). For it to be a Jordan curve in the Khalimsky plane, the eight points
that are ringed have to be deleted. But this would lead to a certain deformation (loss of sharpness) of the
letter - the eight pixels will belong to the white background of the black image of M. On the other hand, the
set is a circle in the graph H; satisfying the assumption of Theorem 4 and, therefore, it is a Jordan curve in
(22, f2(B & B)).
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