
Theoretical Informatics and Applications Will be set by the publisher
Informatique Théorique et Applications

ON DOUBLE-JUMPING FINITE AUTOMATA
AND THEIR CLOSURE PROPERTIES

Radim Kocman1, Zbyněk Křivka1 and Alexander Meduna1

Abstract. The present paper modifies and studies jumping finite au-
tomata so they always perform two simultaneous jumps according to
the same rule. For either of the two simultaneous jumps, it considers
three natural directions—(1) to the left, (2) to the right, and (3) in
either direction. According to this jumping-direction three-part clas-
sification, the paper investigates the mutual relation between the lan-
guage families resulting from jumping finite automata performing the
jumps in these ways and the families of regular, linear, context-free,
and context-sensitive languages. It demonstrates that most of these
language families are pairwise incomparable—that is, they are not sub-
families of each other and, simultaneously, they are not disjoint. In
addition, many closure and non-closure properties of the resulting lan-
guage families are established. In its conclusion, the paper gives several
suggestions for the future investigation.

1991 Mathematics Subject Classification. 68Q45, 68Q70.

1. Introduction

At present, jumping versions of rewriting systems, such as grammars and au-
tomata, represent a vivid investigation area in language theory (see [1–4, 6, 7, 12,
13]). In essence, they work just like classical rewriting systems except that they
work on strings discontinuously. That is, they apply a production so they erase an
occurrence of its left-hand side in the rewritten string while placing the right-hand
side anywhere in the string. As a result, the position of the insertion may occur
far away from the position of the erasure. The present paper continues with this
investigation in terms of jumping finite automata.

To give an insight into this study, let us first recall the well-known notion of a
classical finite automaton, M , which consists of an input tape, a read head, and a

1 Centre of Excellence IT4Innovations, Faculty of Information Technology,
Brno University of Technology, Božetěchova 2, Brno Czech Republic;
e-mail: {ikocman,krivka,meduna}@fit.vutbr.cz

© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

finite state control. The input tape is divided into squares. Each square contains
one symbol of an input string. The symbol under the read head, a, is the current
input symbol. The finite control is represented by a finite set of states together
with a control relation, which is usually specified as a set of computational rules.
M computes by making a sequence of moves. Each move is made according to a
computational rule that describes how the current state is changed and whether
the current input symbol is read. If the symbol is read, the read head is shifted
precisely one square to the right. M has one state defined as the start state and
some states designated as final states. If M can read w by making a sequence of
moves from the start state to a final state, M accepts w; otherwise, M rejects w.

In essence, a jumping finite automaton works just like a classical finite automa-
ton except it does not read the input string in a symbol-by-symbol left-to-right
way. That is, after reading a symbol, M can jump over a portion of the tape in
either direction and continue making moves from there. Once an occurrence of a
symbol is read on the tape, it cannot be re-read again later during the computation
of M . Otherwise, it coincides with the standard notion of a finite automaton.

Consider the notion of a jumping finite automaton M sketched above. The
present paper modifies the way M works so it simultaneously performs two jumps
according to the same rule. For either of the two jumps, it always considers three
natural directions—(1) to the left, (2) to the right, and (3) in either direction. In
correspondence to this jumping-direction three-part classification, the paper inves-
tigates the mutual relation between the language families resulting from jumping
finite automata working in these ways and the families of regular, linear, context-
free, and context-sensitive languages. In essence, it demonstrates that most of
these language families are pairwise incomparable—that is, they are not subfami-
lies of each other and, simultaneously, they are not disjoint either. Consequently,
from a computationally broader viewpoint, it actually demonstrates that the jump-
ing directions fulfill an essential role in the computation formalized by jumping
finite automata—a general result, which might be of some interest and importance
to the investigation as well as the application of jumping finite automata in the
future. In addition, the paper establishes several closure and non-closure proper-
ties concerning the language families defined by jumping finite automata working
in the three ways sketched above.

The rest of the paper is organized as follows. Section 2 recalls all the termi-
nology needed in this paper and introduces a variety of jumping modes performed
by general jumping finite automata. Section 3 demonstrates the mutual relation
between the language families mentioned above. Closure and non-closure proper-
ties of these families are covered in Section 4. Section 5 closes all the study by
pointing out some remarks and suggestions for the future investigation.

2. Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of automata and
formal languages (see [5, 14]). For a set Q, card(Q) denotes the cardinality of Q,

TITLE WILL BE SET BY THE PUBLISHER 3

and 2Q denotes the power set of Q. For an alphabet (finite nonempty set) V , V ∗
represents the free monoid generated by V under the operation of concatenation.
The unit of V ∗ is denoted by ε. Members of V ∗ are called strings. Set V + =
V ∗ − {ε}; algebraically, V + is thus the free semigroup generated by V under the
operation of concatenation. For x ∈ V ∗, |x| denotes the length of x, and alph(x)
denotes the set of all symbols occurring in x; for instance, alph(0010) = {0, 1}.
Let x = a1a2 . . . an, where ai ∈ V for all i = 1, . . . , n, for some n ≥ 0 (x = ε
if and only if n = 0). The mirror image of x, denoted by mi(x), is defined as
mi(x) = anan−1 . . . a1. ForK ⊆ V ∗, we define mi(K) = {mi(x)|x ∈ K}. For x, y ∈
V ∗, the shuffle of x and y, denoted by shuffle(x, y), is defined as shuffle(x, y) =
{x1y1x2y2 . . . xnyn | x = x1x2 . . . xn, y = y1y2 . . . yn, xi, yi ∈ V ∗, 1 ≤ i ≤ n, n ≥ 1}.
For K1,K2 ⊆ V ∗, shuffle(K1,K2) = {z | z ∈ shuffle(x, y), x ∈ K1, y ∈ K2}.
Let X and Y be sets; we call X and Y to be incomparable if X 6⊆ Y , Y 6⊆ X,
and X ∩ Y 6= ∅. Let L be a language family. We say that L is closed under
endmarking if and only if for every L ∈ L , where L ⊆ V ∗, for some alphabet V ,
6∈ V implies that L{#} ∈ L . We also say that L is closed under endmarking
on both sides if and only if the previous implies that {#}L{#} ∈ L .

A linear grammar is a quadrupleG = (N,T, P, S), whereN and T are alphabets
such that N ∩ T = ∅, S ∈ N , and P is a finite set of rules of the form A → x,
where A ∈ N and x ∈ T ∗(N ∪ {ε})T ∗. If A → x ∈ P and u, v ∈ T ∗, then
uAv ⇒ uxv [A → x], or simply uAv ⇒ uxv. In the standard manner, extend ⇒
to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language of G,
L(G), is defined as L(G) = {w ∈ T ∗ | S ⇒∗ w}. A language, L, is linear if and
only if L = L(G), where G is a linear grammar.

A right-linear grammar is a linear grammar G = (N,T, P, S) such that every
rule in P is of the form A → x and satisfies x ∈ T ∗N ∪ T ∗. A language, L, is
right-linear (or regular) if and only if L = L(G), where G is a right-linear grammar.

A lazy finite automaton (see Section 2.6.2 in [14]), an LFA for short, is a quin-
tuple M = (Q,Σ, R, s, F), where Q is a finite set of states, Σ is an input alphabet,
Q ∩ Σ = ∅, R ⊆ Q × Σ∗ × Q is finite, s ∈ Q is the start state, and F ⊆ Q
is a set of final states. If (p, y, q) ∈ R implies that |y| ≤ 1, then M is a finite
automaton, an FA for short. If (p, y, q) ∈ R and x, y ∈ Σ∗, then pyx ⇒ qx. In
the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, de-
fine ⇒+ and ⇒∗. The language accepted by M , denoted by L(M), is defined as
L(M) = {w ∈ Σ∗ | sw ⇒∗ f, f ∈ F}.

A general jumping finite automaton (see [7]), a GJFA for short, is a quintuple
M = (Q,Σ, R, s, F), where Q, Σ, R, s, and F are defined as in an LFA. Members
of R are referred to as rules ofM . For brevity, we sometimes denote a rule (p, y, q)
with a unique label h as h : (p, y, q), and instead of h : (p, y, q) ∈ R, we simply write
h ∈ R. A configuration ofM is any string in Σ∗QΣ∗. The binary jumping relation,
symbolically denoted by y, over Σ∗QΣ∗, is defined as follows. Let x, z, x′, z′ ∈ Σ∗

such that xz = x′z′ and (p, y, q) ∈ R; then, M makes a jump from xpyz to x′qz′,
symbolically written as xpyz y x′qz′.

We define a new mode for general jumping finite automata that performs two
single jumps simultaneously. In this mode, both single jumps follow the same

4 TITLE WILL BE SET BY THE PUBLISHER

rule, however, they are performed on two different positions on the tape and thus
handle different parts of the input string. Moreover, these two jumps cannot ever
cross each other—their initial mutual order is preserved during the whole process.
As a result, when needed, we can specifically denote them as the first jump and
the second jump. Furthermore, we define new versions of single jumps in order to
get a more consistent behavior. These modified single jumps read strings from the
configuration on the specific side of the state depending on the actual direction of
their jumping. For example, if an automaton jumps to the left, it reads a string
on the left of the current state.

Let M = (Q,Σ, R, s, F) be a GJFA. Let X denote the set of all configurations
of M . Let w, x, y, z ∈ Σ∗ and h : (p, y, q) ∈ R; then,

wpyxz Iy wxqz [h]

in M . When the specification of the rule h is immaterial, we can omit [h]. Let
w, x, y, z ∈ Σ∗ and h : (p, y, q) ∈ R; then,

wxypz Jy wqxz [h]

inM . The binary unrestricted jumping relation, symbolically denoted by �y, over
X, is defined as follows. Let ζ, ϑ ∈ X, and h ∈ R; then, M makes an unrestricted
jump from ζ to ϑ according to h, symbolically written as

ζ �y ϑ [h]

if either ζ Iy ϑ [h] or ζ Jy ϑ [h].
A 2-configuration of M is any string in XX. Let X2 denote the set of all

2-configurations of M . The binary unrestricted 2-jumping relation, symbolically
denoted by ��y, over X2, is defined as follows. Let ζ1ζ2, ϑ1ϑ2 ∈ X2, where
ζ1, ζ2, ϑ1, ϑ2 ∈ X, and h ∈ R; then, M makes an unrestricted 2-jump from ζ1ζ2 to
ϑ1ϑ2 according to h, symbolically written as

ζ1ζ2 ��y ϑ1ϑ2 [h]

if and only if ζ1 �y ϑ1 [h] and ζ2 �y ϑ2 [h].
Besides the unrestricted 2-jumping relation, we also define other four different

types of limited 2-jumping relations, which are the main subject of this paper.
The presented limitation restricts the jumping direction of jumps, moreover, it
restricts each jump separately; which in total gives four different possible variants
of such limitation. As we show further, these restrictions severely and uniquely
impact the automata’s behavior and thus the families of accepted languages.

(1)M makes a right-right 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically
written as

ζ1ζ2 IIy ϑ1ϑ2 [h]

if and only if ζ1 Iy ϑ1 [h] and ζ2 Iy ϑ2 [h];

TITLE WILL BE SET BY THE PUBLISHER 5

(2) M makes a right-left 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically
written as

ζ1ζ2 IJy ϑ1ϑ2 [h]

if and only if ζ1 Iy ϑ1 [h] and ζ2 Jy ϑ2 [h];
(3) M makes a left-right 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically
written as

ζ1ζ2 JIy ϑ1ϑ2 [h]

if and only if ζ1 Jy ϑ1 [h] and ζ2 Iy ϑ2 [h]; and
(4) M makes a left-left 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically
written as

ζ1ζ2 JJy ϑ1ϑ2 [h]

if and only if ζ1 Jy ϑ1 [h] and ζ2 Jy ϑ2 [h].
Let o be any of the jumping direct relations introduced above. In the standard

way, extend o to om, m ≥ 0; o+; and o∗. Let M = (Q,Σ, R, s, F) be a GJFA. To
express that M only performs jumps according to o, write Mo. If o is one of the
relations y, Iy, Jy, �y, set

L(Mo) = {uv | u, v ∈ Σ∗, usv o∗ f, f ∈ F}.

If o is one of the relations ��y, IIy, IJy, JIy, JJy, set

L(Mo) = {uvw | u, v, w ∈ Σ∗, usvsw o∗ ff, f ∈ F}.

L(Mo) is referred to as the language of Mo. Set Lo = {L(Mo) | M is a GJFA};
Lo is referred to as the language family accepted by GJFAs according to o.

To illustrate this terminology, take o = ��y. Consider M��y. Notice that

L(M��y) = {uvw | u, v, w ∈ Σ∗, usvsw ��y∗ ff, f ∈ F}.

L(M��y) is referred to as the language of M��y. Set L��y = {L(M��y) |M is
a GJFA}; L��y is referred to as the language family accepted by GJFAs according
to ��y.

Furthermore, set L2 = L��y ∪LIIy ∪LIJy ∪LJIy ∪LJJy.
Lastly, we introduce a subfamily of the family of regular languages essential to

the study of the accepting power of GJFAs that perform right-left and left-right
2-jumps.

Definition 2.1. Let Lm,n be a simply-expandable language, a SEL for short, over
an alphabet Σ if it can be written as follows. Let m and n be positive integers;
then,

Lm,n =
⋃m

h=1

{
uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1 | i ≥ 0, uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n

}
.

6 TITLE WILL BE SET BY THE PUBLISHER

For the sake of clarity, let us note that, in the previous definition, vh and all
uh,k are fixed strings that only vary for different values of h.

Throughout the rest of this paper, the remaining language families under discus-
sion are denoted in the following way. FIN,REG, LIN,CF,CS, and SEL denote
the families of finite languages, regular languages, linear languages, context-free
languages, context-sensitive languages, and SELs, respectively.

3. General Results

This section studies the accepting power of GJFAs making their computational
steps by unrestricted, right-left, left-right, right-right, and left-left 2-jumps.

3.1. On the unrestricted 2-jumping relation

Example 3.1. Consider the GJFA

M��y = ({s, f},Σ, R, s, {f}),

where Σ = {a, b, c} and R consists of the rules (s, ab, f) and (f, c, f). Starting
from s, M has to read two times some ab, entering the final state f ; then, M can
arbitrarily many times read two times some c. Consequently, if we work with the
unrestricted 2-jumps, the input must always contain two separate strings ab, and
the symbols c can be anywhere around these two strings. Therefore, the accepted
language is

L(M��y) = {ckabcmabcn | k +m+ n is an even integer, k,m, n ≥ 0}.

Lemma 3.2. For every language L ∈ L2, there is no x ∈ L such that |x| is an
odd number.

Proof. By the definition of 2-jumps, any GJFA that uses 2-jumps always performs
two single jumps simultaneously, and they both follow the same rule, therefore,
there is no way how to read an odd number of symbols from the input string. �
Lemma 3.3. There is no GJFA My that accepts {ckabcmabcn | k +m+ n is an
even integer, k,m, n ≥ 0}.

Proof. We follow Lemma 19 from [7] which effectively shows that a GJFAMy can
maintain a specific order of symbols only in the sole context of a rule. Therefore, by
contradiction. Let K = {ckabcmabcn | k +m+ n is an even integer, k,m, n ≥ 0}.
Assume that there is a GJFA My such that L(My) = K. If M uses two times
a rule reading ab, then it can also accept input aabb; and clearly aabb 6∈ K.
Consequently, M has to always read the whole sequence abcmab with a single rule;
however, number m is unbounded and thus there cannot be finitely many rules
that cover all possibilities—a contradiction with the assumption that L(My) = K
exists. Therefore, there is no GJFA My that accepts {ckabcmabcn | k + m +
n is an even integer, k,m, n ≥ 0}. �

TITLE WILL BE SET BY THE PUBLISHER 7

Theorem 3.4. Ly and L��y are incomparable.

Proof. Ly 6⊆ L��y follows from FIN ⊂ Ly (see Theorem 18 in [7]) and Lemma
3.2. L��y 6⊆ Ly follows from Example 3.1 and Lemma 3.3. Moreover, observe
that both Ly and L��y clearly contain simple finite language {aa}. �

3.2. On the right-left 2-jumping relation

Claim 3.5. Let M = (Q,Σ, R, s, F) be a GJFA; then, every x ∈ L(MIJy) can
be written as x = u1u2 . . . unun . . . u2u1, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n.

Proof. Consider any GJFAMIJy = (Q,Σ, R, s, F). Since we work with the right-
left 2-jumps, the first jump can move only to the right, the second jump can move
only to the left, and both jumps cannot cross each other. Observe that if the
configuration of M is of the form upvpw, where u, v, w ∈ Σ∗, and p ∈ Q, then M
cannot read the symbols in u and w anymore. Also, observe that this covers the
situation when M starts to accept x ∈ Σ∗ from another configuration than sxs.
Therefore, to read the whole input string, M has to start in the configuration sxs,
and it cannot jump over any symbols during the whole process. Consequently, since
both jumps always follow the same rule, they have to read the same corresponding
strings and, at the end, meet in the middle of the input string. Therefore, every
x ∈ L(MIJy) can be surely written as x = u1u2 . . . unun . . . u2u1, where n ∈ N,
and ui ∈ Σ∗, 1 ≤ i ≤ n. �

Lemma 3.6. For every GJFAM , there is a linear grammar G such that L(MIJy)
= L(G).

Proof. Consider any GJFA MIJy = (Q,Σ, R, s, F). Define the linear grammar

G = (Q,Σ, P, s),

where P is constructed in the following way:
(1) For each (p, y, q) ∈ R, add p→ yqy to P .
(2) For each p ∈ F , add p→ ε to P .
We follow Claim 3.5 and its proof. Let p, q ∈ Q, f ∈ F , and y, u, v, w ∈ Σ∗.

Observe that every time M can make a 2-jump pywyp IJy qwq according to
(p, y, q) ∈ P , G can also make the derivation step upv ⇒ uyqyv according to
p→ yqy ∈ P . Moreover, every time M is in a final state f , G can finish the string
with f → ε ∈ P . Finally, observe that G cannot do any other action, therefore,
L(MIJy) = L(G). �

Theorem 3.7. LIJy ⊂ LIN.

Proof. LIJy ⊆ LIN follows from Lemma 3.6. LIN 6⊆LIJy follows from Lemma
3.2. �

Claim 3.8. There is a GJFA M such that L(MIJy) = {w ∈ Σ∗ | w is an even
palindrome}.

8 TITLE WILL BE SET BY THE PUBLISHER

Proof. Consider an arbitrary alphabet Σ. Define the GJFA

MIJy = ({f},Σ, R, f, {f})

where R = {(f, a, f) | a ∈ Σ}.
We follow Claim 3.5 and its proof, which shows that every x ∈ L(MIJy) can

be written as x = u1u2 . . . unun . . . u2u1, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n.
Observe that we use only rules reading single symbols, thus we can even say that
ui ∈ (Σ ∪ {ε}), 1 ≤ i ≤ n, which, in fact, models the string pattern of the even
palindrome. Moreover, we use only one sole state that can accept all symbols from
Σ, therefore, L(MIJy) = {w ∈ Σ∗ | w is an even palindrome}. �

Lemma 3.9. For every SEL Km,n, there is a GJFAM such that Km,n=L(MIJy).

Proof. Let m and n be positive integers. Consider any SEL over an alphabet Σ,

Km,n =
⋃m

h=1

{
uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1 | i ≥ 0, uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n

}
.

Define the GJFA MIJy = (Q,Σ, R, 〈s〉, F), where Q, R, and F are constructed
in the following way:

(1) Add 〈s〉 to Q.
(2) Add 〈h, k〉 to Q, for all 1 ≤ h ≤ m, 1 ≤ k ≤ n+ 1.
(3) Add 〈h, n+ 1〉 to F , for all 1 ≤ h ≤ m.
(4) Add (〈s〉, ε, 〈h, 1〉) to R, for all 1 ≤ h ≤ m.
(5) Add (〈h, k〉, uh,k, 〈h, k + 1〉) to R, for all 1 ≤ h ≤ m, 1 ≤ k ≤ n.
(6) Add (〈h, n+ 1〉, vh, 〈h, n+ 1〉) to R, for all 1 ≤ h ≤ m.
We follow Claim 3.5 and its proof. Observe that M starts from 〈s〉 by jumping

to an arbitrary state 〈h, 1〉, where 1 ≤ h ≤ m. Then, the first jump consecutively
reads uh,1uh,2 . . . uh,n, and the second jump consecutively reads uh,n . . . uh,2uh,1,
until M ends up in the final state 〈h, n+ 1〉. Here, both jumps can arbitrarily
many times read vh. As a result, M accepts uh,1uh,2 . . . uh,nvihv

i
huh,n . . . uh,2uh,1,

for all 1 ≤ h ≤ m, where i ≥ 0, uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n; therefore, Km,n =
L(MIJy). �

Lemma 3.10. For every SEL Km,n, there is a right-linear grammar G such that
Km,n = L(G).

Proof. Let m and n be positive integers. Consider any SEL over an alphabet Σ,

Km,n =
⋃m

h=1

{
uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1 | i ≥ 0, uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n

}
.

Define the right-linear grammarG = (N,Σ, P, 〈s〉), whereN and P are constructed
in the following way:

(1) Add 〈s〉 to N .
(2) Add 〈h, 1〉 and 〈h, 2〉 to N , for all 1 ≤ h ≤ m.
(3) Add 〈s〉 → 〈h, 1〉 to P , for all 1 ≤ h ≤ m.
(4) Add 〈h, 1〉 → uh,1uh,2 . . . uh,n〈h, 2〉 to P , for all 1 ≤ h ≤ m.

TITLE WILL BE SET BY THE PUBLISHER 9

(5) Add 〈h, 2〉 → vnvn〈h, 2〉 to P , for all 1 ≤ h ≤ m.
(6) Add 〈h, 2〉 → uh,n . . . uh,2uh,1 to P , for all 1 ≤ h ≤ m.
Observe that at the beginning, G has to change nonterminal 〈s〉 to an arbi-

trary nonterminal 〈h, 1〉, where 1 ≤ h ≤ m. Then, it generates uh,1uh,2 . . . uh,n
and nonterminal 〈h, 2〉. Here, it can arbitrarily many times generate vnvn and
ultimately finish the generation with uh,n . . . uh,2uh,1. As a result, G generates
uh,1uh,2 . . . uh,n(vhvh)iuh,n . . . uh,2uh,1, for all 1 ≤ h ≤ m, where i ≥ 0, uh,k, vh ∈
Σ∗, 1≤k≤n, which is indistinguishable from uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1;

therefore, Km,n = L(G). �
Theorem 3.11. SEL ⊂ REG.

Proof. SEL ⊆REG follows from Lemma 3.10. REG 6⊆ SEL follows from Lemma
3.9 and Lemma 3.2. �
Theorem 3.12. SEL ⊂ LIJy.

Proof. SEL ⊆ LIJy follows from Lemma 3.9. LIJy 6⊆ SEL follows from The-
orem 3.11 and Claim 3.8 because a subfamily of the family of regular languages
surely cannot contain a non-trivial language of all even palindromes. �
Theorem 3.13. The following pairs of language families are incomparable:

(i) LIJy and REG;
(ii) LIJy and FIN.

Proof. LIJy 6⊆ REG and LIJy 6⊆ FIN follow from Claim 3.8, Theorem 3.11,
and Theorem 3.12. REG 6⊆ LIJy and FIN 6⊆ LIJy follow from Lemma 3.2.
Moreover, observe that LIJy clearly contains regular language {a2n | n ≥ 0} and
finite language {aa}. �
Open Problem 3.14. (LIJy − SEL) ∩ REG = ∅?

3.3. On the left-right 2-jumping relation

Claim 3.15. Let M = (Q,Σ, R, s, F) be a GJFA; then, every x ∈ L(MJIy) can
be written as x = un . . . u2u1u1u2 . . . un, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n.

Proof. Consider any GJFA MJIy = (Q,Σ, R, s, F). Since we work with the left-
right 2-jumps, the first jump can move only to the left, and the second jump can
move only to the right. Observe that if the configuration ofM is of the form upvpw,
where u, v, w ∈ Σ∗, and p ∈ Q, then M cannot read the symbols in v anymore.
Also, observe that this covers the situation when M starts to accept x ∈ Σ∗ from
another configuration than yssz, where y, z ∈ Σ∗ such that x = yz. Therefore, to
read the whole input string,M has to start in the configuration yssz, and it cannot
jump over any symbols during the whole process. Consequently, since both jumps
always follow the same rule, they have to read the same corresponding strings and
ultimately finish at the ends of the input string. Therefore, every x ∈ L(MJIy)
can be surely written as x = un . . . u2u1u1u2 . . . un, where n ∈ N, and ui ∈ Σ∗,
1 ≤ i ≤ n. �

10 TITLE WILL BE SET BY THE PUBLISHER

Lemma 3.16. For every GJFA M , there is a GJFA N such that L(MJIy) =
L(NIJy).

Proof. Consider any GJFA MJIy = (Q,Σ, R1, s1, F). Without a loss of gener-
ality, assume that s2 6∈ Q. Define the GJFA

NIJy = (Q ∪ {s2},Σ, R2, s2, {s1}),

where R2 is constructed in the following way:
(1) For each (p, y, q) ∈ R1, add (q, y, p) to R2.
(2) For each f ∈ F , add (s2, ε, f) to R2.
Note that this construction resembles the well-known conversion technique for

finite automata which creates a finite automaton that accepts the reversal of the
original language. However, observe that in this case, the effect is quite different.
We follow Claims 3.5 and 3.15. Consider any x ∈ L(MJIy). We can surely find
x = un . . . u2u1u1u2 . . . un, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n, such that N
reads un . . . u2u1 and u1u2 . . . un in the reverse order. Moreover, in N , both jumps
have their direction reversed, compared to jumps in M , and thus they start on
the opposite ends of their parts, which is demonstrated in the mentioned claims.
Consequently, if each jump in N reads its part reversely and from the opposite
end, then, in fact, N reads the same un . . . u2u1u1u2 . . . un asM . Finally, N surely
cannot accept anything new that is not accepted by M , therefore, L(MJIy) =
L(NIJy). �

Lemma 3.17. For every GJFA M , there is a GJFA N such that L(MIJy) =
L(NJIy).

Proof. Consider any GJFA MIJy = (Q,Σ, R1, s1, F). Without a loss of gener-
ality, assume that s2 6∈ Q. Define the GJFA

NJIy = (Q ∪ {s2},Σ, R2, s2, {s1}),

where R2 is constructed in the following way:
(1) For each (p, y, q) ∈ R1, add (q, y, p) to R2.
(2) For each f ∈ F , add (s2, ε, f) to R2.
The reasoning here is exactly the same as in Lemma 3.16. �

Theorem 3.18. LJIy = LIJy.

Proof. LJIy ⊆ LIJy follows from Lemma 3.16. LIJy ⊆ LJIy follows from
Lemma 3.17. �

Corollary 3.19. The following relations between language families hold:
(i) LJIy ⊂ LIN;
(ii) SEL ⊂ LJIy;
(iii) LJIy and REG are incomparable;
(iv) LJIy and FIN are incomparable.

TITLE WILL BE SET BY THE PUBLISHER 11

Proof. These results directly follow from Theorems 3.7, 3.12, 3.13, and 3.18. �
Open Problem 3.20. (LJIy − SEL) ∩ REG = ∅?

The results concerning the accepting power of GJFAs that perform right-left
and left-right 2-jumps are summarized in Figure 1.

LIN

REG LIJy LJIy

FIN SEL

Figure 1. A hierarchy of language families closely related to the
right-left and left-right 2-jumps is shown. If there is a line or an
arrow from familyX to family Y in the figure, thenX = Y orX ⊂
Y , respectively. A crossed line represents the incomparability
between connected families.

3.4. On the right-right 2-jumping relation

Example 3.21. Consider the GJFA

MIIy = ({s, p, f},Σ, R, s, {f}),

where Σ = {a, b, c} and R consists of the rules (s, ab, p) and (p, c, f). Starting from
s,M has to read two times ab and two times c. Observe that if the first jump skips
(jumps over) some symbols, then they cannot be ever read afterwards. However,
the second jump is not so harshly restricted and can potentially skip some symbols
which will be read later by the first jump. Therefore, the accepted language is

L(MIIy) = {ababcc, abcabc}.

Example 3.22. Consider the GJFA

MIIy = ({s, f},Σ, R, s, {f}),

where Σ = {a, b} and R consists of the rules (s, b, f) and (f, a, f). Starting from s,
M has to read two times b and then it can arbitrarily many times read two times
a. Both jumps behave in the same way as in Example 3.21. Observe that when

12 TITLE WILL BE SET BY THE PUBLISHER

we consider no skipping of symbols, then M reads banban, n ≥ 0. Nevertheless,
when we consider the skipping with the second jump, then the second b can also
occur arbitrarily closer to the first b; until they are neighbors, and M reads bba2n,
n ≥ 0. When combined together, the accepted language is

L(MIIy) = {banbana2m | n,m ≥ 0}.

Observe that this is clearly a non-regular context-free language.

Example 3.23. Consider the GJFA

MIIy = ({s, f},Σ, R, s, {f}),

where Σ = {a, b, c, d} and R = {(s, y, f) | y ∈ Σ} ∪ {(f, y, f) | y ∈ Σ}. Starting
from s, M has to read two times some symbol from Σ and then it can arbitrarily
many times read two times any symbols from Σ. Again, both jumps behave in the
same way as in Example 3.21. Consider the special case when the second jump con-
sistently jumps over one symbol each time (except the last step) during the whole
process. In such a case, the accepted strings can be written as u1u′1u2u′2 . . . unu′n,
where n ∈ N, ui, u′i ∈ Σ, ui = u′i, 1 ≤ i ≤ n. Observe that symbols without
primes are read by the first jump, and symbols with primes are read by the second
jump. Moreover, such strings can be surely generated by a right-linear grammar.
Nevertheless, now consider no special case. Observe that, in the accepted strings,
symbols with primes can be arbitrarily shifted to the right over symbols with-
out primes, this creates a more complex structure, due to ui = u′i, with multiple
crossed agreements. Lastly, consider the other border case with no skipping of any
symbols at all. Then, the accepted strings can be written as ww, where w ∈ Σ+.
Such strings represent the reduplication phenomenon—the well-known example
of non-context-free languages (see Chapter 3.1 in [11]). As a result, due to the
unbound number of crossed agreements, we can safely state that L(MIIy) is a
non-context-free language.

This statement can be formally proved by contradiction. Assume that L(MIIy)
is a context-free language. The family of context-free languages is closed under
intersection with regular sets. Let K = L(MIIy) ∩ ab+c+dab+c+d. Consider the
previous description. Observe that this selects strings where u1 = a and u′n = d.
Since there are only exactly two symbols a and two symbols d in each selected
string, we know where precisely both jumps start and end. And since the second
jump starts after the position where the first jump ends, we also know that this,
in fact, follows the special border case of behavior with no skipping of any symbols
at all. Consequently, K = {abncmdabncmd | n,m ≥ 1}. However, K is clearly
a non-context-free language (see Chapter 3.1 in [11])—a contradiction with the
assumption that L(MIIy) is a context-free language. Therefore, L(MIIy) is a
non-context-free language.

Theorem 3.24. LIIy ⊂ CS.

Proof. Clearly, any GJFA MIIy can be simulated by linear bounded automata,
so LIIy ⊆ CS. CS 6⊆ LIIy follows from Lemma 3.2. �

TITLE WILL BE SET BY THE PUBLISHER 13

Lemma 3.25. Let n ∈ N. For every GJFA M , where for every x ∈ L(MIIy)
holds either |x| ≤ n or alph(x) = 1, there is a right-linear grammar G such that
L(MIIy) = L(G).

Proof. Let n ∈ N. Consider any GJFA MIIy, where for every x ∈ L(MIIy)
holds either |x| ≤ n or alph(x) = 1. Define the right-linear grammar G in the
following way. Observe that the number of x for which holds |x| ≤ n must be
finite, therefore, for each such x, we can create a separate rule that generates x
in G. On the other hand, the number of x for which holds alph(x) = 1 can be
infinite, however, every such x is defined by the finite number of rules in M . And
we can surely convert these rules (p, y, q) from M into rules in G in such a way
that they generate y2 and simulate the state transitions ofM . Consequently, since
the position of symbols here is ultimately irrelevant, these rules properly simulate
results of 2-jumps in M . Therefore, L(MIIy) = L(G). �

Theorem 3.26. The following pairs of language families are incomparable:
(i) LIIy and CF;
(ii) LIIy and REG;
(iii) LIIy and FIN.

Proof. LIIy 6⊆ CF, LIIy 6⊆ REG, and LIIy 6⊆ FIN follow from Example
3.23. CF 6⊆ LIIy, REG 6⊆ LIIy, and FIN 6⊆ LIIy follow from Lemma
3.2. Moreover, observe that LIIy clearly contains the context-free language
from Example 3.22, regular language {a2n | n ≥ 0}, and the finite language from
Example 3.21. �

3.5. On the left-left 2-jumping relation

Example 3.27. Consider the GJFA

MJJy = ({s, p, f},Σ, R, s, {f}),

where Σ = {a, b, c} and R consists of the rules (s, c, p) and (p, ab, f). Starting from
s, M has to read two times c and two times ab. Observe that if the second jump
skips some symbols, then they cannot be ever read afterwards. However, the first
jump is not so harshly restricted and can potentially skip some symbols which will
be read later by the second jump. Note that this precisely resembles the inverted
behavior of the right-right 2-jumping relation. As a result, the language is

L(MJJy) = {ababcc, abacbc, abcabc}.

Example 3.28. Consider the GJFA

MJJy = ({s, f},Σ, R, s, {f}),

where Σ = {a, b} and R consists of the rules (s, a, s) and (s, b, f). Starting from
s, M can arbitrarily many times read two times a and, at the end, it has to read

14 TITLE WILL BE SET BY THE PUBLISHER

two times b. Both jumps behave in the same way as in Example 3.27. Observe
that when we consider no skipping of symbols, then M reads banban, n ≥ 0.
Nevertheless, when we consider the skipping with the first jump, then the second
b can also occur arbitrarily closer to the first b, since the first jump can now read
symbols a also behind this second b. Consequently, the accepted language is

L(MJJy) = {banbana2m | n,m ≥ 0}.

Note that this is the same language as in Example 3.22.

Example 3.29. Consider the GJFA

MJJy = ({s, f},Σ, R, s, {f}),

where Σ = {a, b, c, d} and R = {(s, y, f) | y ∈ Σ} ∪ {(f, y, f) | y ∈ Σ}. Starting
from s, M has to read two times some symbol from Σ and then it can arbitrarily
many times read two times any symbols from Σ. Both jumps behave in the same
way as in Example 3.27 and the overall behavior tightly follows Example 3.23.
Consider the special case when the first jump consistently jumps over one symbol
each time (except the last step) during the whole process. In such a case, the
accepted strings can be written as u′nun . . . u′2u2u′1u1, where n ∈ N, u′i, ui ∈ Σ,
u′i = ui, 1 ≤ i ≤ n. Observe that symbols with primes are read by the first
jump, and symbols without primes are read by the second jump. Now consider
no special case. Observe that, in the accepted strings, symbols with primes can
be arbitrarily shifted to the left over symbols without primes, which creates a
more complex structure with multiple crossed agreements. And lastly, consider
the other border case with no skipping of any symbols at all. Then, the accepted
strings can be written as ww, where w ∈ Σ+, which represents the reduplication
phenomenon. As a result, due to the unbound number of crossed agreements, we
can safely state that L(MJJy) is a non-context-free language. This statement can
be formally proved in the same way as in Example 3.23.

Theorem 3.30. LJJy ⊂ CS.

Proof. Clearly, any GJFA MJJy can be simulated by linear bounded automata,
so LJJy ⊆ CS. CS 6⊆ LJJy follows from Lemma 3.2. �

Lemma 3.31. Let n ∈ N. For every GJFA M , where for every x ∈ L(MJJy)
holds either |x| ≤ n or alph(x) = 1, there is a right-linear grammar G such that
L(MJJy) = L(G).

Proof. The reasoning here is exactly the same as in Lemma 3.25. �

Theorem 3.32. The following pairs of language families are incomparable:
(i) LJJy and CF;
(ii) LJJy and REG;
(iii) LJJy and FIN.

TITLE WILL BE SET BY THE PUBLISHER 15

Proof. LJJy 6⊆ CF, LJJy 6⊆ REG, and LJJy 6⊆ FIN follow from Example
3.29. CF 6⊆ LJJy, REG 6⊆ LJJy, and FIN 6⊆ LJJy follow from Lemma
3.2. Moreover, observe that LJJy clearly contains the context-free language
from Example 3.28, regular language {a2n | n ≥ 0}, and the finite language from
Example 3.27. �

Claim 3.33. There is no GJFA MIIy that accepts {ababcc, abacbc, abcabc}.

Proof. By contradiction. LetK = {ababcc, abacbc, abcabc}. Assume that there is a
GJFA M such that L(MIIy) = K. Observe that each string in K contains three
pairs of symbols, therefore, to effectively read such a string, we need a maximum of
three chained rules inM or less. (Note that additional rules reading ε do not affect
results.) Moreover, due to the nature of strings inK, we need to consider only such
chains of rules where, in the result, a precedes b, and b precedes c. Therefore, we
can easily try all possibilities and calculate their resulting sets. Surely, L(MIIy)
must be a union of some of these sets:

(i) if M reads abc, the set is {abcabc};
(ii) if M reads ab, and c, the set is {ababcc, abcabc};
(iii) if M reads a, and bc, the set is {aabcbc, abacbc, abcabc};
(iv) if M reads a, b, and c, the set is {aabbcc, ababcc, aabcbc, abacbc, abcabc}.

Clearly, no union of these sets can result in K—a contradiction with the assump-
tion that L(MIIy) = K exists. Therefore, there is no GJFA MIIy that accepts
{ababcc, abacbc, abcabc}. �

Claim 3.34. There is no GJFA MJJy that accepts {ababcc, abcabc}.

Proof. By contradiction. Let K = {ababcc, abcabc}. Assume that there is a GJFA
M such that L(MJJy) = K. Observe that each string in K contains three pairs
of symbols, therefore, to effectively read such a string, we need a maximum of
three chained rules in M or less. Moreover, due to the nature of strings in K,
we need to consider only such chains of rules where, in the result, a precedes b,
and b precedes c. Therefore, we can easily try all possibilities and calculate their
resulting sets. Surely, L(MJJy) must be a union of some of these sets:

(i) if M reads abc, the set is {abcabc};
(ii) if M reads c, and ab, the set is {ababcc, abacbc, abcabc};
(iii) if M reads bc, and a, the set is {aabcbc, abcabc};
(iv) if M reads c, b, and a, the set is {aabbcc, aabcbc, ababcc, abacbc, abcabc}.

Clearly, no union of these sets can result in K—a contradiction with the assump-
tion that L(MJJy) = K exists. Therefore, there is no GJFA MJJy that accepts
{ababcc, abcabc}. �

Theorem 3.35. LIIy and LJJy are incomparable.

Proof. LIIy 6⊆ LJJy follows from Example 3.21 and Claim 3.34. LJJy 6⊆
LIIy follows from Example 3.27 and Claim 3.33. Moreover, observe that both
LIIy and LJJy clearly contain the same language from Examples 3.22 and
3.28. �

16 TITLE WILL BE SET BY THE PUBLISHER

The results concerning the accepting power of GJFAs that perform right-right
and left-left 2-jumps are summarized in Figure 2.

CS

CF

LJJy

REG

FIN

LIIy

Figure 2. A hierarchy of language families closely related to the
right-right and left-left 2-jumps is shown. If there is a line or an
arrow from familyX to family Y in the figure, thenX = Y orX ⊂
Y , respectively. A crossed line represents the incomparability
between connected families.

4. Closure Properties

In this section, we show the closure properties of LIJy, LJIy, LIIy, and
LJJy under various operations. Recall that LIJy and LJIy are equivalent and
so their closure properties coincide.

Theorem 4.1. All LIJy, LJIy, LIIy, and LJJy are not closed under end-
marking.

Proof. This result directly follows from Lemma 3.2—inability to read an odd num-
ber of symbols from the input string—and the 2-jumps behavior described in Claim
3.5, Example 3.23 and Example 3.29—general inability to accept selected symbols
only at one specific position in the input string. �

Theorem 4.2. Both LIJy and LJIy are closed under endmarking on both
sides.

Proof. Consider any GJFA MIJy = (Q,Σ, R, s, F). Without a loss of generality,
assume that s′ 6∈ Q and # 6∈ Σ. Define GJFA NIJy = (Q ∪ {s′},Σ ∪ {#}, R ∪

TITLE WILL BE SET BY THE PUBLISHER 17

{(s′,#, s)}, s′, F). Then, by Claim 3.5, every x ∈ L(NIJy) can be surely written
as x = #u2u3 . . . unun . . . u3u2#, where n ∈ N, and ui ∈ Σ∗, 2 ≤ i ≤ n �

Theorem 4.3. Both LIIy and LJJy are not closed under endmarking on both
sides.

Proof. Since both jumps always read the same strings in the same direction, they
clearly cannot reliably define the endmarking on the opposite sides of the input
string in the general case. �

Theorem 4.4. All LIJy, LJIy, LIIy, and LJJy are not closed under con-
catenation.

Proof. This can be easily proved by contradiction. Consider two simple languages
{aa} and {bb}, which clearly belong into LIJy, LIIy, and LJJy. Assume
that LIJy, LIIy, and LJJy are closed under concatenation. Therefore, the
resulting language {aabb} also have to belong into LIJy, LIIy, and LJJy.
However, such language does not satisfy the string form for LIJy from Claim
3.5, and there is no GJFA MIIy or GJFA NJJy that can define such language.
Observe that M and N cannot accept aabb with a single 2-jump, and that the
rules for multiple 2-jumps define broader languages, e.g. {abab, aabb}. �

Theorem 4.5. All LIJy, LJIy, LIIy, and LJJy are not closed under
square.

Proof. Consider language L = {aa, bb}, which clearly belongs into LIJy, LIIy,
and LJJy. Therefore, L2 = {aaaa, aabb, bbaa, bbbb} should also belong into these
language families. However, observe string aabb, it causes the same problems as in
the proof of Theorem 4.4. This string does not satisfy the string form for LIJy
from Claim 3.5. Moreover, there is no GJFA MIIy or GJFA NJJy that can
simultaneously accept required string aabb and reject unwanted string abab. �

Theorem 4.6. All LIJy, LJIy, LIIy, and LJJy are not closed under shuf-
fle.

Proof. Consider two simple languages {aa} and {bb}, which clearly belong into
LIJy, LIIy, and LJJy. Therefore, the resulting language of their shuffle
{aabb, abab, baab, abba, baba, bbaa} should also belong into these language families.
However, several strings from this language do not satisfy the string form for
LIJy from Claim 3.5. Moreover, there is surely no GJFAMIIy or GJFA NJJy
that can accept string baab or abba, since these strings do not contain two identical
sequences of symbols that could be properly synchronously read. �

Theorem 4.7. All LIJy, LJIy, LIIy, and LJJy are closed under union.

Proof. Let o be one of the relations IJy, JIy, IIy, and JJy; and Mo =
(Q1,Σ1, R1, s1, F1), and No = (Q2,Σ2, R2, s2, F2) be two GJFAs. Without a loss
of generality, assume that Q1 ∩Q2 = ∅ and s 6∈ (Q1 ∪Q2). Define the GJFA

Ho = (Q1 ∪Q2 ∪ {s},Σ1 ∪ Σ2, R1 ∪R2 ∪ {(s, ε, s1), (s, ε, s2)}, s, F1 ∪ F2).

18 TITLE WILL BE SET BY THE PUBLISHER

Observe that L(Ho) = L(Mo) ∪ L(No) holds in all modes. Indeed, the leading 2-
jump only selects whether Ho entersMo or No, and this leading 2-jump introduces
no other new configuration to the configurations of Mo and No. �

Theorem 4.8. All LIJy, LJIy, LIIy, and LJJy are not closed under com-
plement.

Proof. Consider Lemma 3.2—that all 2-jumping modes can only accept even-
length input strings. As a result, every complement has to contain at least all
odd-length strings, and thus it cannot be defined by any 2-jumping mode. �

Theorem 4.9. Both LIJy and LJIy are closed under intersection with regular
languages.

Proof. Consider any GJFA MIJy = (Q1,Σ, R1, s1, F1) and FA N = (Q2,Σ, R2,
s2, F2). We can define a new GJFA HIJy = (Q3,Σ, R3, s3, F3) that simulates
both M and N in the same time, and that accepts the input string x if and only
if both M and N also accept x. Note that the requirement of identical Σ does
not affect the generality of the result. We are going to use two auxiliary functions
that will help us with the construction of H. First, Fw(N, p, str) that accepts
three parameters: N which is some FA, p which is some state of N , and str which
is some string. This function returns the set of states in which N can end up if
N is in state p and reads str. Second, Bw(N, p, str) that also accepts the same
parameters: N which is some FA, p which is some state of N , and str which is
some string. This function returns the set of states from which N reads str and
ends in state p. We are not giving full details of these functions here since they
only incorporate well-known standard techniques for finite automata. With this,
we construct Q3, R3, and F3 in the following way:

(1) Add s3 to Q3.
(2) Add 〈p, q, r〉 to Q3, for all (p, q, r) ∈ Q1 ×Q2 ×Q2.
(3) Add 〈p, q, q〉 to F3, for all (p, q) ∈ F1 ×Q2.
(4) Add (s3, ε, 〈s1, s2, f〉) to R3, for all f ∈ F2.
(5) For each (p, a, q) ∈ R1 and r1, t1 ∈ Q2, add (〈p, r1, t1〉, a, 〈q, r2, t2〉) to R3,

for all (r2, t2) ∈ Fw(N, r1, a)× Bw(N, t1, a).
Observe that H handles three distinct things in its states 〈p, q, r〉: p represents the
original state of M , q simulates the first part of N in the classical forward way,
and r simulates the second part of N in the backward way. At the beginning, H
makes a 2-jump from the initial state s3 into one of the states 〈s1, s2, f〉, where
f ∈ F2, and the main part of the simulation starts. In each following step, H can
only make a 2-jump if the similar 2-jump is also in M and if N can read the same
string as M from the both opposite sides with the current states. This part ends
when there are no valid 2-jumps or when H reads the whole input string. If H
processes the whole input string, we can recognize valid final state 〈p, q, r〉 in the
following way: p has to be the original final state of M , and q must be the same
as r so that the simulation of N from the two opposite sides can be connected in
the middle. As a result, L(HIJy) = L(MIJy) ∩ L(N). �

TITLE WILL BE SET BY THE PUBLISHER 19

Theorem 4.10. Both LIJy and LJIy are closed under intersection.

Proof. Consider any GJFA MIJy = (Q1,Σ, R1, s1, F1) and GJFA NIJy = (Q2,
Σ, R2, s2, F2). We can define a new GJFA HIJy = (Q,Σ, R, s, F) that simulates
both M and N in the same time such that L(HIJy) = L(MIJy) ∩ L(NIJy).
To support the construction of Q and R, define Σ≤h =

⋃h
i=0 Σi, and let k be

the maximum length of the right-hand sides of the rules from R1 ∪ R2. First,
set Q to {〈q1, x, x′, q2, y, y′〉 | q1 ∈ Q1, q2 ∈ Q2, x, x

′, y, y′ ∈ Σ≤2k−1}, F to
{〈f1, ε, ε, f2, ε, ε〉 | f1 ∈ F1, f2 ∈ F2}, and s = 〈s1, ε, ε, s2, ε, ε〉. Then, we construct
R in the following way:

(I) Add (〈p, x, x′, q, y, y′〉, a, 〈p, xa, ax′, q, ya, ay′〉) to R, for all a ∈ Σ≤k, p ∈
Q1, q ∈ Q2, and x, x′, y, y′ ∈ Σ≤2k−1−|a|.

(II) For each (p, a, p′) ∈ R1, add (〈p, ax, x′a, q, y, y′〉, ε, 〈p′, x, x′, q, y, y′〉) to R,
for all x, x′ ∈ Σ≤2k−1−|a|, q ∈ Q2, and y, y′ ∈ Σ≤2k−1.

(III) For each (q, b, q′) ∈ R2, add (〈p, x, x′, q, by, y′b〉, ε, 〈p, x, x′, q′, y, y′〉) to R,
for all p ∈ Q1, x, x′ ∈ Σ≤2k−1, and y, y′ ∈ Σ≤2k−1−|b|.

Observe that H stores six pieces of information in its compound states: (1) the
state of M , (2) the buffered string (so called buffer) with up to 2k − 1 symbols
read from the beginning of the input string to simulate the work of M on it, (3)
the buffered string with up to 2k−1 symbols read from the end of the input string
to simulate the work of M on it, and pieces (4), (5), and (6) are analogous to (1),
(2), and (3) but for N , respectively.

Next, by the same reasoning as in the proof of Claim 3.5, we can assume that
M and N start from configurations s1ws1 and s2ws2, respectively, and neither of
them can jump over any symbol during the reading. Using these assumptions, H
simulates the work of M and N as follows. First, it reads by the rules from (I) a
part of the input string and stores it in the buffers. Then, by the rules from (II)
and (III), H processes the symbols from the buffers by the simulation of the rules
from M and N . Whenever needed, H reads from the input string some additional
symbols using the rules from (I). The input string is accepted by H if and only if
the whole input string is read, all buffers are processed and emptied, and both (1)
and (4) are final states of M and N , respectively.

To justify the maximum size of the buffers in (2), (3), (5), and (6), consider the
situation when the simulation of M needs to read the input string by the words
of length k, but the N ’s right-hand sides of the simulated rules alternate between
1 and k symbols. Then, we can observe a situation when a buffer contains k − 1
symbols and we have to read k additional symbols from the input string before we
can process the first (or the last) k symbols of the buffer. The question remains,
however, whether we can reliably exclude some of these situations and possibly
further decrease the size of the buffers in the states of H.

The rigorous proof that L(HIJy) = L(MIJy)∩L(NIJy) is left to the reader.
�

Theorem 4.11. Both LIIy and LJJy are not closed under intersection and
intersection with regular languages.

20 TITLE WILL BE SET BY THE PUBLISHER

Proof. Consider two GJFAs:

MIIy = ({s, r, p, f}, {a, b}, {(s, a, r), (r, bb, p), (p, a, f)}, s, {f});
L(MIIy) = {abbaabba, abbabbaa, abababba, ababbbaa, aabbabba, aabbbbaa},
and NIIy = ({s, r, p, f}, {a, b}, {(s, a, r), (r, b, p), (p, ba, f)}, s, {f});
L(NIIy) = {abbaabba, abbababa, abababba, ababbaba, aabbabba, aabbbaba}.

The intersection L∩ = L(MIIy) ∩ L(NIIy) = {abbaabba, abababba, aabbabba}
should also belong into LIIy. However, consider the simplest GJFA PIIy that
can accept string aabbabba; it surely has to start with reading two times only one
symbol a, then it can read two times bb together, and then it finishes by reading
two times symbol a. However, this is exactly the behavior of MIIy, and we see
that L(MIIy) is a proper superset of L∩. Therefore, there cannot be any GJFA
HIIy that defines L∩. Trivially, both L(MIIy) and L(NIIy) are also regular
languages. The similar proof for LJJy is left to the reader. �
Theorem 4.12. Both LIJy and LJIy are closed under mirror image.

Proof. Consider any GJFA MIJy = (Q,Σ, R1, s, F). Define the GJFA NIJy =
(Q,Σ, R2, s, F), where R2 is constructed in the following way. For each (p, a, q) ∈
R1, add (p,mi(a), q) to R2. Note that by Claim 3.5 and its proof, every x ∈
L(MIJy) can be written as x = u1u2 . . . unun . . . u2u1, where n ∈ N, and ui ∈ Σ∗,
1 ≤ i ≤ n; and where each ui represents string a from a certain rule. Observe that
each x almost resembles an even palindrome. We just need to resolve the individual
parts |ui| > 1 for which the palindrome statement does not hold. Nevertheless,
observe that if we simply mirror each ui individually, it will create the mirror
image of the whole x. As a result, L(NIJy) is a mirror image of L(MIJy). �
Theorem 4.13. Both LIIy and LJJy are not closed under mirror image.

Proof. Consider language K = {ababcc, abcabc}, which is accepted by the GJFA

MIIy = ({s, r, f}, {a, b, c}, {(s, ab, r), (r, c, f)}, s, {f}).

Therefore, the mirror language Kmi = {ccbaba, cbacba} should also belong into
LIIy. However, consider the simplest GJFA NIIy that can accept string ccbaba;
it surely has to start with reading two times only symbol c, then it can read two
times ba together. Even in such a case L(NIIy) = {ccbaba, cbcaba, cbacba}; which
is a proper superset of Kmi. Therefore, there cannot be any GJFA HIIy that
defines Kmi. The similar proof for LJJy is left to the reader. �
Theorem 4.14. All LIJy, LJIy, LIIy, and LJJy are not closed under finite
substitution.

Proof. Consider language L = {a2n | n ≥ 0}, which clearly belongs into LIJy,
LIIy, and LJJy. Define the finite substitution ϕ : {a}∗ → 2{a}

∗
as ϕ(a) =

{ε, a}. Observe that ϕ(L) contains odd-length strings. However, in consequence
of Lemma 3.2, we know that no 2-jumping mode can accept such strings. �

TITLE WILL BE SET BY THE PUBLISHER 21

LIJy, LJIy LIIy LJJy
endmarking (both sides) − (+) − (−) − (−)
concatenation − − −
square (L2) − − −
shuffle − − −
union + + +
complement − − −
intersection + − −
int. with regular languages + − −
mirror image + − −
finite substitution − − −
homomorphism + − −
ε-free homomorphism + − −
inverse homomorphism − − −

Figure 3. Summary of closure properties.

Theorem 4.15. Both LIJy and LJIy are closed under homomorphism and
ε-free homomorphism.

Proof. Consider any GJFA MIJy = (Q,Σ, R1, s, F) and arbitrary homomor-
phism ϕ : Σ∗ → ∆∗. Define the GJFA NIJy = (Q,∆, R2, s, F), where R2 is
constructed in the following way. For each (p, a, q) ∈ R1, add (p, ϕ(a), q) to R2.
Observe that by Claim 3.5 and its proof, every x ∈ L(MIJy) can be written as
x = u1u2 . . . unun . . . u2u1, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n; and where
each ui represents string a from a certain rule. Then, every y ∈ L(NIJy) can
be surely written as y = ϕ(u1)ϕ(u2) . . . ϕ(un)ϕ(un) . . . ϕ(u2)ϕ(u1), and clearly
ϕ(L(MIJy)) = L(NIJy). �

Theorem 4.16. Both LIIy and LJJy are not closed under homomorphism and
ε-free homomorphism.

Proof. Consider language K = {abab, aabb}, which is accepted by the GJFA

MIIy = ({s, r, f}, {a, b}, {(s, a, r), (r, b, f)}, s, {f}).

Define the ε-free homomorphism ϕ : {a, b}+ → {a, b, c}+ as ϕ(a) = a and ϕ(b) =
bc. By applying ϕ to K, we get ϕ(K) = {abcabc, aabcbc}. Consider the simplest
GJFA NIIy that can accept string aabcbc; it surely has to start with reading two
times only symbol a, then it can read two times bc together. However, even in such
a case L(NIIy) = {abcabc, abacbc, aabcbc}; which is a proper superset of ϕ(K).
Therefore, there cannot be any GJFA HIIy that defines ϕ(K). Trivially, ϕ is also
a general homomorphism. The similar proof for LJJy is left to the reader. �

Theorem 4.17. All LIJy, LJIy, LIIy, and LJJy are not closed under
inverse homomorphism.

22 TITLE WILL BE SET BY THE PUBLISHER

Proof. Consider language L = {aa}, which clearly belongs into LIJy, LIIy, and
LJJy. Define the homomorphism ϕ : {a}∗ → {a}∗ as ϕ(a) = aa. By applying
ϕ−1 to L, we get ϕ−1(L) = {a}. However, in consequence of Lemma 3.2, we know
that no 2-jumping mode can define such language. �

The summary of closure properties of LIJy, LJIy, LIIy, and LJJy is
given in Figure 3, where + marks closure, and − marks non-closure.

5. Remarks and Conclusion

We would like to remark that the resulting behavior of right-left 2-jumps has
proven to be very similar to the behaviors of 2-head finite automata accepting
linear languages (see [9]) and 5′ → 3′ sensing Watson-Crick finite automata (see
[8,10]). Although these models differ in details, the general concept of their reading
remains the same—all models read simultaneously from the two different positions
on the opposite sides of the input string. The main difference comes in the form
of their rules. Both mentioned models use more complex rules that allow them to
read two different strings on their reading positions. Consequently, the resulting
language families of these models differ from the language family defined by right-
left 2-jumps. Nonetheless, the connection to Watson-Crick models shows that the
concept of synchronized jumping could potentially find its use in the fields that
study the correlations of several patterns such as biology or computer graphics.

At the end, we propose some future investigation areas concerning jumping
finite automata that link several jumps together. Within the previous sections, we
have already pointed out two specific open problems concerning right-left (Open
Problem 3.14) and left-right (Open Problem 3.20) 2-jumps. This section continues
with other more general suggestions.

(I.) Study decidability properties of the newly defined jumping modes.
(II.) Investigate remaining possible variants of 2-jumps where the unrestricted

single jumps and the restricted single jumps are combined together.
(III.) Extend the definition of 2-jumps to the general definition of n-jumps,

where n ∈ N. Can we find some interesting general results about these
multi-jumps?

(IV.) Study relaxed versions of 2-jumps where the single jumps do not have to
follow the same rule and where each single jump have its own state.

(V.) Use the newly defined jumping modes in jumping finite automata in which
rules read single symbols rather than whole strings (JFAs—see [7]).

(VI.) In the same fashion as in finite automata, consider deterministic versions
of GJFAs with the newly defined jumping modes.

Acknowledgment. This work was supported by The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme of Sustainability (NPU II);
project IT4Innovations excellence in science - LQ1602; the TAČR grant TE01020415;
and the BUT grant FIT-S-14-2299.

TITLE WILL BE SET BY THE PUBLISHER 23

References

[1] H. CHIGAHARA, S. Z. FAZEKAS, A. YAMAMURA, One-way Jumping Finite Automata.
In: The 77th National Convention of IPSJ . 2015.

[2] H. FERNAU, M. PARAMASIVAN, M. L. SCHMID, V. VOREL, Characterization and
Complexity Results on Jumping Finite Automata. Theoretical Computer Science (2016).
(in press).

[3] Z. KŘIVKA, A. MEDUNA, Jumping Grammars. International Journal of Foundations of
Computer Science 26 (2015) 6, 709–731.

[4] R. KOCMAN, A. MEDUNA, On Parallel Versions of Jumping Finite Automata. In: Pro-
ceedings of the 2015 Federated Conference on Software Development and Object Technolo-
gies. Advances in Intelligent Systems and Computing 511, Springer International Publishing,
2016, 142–149.

[5] A. MEDUNA, Automata and Languages: Theory and Applications. Springer, London, 2000.
[6] A. MEDUNA, O. SOUKUP, Jumping Scattered Context Grammars. Fundamenta Infor-

maticae (2017). (in press).
[7] A. MEDUNA, P. ZEMEK, Jumping Finite Automata. International Journal of Foundations

of Computer Science 23 (2012) 7, 1555–1578.
[8] B. NAGY, On 5’→3’ Sensing Watson-Crick Finite Automata. In: DNA Computing: 13th

International Meeting on DNA Computing, DNA13 . LNCS 4848, Springer, 2008, 256–262.
[9] B. NAGY, A class of 2-head finite automata for linear languages. Triangle 8 (Languages:

Mathematical Approaches) (2012), 89–99.
[10] B. NAGY, On a hierarchy of 5’→3’ sensing Watson-Crick finite automata languages. Journal

of Logic and Computation 23 (2013) 4, 855–872.
[11] G. ROZENBERG, A. SALOMAA, Handbook of Formal Languages, Vol. 2: Linear Model-

ing: Background and Application. Springer-Verlag, 1997.
[12] V. VOREL, On Basic Properties of Jumping Finite Automata. International Journal of

Foundations of Computer Science (2015). (conditionally accepted).
[13] V. VOREL, Two Results on Discontinuous Input Processing. In: Descriptional Complexity

of Formal Systems: 18th IFIP WG 1.2 International Conference, DCFS 2016 . LNCS 9777,
Springer International Publishing, 2016, 205–216.

[14] D. WOOD, Theory of Computation: A Primer . Addison-Wesley, Boston, 1987.

Communicated by (The editor will be set by the publisher).
...

