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1. INTRODUCTION

Jumping versions of language-defining rewriting systems,
such as grammars and automata, represent a brand new trend
in formal language theory (see [1–9]). In essence, they act
just like classical rewriting systems except that they work on
strings discontinuously. That is, they apply a production so
they erase an occurrence of its left-hand side in the rewritten
string while placing the right-hand side anywhere in the
string, so the position of the insertion may occur far away
from the position of the erasure. The present paper contri-
butes to this trend by investigating the generative power of
jumping versions of pure grammars, whose original versions
were introduced in [10], and their properties are still inten-
sively investigated in language theory (see [11, 12]). Recently,
regulated versions of these grammars have been discussed, too
(see Chapter 5 in [13–15]).
The notion of a pure grammar G represents a language-

generating rewriting system based upon an alphabet of symbols
and a finite set of productions (as opposed to the notion of a
general grammar, its alphabet of symbols is not divided into the
alphabet of terminals and the alphabet of nonterminals). Each
production represents a pair of the form ( )x y, , where x and y
are strings over the alphabet of G. Customarily, ( )x y, is written
as x y, where x and y are referred to as the left-hand side
and the right-hand side of x y, respectively. Starting from a
special start string, G repeatedly rewrites strings according to its
productions, and the set of all strings obtained in this way repre-
sents the language generated by G. In a greater detail, G
rewrites a string z according to x y so it (i) selects an

occurrence of x in z, (ii) erases it and (iii) inserts y precisely at
the position of this erasure. More formally, let =z uxv, where u
and v are strings. By using x y, G rewrites uxv as uyv.
The notion of a jumping pure grammar—that is, the key

notion introduced in this paper—is conceptualized just like
that of a classical pure grammar; however, it rewrites strings
in a slightly different way. Let G, z, and x y have the
same meaning as above. G rewrites a string z according to
x y so it performs (i) and (ii) as described above, but dur-

ing (iii), G can jump over a portion of the rewritten string in
either direction and inserts y there. More formally, by using
x y, G rewrites ucv as udv, where u v w c d, , , , are strings

such that either (a) =c xw and =d wy or (b) =c wx and
=d yw. Otherwise, G works as described above.
The present paper compares the generative power of clas-

sical and jumping versions of pure grammars. It distinguishes
between these grammars with and without erasing produc-
tions. Apart from these sequential versions of pure grammars,
it also considers parallel versions of classical and jumping
pure grammars represented by 0L grammars (see [16]). As a
result, the paper studies the mutual relations between eight
language families corresponding to the following derivations
modes (see Definition 2.1) performed by pure grammars both
with and without erasing productions:

• classical sequential mode ( s );
• jumping sequential mode ( j );
• classical parallel mode ( p );
• jumping parallel mode ( jp ).
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In essence, the paper demonstrates that any version of these
grammars with erasing productions is stronger than the same
version without them. Furthermore, it shows that almost all of
the eight language families under considerations are pairwise
incomparable—that is, any two families are not subfamilies
of each other.
The rest of the paper is organized as follows. Section 2

recalls all the terminology needed in this paper and introduces
a variety of jumping pure grammars, illustrated by an
example. Section 3 presents fundamental results achieved in
this paper. Section 4 closes all the study by summing up ten
open problems.

2. PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with the basic
notions of formal language theory (see [17–19]). Let A and B
be two sets. By ÍA B, we denote that A is included in B and
by A B that A is not included in B. ÌA B denotes proper
(or strict) inclusion. We say that A and B are incomparable
iff A B and B A. The cardinality of A is expressed as

( )Acard . For some ³n 0, An denotes the n-fold Cartesian
product of set A. By , we denote the set of all positive inte-
gers. Let ÌI be a finite nonempty set. Then, Imax denotes
the maximum of I . For a (binary) relation  over X ,  i, +,
and * denote the ith power of  , for all ³i 0, the transitive
closure of  , and the reflexive and transitive closure of  ,
respectively. For Îx y X, , instead of ( ) Îx y, , we write
x y throughout. Set  ( ) = { }∣x x ydom . Let S be an alphabet
(finite nonempty set). Then, *S represents the free monoid
generated by S under the operation of concatenation, with e
as the unit of *S . Set * eS = S - { }+ . For *Î Sw and
Î Sa , # ( )wa denotes the number of occurrences of a in w.

By ( )wsubstr , we denote a set of all substrings of w, that is
( ) = { =∣w x w uxvsubstr , *Î S }u x v, , . The length of w is

denoted by ∣ ∣w .
Let ³n 0. A set ÍJ n is said to be linear if there exist

a b b b¼ Î ³m, , , , , 0m
n

1 2 such that


a b b b= { = + + + +

Î £ £ }
∣J x x k k k

k i m

,

, 1 .
m m

i

1 1 2 2

If J is the union of a finite number of linear sets, we say that
J is semilinear. If S = { ¼ }a a a, , , n1 2 is an alphabet, then for

*Î Sw ,

f ( ) = (# ( ) # ( ) ¼ # ( ))w w w w, , ,a a an1 2

denote the commutative (Parikh) image of w. For *Í SL ,
f f( ) = { ( ) Î }∣L w w L denote the commutative (Parikh)
map of L. We say that L is a semilinear language if and only
if f ( )L is a semilinear set. A language family is semilinear if
and only if it contains only semilinear languages.

Let S be a finite set. Define a permutation in the terms of
bijective mappings as follows: let = { ¼ ( )}I S1, 2, , card be
a set of indices. The set of all permutations of elements of S,

( )Sperm , is the set of all bijections from I to S.
An unrestricted grammar is a quadruple s= ( S )G V P, , , ,

where V is a total alphabet, S Í V is an alphabet of ter-
minal symbols, *Í ´+P V V is a finite relation and
s Î +V is the start string of G, called axiom. Members of P
are called productions. Instead of ( ) Îx y P, , we write
x y throughout. For brevity, we sometimes denote a pro-

duction x y with a unique label r as r x y: , and instead
of  Îx y P, we simply write Îr P. We say that x y is
a unit production if Îx y V, . A relation of direct derivation
in G, denoted , is defined as follows: if *Îu v x y V, , ,
and  Îx y P, then uxv uyv. The language generated
by G, denoted ( )L G , is defined as *s( ) = { ∣L G w w,

*Î S }w . G is said to be context-free iff for every production
 Îx y P, =∣ ∣x 1. Furthermore, G is said to be context-

sensitive iff every  Îx y P satisfies £∣ ∣ ∣ ∣x y . A language is
context-free iff it is generated by some context-free grammar,
and a language is context-sensitive iff it is generated by
some context-sensitive grammar. By CF and CS, we denote
the families of context-free and context-sensitive languages,
respectively.
Next, we give the formal definition of pure grammars (see

[20, 13]), together with six modes of derivations.

DEFINITION 2.1. Let s= ( S )G V P, , , be an unrestricted
grammar. G is a pure grammar (PG for short), if = SV . For
brevity, we simplify s= ( S )G V P, , , to s= (S )G P, , . We
say that G is propagating or without erasing productions iff
for every production  Îx y P, e¹y .
Next, we introduce six modes of direct derivation steps as

derivation relations over *S . Let *Î Su v, . The six deriv-
ation relations are defined as follows:

(i) u vs in G iff there exists  Îx y P and
*Î Sw z, such that =u wxz and =v wyz;

(ii) u vlj in G iff there exists  Îx y P and
*Î Sw t z, , such that =u wtxz and =v wytz;

(iii) u vrj in G iff there exists  Îx y P and
*Î Sw t z, , such that =u wxtz and =v wtyz;

(iv) u vj in G iff u vlj or u vrj in G;
(v) u vp in G iff there exist   ¼x y x y, , ,1 1 2 2

 Îx y Pn n such that = ¼u x x xn1 2 and =v
¼y y yn1 2 , where ³n 0;

(vi) u vjp in G iff there exist   ¼x y x y, , ,1 1 2 2
 Îx y Pn n such that = ¼u x x xn1 2 and =v

¼( ) ( ) ( )y y yp p p n1 2 , where Î ({ ¼ })p nperm 1, 2, , ,
³n 0.

Let h be one of the six derivation relations (i) through (vi)
over *S . To express that G applies production r during

u vh , we write  [ ]u v rh , where Îr P. By * p [ ]u vh ,
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where p is a sequence of productions from P, we express that
G makes *u vh by using p.

The language that G generates by using h , ( )L G, h , is
defined as

* *s( ) = {  Î S }∣L G x x x, , .h h

The set of all PGs and the set of all PGs without erasing pro-
ductions are denoted GPG and G e-PG , respectively.

Let s= (S )G P, , be a PG. G is said to be a pure
context-free grammar (PCFG for short) if every  Îx y P
satisfies Î Sx . The set of all PCFGs and the set of all
PCFGs without erasing productions are denoted GPCFG and
G e-PCFG , respectively.

REMARK 1. The inclusions G Í GPCFG PG, G Í Ge-PCFG PCFG

and G Í Ge-PG PG are obvious.

DEFINITION 2.2. Set

(1) = { ( ) Î G }∣L G GSP , s PG ;
(2) = { ( ) Î G }e- e-∣L G GSP , s PG ;
(3) = { ( ) Î G }∣L G GJSP , j PG ;
(4) = { ( ) Î G }e- e-∣L G GJSP , j PG ;
(5) = { ( ) Î G }∣L G GPP , p PG ;
(6) = { ( ) Î G }e- e-∣L G GPP , p PG ;
(7) = { ( ) Î G }∣L G GJPP , jp PG ;
(8) = { ( ) Î G }e- e-∣L G GJPP , jp PG ;
(9) = { ( ) Î G }∣L G GSPCF , s PCFG ;
(10) = { ( ) Î G }e- e-∣L G GSPCF , s PCFG ;
(11) = { ( ) Î G }∣L G GJSPCF , j PCFG ;
(12) = { ( ) Î G }e- e-∣L G GJSPCF , j PCFG ;
(13) = { ( ) Î G }∣L G GPPCF , p PCFG ;
(14) = { ( ) Î G }e- e-∣L G GPPCF , p PCFG ;
(15) s= { ( ) Î G = (S )∣L G G G P0L , , , , ,p PCFG

( ) = S}Pdom (see [16]);
(16) s= { ( ) Î G = (S )e- e-∣L G G G P0L , , , , ,p PCFG

( ) = S}Pdom (see [16], where e-0L is denoted by
P0L);

(17) = { ( ) Î G }∣L G GJPPCF , jp PCFG ;
(18) = { ( ) Î G }e- e-∣L G GJPPCF , jp PCFG .

EXAMPLE 1. Consider the following PCFG:

= (S = { } )G a b c d P a, , , , ,

where = {      }P a abcd a a b b c c d d, , , , .
Observe that *( ) = ( ) = { }{ }L G L G a bcd, ,s p is a regu-
lar language, but ( ) = ( ) = { # ( ) =∣L G L G w w, , 1,j jp a

# ( ) = # ( ) = # ( ) Î S }+w w w w,b c d is a non-context-free
language.

3. RESULTS

The organization of this section is divided into three parts.
First, we give an overview about several elementary proper-
ties of pure grammars. Second, we investigate the mutual
relations of SPCF, JSPCF, PPCF, JPPCF, CF and CS and
summarize the results by Euler diagram in Fig. 1. Finally, we
study the former without erasing productions and sum up the
investigated relations in Table 1.

3.1. Elementary properties

Many properties about pure grammars can be found in [18, 20].
Recall that1 ÌSPCF CF (see [18, 20]). As follows from (13)
and (15) in Definition 2.2, Í0L PPCF. Furthermore, there
exist languages that can be generated by parallel PCFG but can-
not be generated by any 0L system (such a language is, for
example, { }a aab, ). Thus, Ì0L PPCF.

LEMMA 3.1. Let Î {X SP, JSP, PP, JPP, SPCF, JSPCF,
PPCF, JPPCF, }0L . Then, Íe-X X .

Proof. Obvious. □

THEOREM 3.1. SPCF and JSPCF are semilinear.

Proof. Since ÌSPCF CF and CF is semilinear (see [21]),
SPCF must be also semilinear. Consider any PCFG =G

s(S )P, , . From the definitions of s and j , it follows that
f f( ( )) = ( ( ))L G L G, ,s j . Thus, JSPCF is semilinear
as well. □

THEOREM 3.2. ÌSPCF PPCF.

Proof. First, we prove the inclusion ÍSPCF PPCF. The
proof is based on the proof of Theorem 4.2 in [16]. Let S be
an alphabet. We claim that for every PCFG s= (S )G P, , ,
there is a PCFG s¢ = (S ¢ ¢)G P, , such that ( ¢ ) =L G , p
( )L G, s . Set

s s¢ = È {  Î S} ¢ =∣P P a a a and

Now, we prove the following two claims by induction on
³m 0. Since both proofs are straightforward, we show only

their induction steps. As the common hypothesis, assume that
the claims hold for all £ £m k0 , where ³k 0.

CLAIM 3.3. Let s  ws
m in G, where *Î Sw . Then

*s¢  wp in ¢G .

1According to its definition, SPCF in this paper coincides with PCF
in [20].
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Proof. Let s  + ws
k 1 in G, where *Î Sw . Express

s  + ws
k 1 as s  uav uxvs

k
s , where *Î Su v x, , ,

Î Sa ,  Îa x P and =uxv w. By the induction hypothesis,
there exists a derivation *s¢  uavp in ¢G . Since Í ¢P P and
there are also unit productions  Î ¢b b P , for every Î Sb ,
clearly uav uxvp in ¢G , which completes the induction
step. □

CLAIM 3.4. Let s¢  wp
m in ¢G , where *Î Sw . Then

*s  ws in G.

Proof. Let s¢  + wp
k 1 in ¢G , where *Î Sw . Express

s¢  + wp
k 1 as s¢  x wp

k
p , where *Î Sx . Set = ∣ ∣n x .

Express x and w as = ¼x a a an1 2 and = ¼w y y yn1 2 , respect-
ively, where Î Sai , *Î Syi and  Î ¢a y Pi i , £ £i n1 .

Observe that  Î ¢a y Pi i and ¹a yi i implies  Îa y Pi i ,
for all £ £i n1 . Thus, *x ws in G. By the induction
hypothesis, we have that *s  xs in G, which completes the
induction step. □

By Claim 3.3 and Claim 3.4, *s  ws inG iff *s¢  wp in ¢G ,
that is ( ) = ( ¢ )L G L G, ,s p and therefore ÍSPCF PPCF.
By Theorem 4.7 in [16], 0L CF. Clearly, 0L SPCF.
Since Ì0L PPCF, PPCF SPCF and hence ÌSPCF
PPCF. □

COROLLARY 3.1. ÌSPCF 0L.

Proof. Observe that ¢G from the proof of Theorem 3.2 is a
correctly defined 0L system according to p. 304 in [16].

CS

PPCF

JPPCF

CF

JSPCF

SPCF
A

B
?

C
?

D

E

F

G

H
?

I

J
?

K
?

L

M

N
?

O

P

Q
?

R

S

T

{a2n

b2n | n ≥ 0} ∈ A {anbn | n ≥ 1} ∈ M

{a2n | n ≥ 0} ∈ D {aabb, abab, abba, baab, baba, bbaa} ∈ O

{ancbn | n ≥ 0} ∈ E {aabb, ccdd, cdcd, cddc, dccd, dcdc, ddcc} ∈ P

{aa, aab, aac, aabc} ∈ F
{

w

∣∣∣∣ #a(w) − 1 = #b(w) = #c(w),
w ∈ {a, b, c}+

}
∈ R

{a}+ ∈ G {âb̂ĉ} ∪
{

w

∣∣∣∣ #a(w) − 1 = #b(w) = #c(w),
w ∈ {a, b, c}+

}
∈ S

{aabb, ccdd} ∈ I {ap | p is a prime} ∈ T

{ab, cd, dc} ∈ L

FIGURE 1. Summary of hierarchy between SPCF, JSPCF, PPCF, JPPCF, CF and CS language families (? stands for an open problem of
the existence of a witness language).
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THEOREM 3.5. Ì ÇSPCF CF PPCF.

Proof. Í ÇSPCF CF PPCF is a consequence of recalled
inclusion ÌSPCF CF and Theorem 3.2. Let S = { }a b c d, , ,
be an alphabet and = { }L ab ccdd, be a language over S.
Clearly, ÎL CF and also ÎL PPCF since there is a PCFG

= (S {     } )G a cc b dd c c d d ab, , , , ,

such that = ( )L L G, p . We show by contradiction that there
is no PCFG s¢ = (S ¢ )G P, , such that ( ¢ ) =L G L, s .
Clearly, s must be either ab or ccdd . If we take ccdd as the
axiom, there must be ec or ed in ¢P and hence cdd or
ccd are contained in L, which is a contradiction. On the other
hand, if we take ab, there is no possible way how to directly
derive ccdd from ab by using s . Hence ÏL SPCF, which
completes the proof. □

COROLLARY 3.2. Ì ÇSPCF CF 0L.

THEOREM 3.6. For a unary alphabet, = =0L PPCF JPPCF.

Proof. It follows directly from the definition of p and
jp and from the definition of in 0L systems (see [16]). □

THEOREM 3.7. For a unary alphabet, =SPCF JSPCF.

Proof. It follows directly from the definition of s and j . □

Now, we recall Lemma 4.8 from p. 313 in [16].

LEMMA 3.2. (Rozenberg, Doucet). Let G be a 0L system.
Then there exists a number k such that for every string w in
( )L G there exists a derivation such that £∣ ∣ ∣ ∣u k w for every

string u in that derivation.

By analogy with the proof of Lemma 3.2, it is easy to
prove the following lemma because PCFGs do not differ
from 0L systems when only the longest sentential forms are
considered during the derivation of any sentence w.

LEMMA 3.3. Let G be a PCFG. Let Î { }h s j p jp, , , . Then
there exists a number k such that for every string w in
( )L G, h there exists a derivation such that £∣ ∣ ∣ ∣u k w for

every string u in that derivation.

LEMMA 3.4. - ¹ ÆCS JPPCF .

Proof. The language = { }∣X a p is a primep over a unary
alphabet { }a is a well-known context-sensitive non-context-
free language (see [22]). By contradiction, we show that

ÏX JPPCF. Assume that there is a PCFG s= ({ } )G a P, ,
such that ( ) =L G X, jp . Obviously e Ïa P and
s = a2 since 2 is the smallest prime. As 3 is also prime,

*a ajp
2 3 and we have  Îa a P and  Îa a P2 . Thus,

*a ajp
2 4. Since 4 is not a prime, we have a
contradiction. □

COROLLARY 3.3. - ¹ ÆCS JSPCF .

Proof. From Lemma 3.4, we have that = { }∣X a p is a primep

is not contained in JPPCF. Since X is a unary language
and for unary languages holds = Ì =JSPCF SPCF PPCF
JPPCF (see Theorems 3.2, 3.6 and 3.7), we have that

ÏX JSPCF. □

THEOREM 3.8. ÌJPPCF CS.

Proof. Let s= (S )G P, , be a PCFG. As obvious, there
is an unrestricted grammar = ( S ¢ )H V P S, , , such that
( ) = ( )L H L G, jp . More precisely, we are able to construct

H in the way that H simulates G. In this case, Lemma 3.3
also holds for H . Observe that Lemma 3.3 is the workspace
theorem, and every language from JPPCF must be then
context-sensitive.
As - ¹ ÆCS JPPCF by Lemma 3.4, we have ÌJPPCF

CS. □

THEOREM 3.9. ÌJSPCF CS.

Proof. ÍJSPCF CS can be proved analogously as ÍJPPCF
CS from Theorem 3.8. Together with Corollary 3.3, we have

ÌJSPCF CS. □

TABLE 1. Mutual relations between investigated language families.
A denotes the language family from the first column, B the language
family from the table header. If the relation in the cell given by A
and B is , then A B. A B means that A and B are incomparable,
but not disjoint, ? stands for an open problem, and the meaning of
Ì,=, andÉ is as usual.

A

B

S
P

C
F

S
P

C
F

−
ε

J
S
P

C
F

J
S
P

C
F

−
ε

P
P

C
F

P
P

C
F

−
ε

J
P

P
C

F

J
P

P
C

F
−

ε

0L 0L
−

ε

SPCF
SPCF−ε

JSPCF
JSPCF−ε

PPCF
PPCF−ε

JPPCF
JPPCF−ε

0L
0L−ε
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3.2. Mutual relations of SPCF, JSPCF, PPCF, JPPCF,
CF and CS

Now, we investigate all the mutual relations between SPCF,
JSPCF, PPCF, JPPCF, CF and CS. We refer to them as
language subfamilies A through T in Fig. 1, which pre-
sents them by using an Euler diagram. More precisely, in
this diagram, JSPCF, PPCF, JPPCF and CF form Venn
diagram with 16 subfamilies contained in CS; in addition,
four more subfamilies are pictured by placing SPCF as
a subset of ÇCF PPCF (see Theorem 3.5). Hereafter,
we study 20 subfamilies in the following 13 theorems
and 7 open problems (Theorems and Open Problems
3.10–3.29).

THEOREM 3.10. (Subfamily A).

- ( È È ) ¹ ÆPPCF CF JSPCF JPPCF

Proof. Let S = { }a b, be an alphabet. Let = { ∣X a b2 2n n

³ }n 0 be a language over S. Clearly, ÎX PPCF, since
there exists a PCFG, = (S {   } )G a aa b bb ab, , , , such
that ( ) =L G X, p . ÏX CF and ÏX JSPCF is satisfied
since X is not semilinear. By contradiction, we show that

ÏX JPPCF.
Consider that there is a PCFG, s¢ = (S ¢ ¢)G P, , , such that
( ¢ ) =L G X, jp . Observe that Î ( ¢ )ab L G , jp . Let a x,
b y be productions from ¢P , *Î Sx y, . Then, there exist

two derivations, ab xyjp and ab yxjp , in ¢G . Now, con-
sider the following cases:

• e=x ( e=y ). If Îy X ( Îx X ), then either ab is
the only string derivable in ¢G using jp or there is
a derivation *y zjp ( *x zjp ) in ¢G such that

Î ( )ba zsubstr , which is a contradiction. If Ïy X ,
such as eÎ { }y a b, , ( Ïx X , such as eÎ { }x a b, , ),
then ab yjp ( ab xjp ), so Îy X ( Îx X ), which
is a contradiction as well.

In the following, we assume that e¹x and e¹y .
• = ¢x bx or = ¢y by , where *¢ ¢ Î Sx y, . Then, there is

a derivation ab bzjp in ¢G , where *Î Sz , and thus
Îbz X , which is a contradiction.

• = ¢x x a or = ¢y y a, where *¢ ¢ Î Sx y, . Then, there is
a derivation ab zajp in ¢G , where *Î Sz , and thus

Îza X , which is a contradiction.
• = ¢x ax b and = ¢y ay b, where *¢ ¢ Î Sx y, . Then,

there is a derivation ab zjp in ¢G such that
Î ( )ba zsubstr , which is a contradiction.

If a x or b y is missing in ¢P , then X is finite—a
contradiction. No other cases are possible, which completes
the proof. □

Several intersections of some language families are hard to
investigate. Such an intersection is ÇPPCF JSPCF. At this
moment, we are not able to prove whether Ç ÍPPCF JSPCF
CF or not. For this reason, we leave the subfamilies B and C as
open problems.

OPEN PROBLEM 3.11. (Subfamily B). Is it true that

( Ç ) - ( È ) ¹ ÆPPCF JSPCF CF JPPCF ?

OPEN PROBLEM 3.12. (Subfamily C). Is it true that

( Ç Ç ) - ¹ ÆPPCF JSPCF JPPCF CF ?

THEOREM 3.13. (Subfamily D).

( Ç ) - ( È ) ¹ ÆPPCF JPPCF CF JSPCF

Proof. For unary alphabet, = =0L PPCF JPPCF (Theorem
3.6). Since CF and JSPCF are both semilinear, it is sufficient
to find any non-semilinear language over unary alphabet which
is also contained in PPCF. Such a language is indisputably
{ ³ }∣a n 02n

. □

THEOREM 3.14. (Subfamily E).

- ( È ) ¹ ÆSPCF JSPCF JPPCF

Proof. Let S = { }a b c, , be an alphabet. Let = { ∣X a cbn n

³ }n 0 be a language over S. Clearly, there exists a PCFG
= (S {  } )G c acb c, , such that ( ) =L G X, s and hence
ÎX SPCF. We prove by contradiction that X is neither

jumping sequential pure context-free nor jumping parallel
pure context-free language.

ÏX JSPCF. Assume that there is a PCFG s¢ = (S ¢ ¢)G P, ,
such that

( ¢ ) =L G X, .j

Clearly, s¢ = c must be the axiom since there must be no eras-
ing productions in ¢P (observe that Ïab ac cb X, , ). Because

Îacb X , we have that  Î ¢c acb P . But acb abacbj and
Ïabacb X , which is a contradiction.

ÏX JPPCF. Assume that there is a PCFG w= (S )H R, ,
such that ( ) =L H X, jp . First, let ³k 1 and assume that
w = a cbk k is an axiom. Since *w  cjp , there must be a
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productions ea , eb and c c contained in R. Now,
assume that

•  Îd̂ dx R, Î { }d̂ a b, , Î Sd , *Î Sx ; then,
*w  udxcvjp and *w  ucdxvjp and obviously

for =d a holds Ïucdxv X and for =d b holds
Ïudxcv X , *Î Su v, ; =d c is obvious;

•  Îd̂ xd R, Î { }d̂ a b, , Î Sd , *Î Sx ; then,
*w  uxdcvjp and *w  ucxdvjp and obviously for

=d a holds Ïucxdv X and for =d b holds
Ïuxdcv X , *Î Su v, ; =d c is obvious.

Therefore,   Îa x b y R, implies e= =x y . Hence,
only productions of the form c z, where Îz X , can be
considered. But the finiteness of R implies the finiteness of
X , which is a contradiction.
Clearly, the axiom must be w = c, which implies that R

contains productions of the form c z, where Îz X .
Obviously, there must be also productions   Îa x b y R, ,

*Î Sx y, . If e= =x y , X must be finite. Thus, assume that
e¹x or e¹y . Then, like before, we can derive a string

which is not contained in X—a contradiction. □

THEOREM 3.15. (Subfamily F)

( Ç ) - ¹ ÆSPCF JSPCF JPPCF

Proof. Let S = { }a b c, , be an alphabet and let =X {aa,
}aab aac aabc, , be a language over S. Consider a PCFG

e e= (S {   } )G b c aabc, , , .

Clearly, ( ) = ( ) =L G L G X, ,s j and hence ÎX
ÇSPCF JSPCF.

To show that ÏX JPPCF, we use a contradiction. Assume
that there exists a PCFG s¢ = (S ¢ )G P, , such that
( ¢ ) =L G X, jp . Since s Î X and * *Í { }{ } { }X aa b c , there

must be a production a x in ¢P with *Î Sx . But this
implies that there must be a derivation *s  aa xxjp jp in
¢G . The only string from X that has a form xx is aa so a a

is the only production with a on its left-hand side so
 Î ¢a a P .
Next, we choose s. Clearly, s ¹ aa. Furthermore, s Ï

{ }aab aac, since s  aabcjp implies that *s  abcajp , and
Ïabca X . Thus, the only possibility is to choose s = aabc.

But aabc aabjp means that e{   } Í ¢b b c P, or
e{   } Í ¢b c b P, . In both cases, aabc abajp . As

Ïaba X , there is no PCFG ¢G such that ( ¢ ) =L G X, jp ,
which is a contradiction. □

THEOREM 3.16. (Subfamily G)

Ç Ç ¹ ÆSPCF JSPCF JPPCF

Proof. Let = ({ } {   } )G a a a a aa a, , , be a PCFG. It
is easy to see that

( ) = ( ) = ( ) = { }+L G L G L G a, , , .s j jp

□

OPEN PROBLEM 3.17. (Subfamily H). Is it true that

( Ç ) - ¹ ÆSPCF JPPCF JSPCF ?

THEOREM 3.18. (Subfamily I).

( Ç ) - ( È È ) ¹ ÆPPCF CF SPCF JSPCF JPPCF

Proof. Let = { }X aabb ccdd, be a language over an
alphabet S = { }a b c d, , , . Clearly, ÎX CF. Since there
exists a PCFG = (S {   } )G a c b d aabb, , , such
that ( ) =L G X, p , ÎX PPCF. Furthermore, observe
that derivations aabb ccdds ( aabb ccddj ) or

ccdd aabbs ( ccdd aabbj ) cannot be performed due to
the definition of s ( j ) and hence there is no PCFG ¢G
such that ( ¢ ) =L G X, s ( ( ¢ ) =L G X, j ). Thus,

ÏX SPCF and ÏX JSPCF.
Now, suppose that there is a PCFG s= (S )H P, , such that
( ) =L H X, jp . For s = aabb, we have aabb ccddjp . If

e Îa P or e Îb P, then aabb xjp , where Ïx X .
Thus, a y and b z, where Î { }y z c d, , , are only pos-
sible productions in P. But aabb cdcdjp and since

Ïcdcd X , there is no PCFG H such that ( ) =L H X, jp .
Analogously for s = ccdd . We have a contradiction and
therefore ÏX JPPCF. □

OPEN PROBLEM 3.19. (Subfamily J). Is it true that

( Ç Ç ) - ( È ) ¹ ÆPPCF CF JSPCF SPCF JPPCF ?

OPEN PROBLEM 3.20. (Subfamily K). Is it true that

( Ç Ç Ç ) - ¹ ÆPPCF CF JSPCF JPPCF SPCF ?
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THEOREM 3.21. (Subfamily L).

( Ç Ç ) - ( È ) ¹ ÆPPCF CF JPPCF SPCF JSPCF

Proof. Consider a language = { }X ab cd dc, , over an
alphabet S = { }a b c d, , , . Clearly, X is neither classical
sequential pure context-free nor jumping sequential pure
context-free language since in some point during a deriv-
ation, we must rewrite two symbols simultaneously.
As X is a finite language, ÎX CF. As there exists a PCFG

= (S {     } )G a c b d c d d c ab, , , , ,

such that ( ) = ( ) =L G L G X, ,p jp , Î ÇX PPCF JPPCF. □

THEOREM 3.22. (Subfamily M).

- ( È È ) ¹ ÆCF PPCF JSPCF JPPCF

Proof. Let S = { }a b, and let = { ³ }∣X a b n 1n n be a lan-
guage over S. Indisputably, X is well-known context-free
language. According to [16], ÏX 0L. Observe that every lan-
guage Y that belongs to ( - )PPCF 0L can be generated by
PCFG s= (S )G P, , such that there exists Î Sc such that
for every *Î Sx ,  Ïc x P. Thus, if Î ( - )X PPCF 0L ,
then X must be a finite language (since either a or b blocks
deriving of any string from axiom), which is a contradiction.
Therefore, Ï ( - )X PPCF 0L and clearly ÏX PPCF. Next,
we demonstrate that ÏX JSPCF and ÏX JPPCF.

ÏX JSPCF. Suppose that ÎX JSPCF, so there exists a
PCFG s¢ = (S ¢ ¢)G P, , such that ( ¢ ) =L G X, j . As

Ïa b X, , there are no erasing productions in ¢P and thus
s¢ = ab must be the axiom. Now consider a derivation

ab aabbj . There are exactly two possibilities how to get a
string aabb directly from the axiom ab—either expand a to
aab (  Î ¢a aab P ) or expand b to abb (  Î ¢b abb P ).
Due to the definition of j , ab baabj in the first case,
and ab abbaj in the second case. Since neither baab nor
abba belongs to X , ÏX JSPCF, which is a contradiction.

ÏX JPPCF. Suppose that ÎX JPPCF, so there exists a
PCFG w= (S )H R, , such that ( ) =L H X, jp . As for all
³i 0, Ïa b X,i i , there are no erasing productions in R and

thus w = ab must be the axiom. Clearly, ab aabbjp .
There are exactly three ways how to get aabb from ab:

•  Îa a R,  Îb abb R. In this case ab aabbjp
implies that ab abbajp , but Ïabba X .

•  Îa aa R,  Îb bb R. In this case ab aabbjp
implies that ab bbaajp , but Ïbbaa X .

•  Îa aab R,  Îb b R. In this case ab aabbjp
implies that ab baabjp , but Ïbaab X .

Thus, ÏX JPPCF, which is a contradiction. □

OPEN PROBLEM 3.23. (Subfamily N). Is it true that

( Ç ) - ( È ) ¹ ÆCF JSPCF PPCF JPPCF ?

THEOREM 3.24. (Subfamily O).

( Ç Ç ) - ¹ ÆCF JSPCF JPPCF PPCF

Proof. Let S = { }a b, be an alphabet and let

= { }X aabb abab abba baab baba bbaa, , , , ,

be a language over S. Since X is finite, X is context-free.
Given a PCFG

= (S {   } )G a a b b aabb, , , .

Clearly, ( ) = ( ) =L G L G X, ,j jp . Hence, Î ÇX CF
ÇJSPCF JPPCF.

By contradiction, we show that ÏX PPCF. Assume that
there is a PCFG s= (S )H P, , such that ( ) =L H X, p .
First, we show that P contains no erasing productions:

• If e Îa P and e Îb P, we have e Î X , which
is a contradiction.

• If e Îa P, then  Îb x P implies that
Î { }x aa bb ab ba, , , because for every Îw X ,
=∣ ∣w 4. Clearly, if  Îb aa P, then Îaaaa X , and

if  Îb bb P, then Îbbbb X . As obvious, both
cases represent a contradiction. On the other hand, if
there are no productions in P starting from b apart
from b ab and/or b ba, then Ïaabb X , which
is a contradiction. Similarly for e Îb P.

Since all strings in X have the same length and there are no
erasing productions in P, only unit productions can be con-
tained in P. Because Ïaaaa X and Ïbbbb X , either
= {   }P a a b b, or = {   }P a b b a, . In both

cases, we never get X . Thus, there is no PCFG H such that
( ) =L H X, p , and hence ÏX PPCF. □

THEOREM 3.25. (Subfamily P).

( Ç ) - ( È ) ¹ ÆCF JPPCF PPCF JSPCF
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Proof. Consider a language = {Y aabb, ccdd , cdcd , cddc,
dccd , dcdc, }ddcc over an alphabet S = { }a b c d, , , . Clearly,
ÎY CF and also ÎY JPPCF because there is a PCFG

= (S {     } )G a c b d c c d d aabb, , , , ,

such that ( ) =L G Y, jp . The proof that ÏY PPCF is
almost identical to the proof that ÏX PPCF from Theorem
3.24, so it is omitted. Because it is not possible to rewrite two
or more symbols simultaneously during direct derivation step
by using j , we have ÏY JSPCF. □

OPEN PROBLEM 3.26. (Subfamily Q). Is it true that

- ( È È ) ¹ ÆJSPCF CF PPCF JPPCF ?

THEOREM 3.27. (Subfamily R).

( Ç ) - ( È ) ¹ ÆJSPCF JPPCF CF PPCF

Proof. Let S = { }a b c, , be an alphabet and let =X
{ # ( ) - =# ( )=# ( ) Î S }+∣w w w w w1 ,a b c be a language
over S. Î ÇX JSPCF JPPCF since there is a PCFG

= (S {     } )G a abca a a b b c c a, , , , ,

such that ( ) = ( ) =L G L G X, ,j jp . By pumping lemma
for context-free languages, ÏX CF.
By contradiction, we show that ÏX PPCF. Assume that

there is a PCFG s= (S )H P, , such that ( ) =L H X, p .
First, we show that s = a. Assume that s ¹ a. Then,

*s  ap implies that e Îa P and we have that e Î X ,
which is a contradiction. Thus, a must be the axiom, and
 Îa x P implies that Îx X .
Let b a b= {  Î }∣ ∣∣l P3 max . The smallest possible

value of l is 3. Let w = +a b cl l l1 . Clearly, w Î X . Then there
is a direct derivation step q wp , where q Î X . Next, we
make the following observations about q and P:

(1) q ¹ a, since w Ïa P. The choice of l excludes
such situation.

(2) q contains all three symbols a, b and c.
(3)  Îa a P is the only production with a on its left-

hand side that is used during q wp . Observe that
if  Îa x P is chosen to rewrite a during q wp ,
then Îx X and x must be a substring of w. Only
=x a meets these requirements.

(4) q can be expressed as q¢+a , where *q¢ Î { }b c, . This
follows from the form of w and the third observation.

(5) During q wp are used productions b y,
 ¢ Îc y P such that each of y, ¢y do not contain at

least one symbol from S. This is secured by the
choice of l.

(6) Every production with b on its left-hand side in P has
the same commutative image of its right-hand side and
every production with c on its left-hand side in P has
the same commutative image of its right-hand side. To
not break a number of occurrences of symbols a, b and
c in w during q wp , when  Îb y P is used,
then the corresponding  ¢ Îc y P must be also
used simultaneously with it. To preserve the proper
number of occurrences of a, b and c in w, we have

y b b({ ( )  Î }) =∣b Pcard 1 and y g({ ( )∣card
g Î }) =c P 1.

Now, we inspect the ways how q w¢ +a p could be made.
Suppose that the first symbol of q¢ is b:

• e Îb P was used. Then,  Îc bc P must be
used ( c cb is excluded since c is not before b in
w). As there are at least two c s in q¢, applying
c bc brings c before b which is in a contradiction

with the form of w.
• Let ³i 1 and let  Îb a Pi . Then,  Î+ +c b c Pi i1 1 .

Since + +∣ ∣b ci i1 1 is at most l

3
, there are at least two occur-

rences of c in q¢ and then we obtain c before b in w.
• Let ³i 1 and let j be a non-negative integer such that

£ +j i 1. Let  Îb a b Pi j . Then  Îc b c Pk m ,
where + = = +j k m i 1. As in the previous case,
when these productions are used during q wp , we
get b before a or c before b in w.

• No a s were added during q wp . In this case, the
only productions with b and c on their left-hand sides
in P can be either b bc and ec , or b b and
c c, or b c and c b. This implies that the

only way how to get q from a is to use qa produc-
tion that is clearly not in P.

For the case that c is the first symbol of q¢, we can proceed
analogously. Therefore, w Ï ( )L H, p , which implies that

ÏX PPCF. □

THEOREM 3.28. (Subfamily S).

- ( È È ) ¹ ÆJPPCF CF PPCF JSPCF

Proof. Let S = { }ˆ ˆ ˆa b c a b c, , , , , be an alphabet and let

= { } È { # ( ) - = # ( )= # ( )
Î { } }+

ˆ ˆ ˆ ∣X abc x x x x

x a b c

1 ,

, ,
a b c
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be a language over S. Following the pumping lemma for
context-free languages, ÏX CF. Since there is a PCFG

e e= (S {      ˆ ˆ ˆG a a b c a abca a a b b, , , , , , ,
 } )ˆ ˆ ˆc c abc, such that ( ) =L G X, jp , ÎX JPPCF. By

contradiction, we show that ÏX JSPCF and ÏX PPCF.
Suppose that ÎX JSPCF. Then, there is a PCFG

s= (S )H P, , such that ( ) =L H X, j . First, we choose
s. From the definition of X , Îa X and for every string
Î - { }x X a holds ³∣ ∣x 3. Since we are able to erase only

one symbol during direct derivation step by j and there is
no string of length 2 contained in X , we must choose s = a
as the axiom. Because Îabca X and Îˆ ˆ ˆabc X , there must be
two derivations, *a abcaj and * ˆ ˆ ˆa abcj , and this
implies that there exists also a derivation * ˆ ˆ ˆa abcbcaj .
Since Ïˆ ˆ ˆabcbca X , we have a contradiction.
Next, suppose that ÎX PPCF, so there exists a PCFG

s¢ = (S ¢ ¢)H P, , such that ( ¢ ) =L H X, p . In this case, we
must choose s¢ = ˆ ˆ ˆabc as the axiom. If we choose a, then

*a abcap and * ˆ ˆ ˆa abcp implies that * ˆa u au aup 1 2 3,
*Î Su u u, ,1 2 3 and Ïˆu au au X1 2 3 . If we choose abca or

similar, then *abca ap implies that * ea p , and e Ï X .
Without loss of generality, assume that for every a b Î ¢P ,

*b Î { }a b c, , (this can be assumed since ˆ ˆ ˆabc is the only
string over { }ˆ ˆ ˆa b c, , in X ). As Îa X , ea , a b and
a c are not contained in ¢P . The observations (1) to (3)

from the proof of Theorem 3.27 hold also for ¢H . The rest of
proof is similar to the proof of Theorem 3.27. □

THEOREM 3.29. (Subfamily T).

- ( È È È ) ¹ ÆCS CF JSPCF PPCF JPPCF

Proof. Let = { }∣X a p is a primep be a language over unary
alphabet { }a . ÎX CS and ÏX CF are a well-known contain-
ments (see [22]). By Lemma 3.4 and Corollary 3.3, ÏX JPPCF
and ÏX JSPCF. As for unary languages =PPCF JPPCF,

ÏX PPCF. □

The summary of Theorems 3.10–3.29 is visualized in
Fig. 1.

3.3. Absence of erasing productions

As stated in Lemma 3.1, it is natural that the family of lan-
guages generated by pure grammars without erasing produc-
tions is included in the family of languages generated by pure
grammars in which the presence of erasing productions is
allowed. As we show further, for PCFG, the inclusions stated

in Lemma 3.1 are proper. The PG case is left as an open
problem.

THEOREM 3.30. Let

Î { }X SPCF JSPCF PPCF JPPCF 0L, , , , .

Then, Ìe-X X .

Proof. Let = { }K a ab, and = { }Y aa aab, be two lan-
guages over S = { }a b, . Furthermore, let = (S { G a a, ,

e } )b ab, and e¢ = (S {   } )G a a b aab, , , be two
PCFGs.

(a) Ìe-SPCF SPCF. Since = ( )K L G, s , ÎK
SPCF. Assume that Î e-K SPCF ; then, there is a
PCFG s= (S )H P, , with no erasing productions in
P such that ( ) =L H K, s . Obviously, s = a, so
 Îa ab P. We have *a abbs and since

Ïabb K , Ï e-K SPCF .
(b) Ìe-JSPCF JSPCF. ÎK JSPCF and Ï e-K JSPCF

are proved analogously as in (a).
(c) Ìe-PPCF PPCF. Since = ( ¢ )Y L G , p , ÎY PPCF.

Assume that Î e-Y PPCF , so there is a PCFG =H
s(S )P, , with no erasing productions in P such that

( ) =L H Y, p . Obviously, s = aa and then a ab
Î P. We have *aa ababp and since Ïabab Y ,
Ï e-Y PPCF .

(d) Ìe-JPPCF JPPCF. ÎY JPPCF and Ï e-Y JPPCF
are proved analogously as in (c).

(e) Ìe-0L 0L (see Theorem 2.8 in [23]).
□

OPEN PROBLEM 3.31. Let Î { }X SP JSP PP JPP, , , . Is the
inclusion Íe-X X , in fact, proper?

From Fig. 1 and from mentioned theorems, we are able to
find out the most of relations between investigated language
families (even for those which are generated by PCFGs with-
out erasing productions—the most of languages used in
Fig. 1 have this property), but not all. Following theorems fill
this gap.

THEOREM 3.32. SPCF and e-PPCF are incomparable, but
not disjoint.

Proof. Let = { }X aa aab, be a language over alphabet
S = { }a b, . Obviously, there is a PCFG = (S { G a a, ,

e } )b aab, such that ( ) =L G X, s , so ÎX SPCF. By
Theorem 3.30, Ï e-X PPCF . Conversely, there is a language
= { ³ }∣Y a n 02n

over { }a such that ÏY SPCF and ÎY
e-PPCF (see D in Fig. 1 and observe that to get Y we need no

erasing productions). Finally, { } Î Ç e+ -a SPCF PPCF . □
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THEOREM 3.33. SPCF and e-0L are incomparable, but not
disjoint.

Proof. Analogous to the proof of Theorem 3.32.
□

The mutual relation between e-JSPCF and e-JPPCF is
either incomparability or Ìe e- -JSPCF JPPCF , but we do
not know the answer now. We also do not know either if

e-JSPCF and JPPCF are incomparable or Ìe-JSPCF
JPPCF.

OPEN PROBLEM 3.34. What is the relation between e-JSPCF
and e-JPPCF ?

OPEN PROBLEM 3.35. What is the relation between e-JSPCF
and JPPCF?

THEOREM 3.36. e-PPCF and 0L are incomparable, but not
disjoint.

Proof. Let = { }X aa aab, and = { }Y a aab, be two lan-
guages over { }a b, . Ï e-X PPCF , ÎX 0L, Î e-Y PPCF and
ÏY 0L proves the incomparability, while { } Î Çe+ -a PPCF

0L proves the disjointness. □

3.4. Remark on unary alphabets

We close this section by showing how the mutual relations
between investigated language families change if we consider
only alphabets containing only one symbol. From Theorems
3.2, 3.6 and 3.7, we can conclude that for every unary
alphabet

= Ì = =SPCF JSPCF PPCF JPPCF 0L.

Trivially,

= Ì
= =

e e e

e e

- - -

- -
SPCF JSPCF PPCF

JPPCF 0L .

As the following theorem demonstrates that e-PPCF and
SPCF are incomparable, but not disjoint, we can summarize
the results for the unary alphabet in Fig. 2.

THEOREM 3.37. In the case of unary alphabets, SPCF and
e-PPCF are incomparable, but not disjoint.

Proof. Clearly, the language { }+a is contained in both SPCF
and e-PPCF . Since the language e{ }a aa, , from SPCF is
not contained in e-PPCF ,  e-SPCF PPCF . Conversely,

e-PPCF SPCF since e-PPCF is not semilinear. □

4. CONCLUSION

Consider SPCF, JSPCF, PPCF, JPPCF, 0L, e-SPCF ,
e-JSPCF , e-PPCF , e-JPPCF and e-0L (see Section 2). The

present paper has investigated mutual relations between these
language families, which are summarized in Table 1 and
Fig. 1. As a special case, this paper has also performed an
analogical study in terms of unary alphabets (see Fig. 2).
Although we have already pointed out several open problems

earlier in the paper (see Open Problems 3.11, 3.12, 3.17, 3.19,
3.20, 3.23, 3.26, 3.31, 3.34 and 3.35), we repeat the questions
of a particular significance next.

• Is it true that ( Ç ) - ( È ) ¹PPCF JSPCF CF JPPCF
Æ (Open Problem 3.11)?

• Is it true that ( Ç Ç ) - ¹PPCF JSPCF JPPCF CF
Æ (Open Problem 3.12)?

• Is it true that ( Ç ) - ¹ ÆSPCF JPPCF JSPCF (Open
Problem 3.17)?

• Is it true that ( Ç Ç ) -PPCF CF JSPCF ( ÈSPCF
) ¹ ÆJPPCF (Open Problem 3.19)?

• Is it true that ( Ç Ç Ç ) -PPCF CF JSPCF JPPCF
¹ ÆSPCF (Open Problem 3.20)?

• Is it true that ( Ç ) - ( È ) ¹CF JSPCF PPCF JPPCF
Æ (Open Problem 3.23)?

• Is it true that - ( È È ) ¹JSPCF CF PPCF JPPCF
Æ (Open Problem 3.26)?

• Let Î { }X SP JSP PP JPP, , , . Is the inclusion
Íe-X X , in fact, proper (Open Problem 3.31)?

• What is the relation between e-JSPCF and e-JPPCF
(Open Problem 3.34)?

• What is the relation between e-JSPCF and JPPCF
(Open Problem 3.35)?

PPCF−ε JPPCF−ε 0L−ε

PPCF JPPCF 0L

SPCF JSPCF

SPCF−ε JSPCF−ε

FIGURE 2. A mutual relations between investigated language fam-
ilies in the case of unary alphabets. The straight line between two
families means that these families are identical. The arrow from fam-
ily A to family B denotes that ÌA B.
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Recall that the present study has only considered pure gram-
mars based on context-free productions. Of course, from a
broader perspective, we might reconsider all the study in terms
of grammars that allow non-context-free productions as well.
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