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Abstract. Scalability of fitness evaluation was the main bottleneck pre-
venting adopting the evolution in the task of logic circuits synthesis since
early nineties. Recently, various formal approaches have been introduced
to this field to overcome this issue. This made it possible to optimise
complex circuits consisting of hundreds of inputs and thousands of gates.
Unfortunately, we are facing to the another problem – scalability of repre-
sentation. The efficiency of the evolutionary optimization applied at the
global level deteriorates with the increasing complexity. In this paper,
we propose to apply the concept of local resynthesis. Resynthesis is an
iterative process based on extraction of smaller sub-circuits from a com-
plex circuit that are optimized locally and implanted back to the origi-
nal circuit. When applied appropriately, this approach can mitigate the
problem of scalability of representation. Our evaluation on a set of non-
trivial real-world benchmark problems shows that the proposed method
provides better results compared to global evolutionary optimization. In
more than 60% cases, substantially higher number of redundant gates
was removed while keeping the computational effort at the same level.

Keywords: Cartesian Genetic Programming · Resynthesis ·
Logic optimization

1 Introduction

Logic synthesis, as understood by the hardware community, is a process that
transforms a high-level description into a gate-level or transistor-level implemen-
tation. Due to the complexity of the problem, the synthesis process is typically
broken into a sequence of steps. Among others, logic optimization represents an
important part of the whole process. The goal of the logic optimization is to
transform a suboptimal solution into an optimal gate-level implementation with
respect to given synthesis goals. Due to the scalability issues, the problem is
typically represented using a suitable internal representation. Current state-of-
the-art logic synthesis tools, such as ABC, represent circuits using a directed
acyclic graph composed of two-input AND nodes connected by direct or negated
edges denoted as and-inverter graph (AIG). The optimization of AIGs is based
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on rewriting, a greedy algorithm which minimizes size of AIG by iteratively
selecting subgraphs rooted at a node and replacing them with smaller precom-
puted subgraphs, while preserving the functionality of the root node [1]. AIG
rewriting is local, however, the scope of changes becomes global by application
of rewriting many times. In addition to that, resubstitution and refactoring can
be employed. Resubstitution expresses the function of a node using other nodes
present in the AIG [2]. Refactoring iteratively selects large cones of logic rooted
at a node and tries to replace them with a more efficient implementation [1].
Refactoring can be seen as a variant of rewriting. The main difference is that
rewriting selects subgraphs containing few leaves because the number of leaves
determines the number of variables of a Boolean function whose optimal imple-
mentation is sought.

The AIG representation is simple and scalable, and leads to simple algorithms
but it suffers from an inherent bias in representation. While eight of ten possible
two-input logic gates may be represented by means of a single AIG node, XOR
and XNOR gate require three AIG nodes each. The efficiency of synthesis is then
limited as it mostly fully relies on transformations that disallow an increase the
number of AIG nodes. It has been shown that there exists a huge class of real-
world circuits for which the synthesis fails and provides very poor results [3–5]. In
some cases, the area of the synthesized circuits is of orders of magnitude higher
than the known optimum. If a large design is broken down to multiple smaller
circuits and such a failure occurs during resynthesis, we obtain an unacceptably
large circuit.

Various evolutionary approaches working directly at the level of gates were
successfully applied to address this problem [3,6]. Vasicek demonstrated that the
evolutionary synthesis using Cartesian Genetic Programming (CGP) conducted
directly at the level of common gates is able to provide significantly better results
compared to the state-of-the-art synthesis operating on AIGs [6]. On average, the
method enabled a 34% reduction in gate count on an extensive set of benchmark
circuits when executed for 15 min. It was observed, however, that the efficiency
of the evolutionary approach deteriorates with an increasing number of gates.
Substantially more generations were required to reduce circuits consisting of
more than ten thousands gates. While [6] focuses strictly on the improvement of
the scalability of the evaluation, Sekanina et al. employed a divide and conquer
strategy to address the problem of scalability of representation [3]. The authors
were able to obtain better results than other locally operating methods reported
in the literature, however, the performance of this method was significantly worse
than the evolutionary global optimization proposed in [6].

In order to improve the results of EA-based synthesis, we propose to com-
bine the EA-based approach with refactoring while following the principle of
local resynthesis applied in common logic synthesis tools. Firstly, a logic circuit
is optimized by means of a common synthesis approach. Then, the optimized cir-
cuit is mapped to standard gates and optimized using the proposed method that
extracts a relatively small sub-circuits that are subsequently optimized by Carte-
sian Genetic Programming (CGP). The original sub-circuit is then replaced by
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its optimized variant provided that there is an improvement at the global level
and the whole process is repeated. Our approach is based on iterative optimiza-
tion of large portions of the original circuit. Compared to rewriting, we do not
impose any limitation on the number of leaves because the larger subgraphs offer
more opportunities for potential area improvement.

2 Background

This section presents relevant background on conventional as well as EA-based
optimization of logic circuits and introduces the notation used in the rest of the
paper.

2.1 Boolean Networks

Every circuit can be represented using a Boolean network. A Boolean network
is a directed acyclic graph (DAG) with nodes represented by Boolean func-
tions [2]. The sources of the graph are the primary inputs (PIs) of the network
and the sinks are the primary outputs (POs). The output of a node may be an
input to other nodes called fanouts. The inputs of a node are called fanins. An
edge connects two nodes that are in fanin/fanout relationship. Considering this
notion, And-Inverter Graph is a Boolean network composed of two-input ANDs
and inverters. The network primary inputs are signals that are driven by the
environment, there is no node driving these signals in the network. Similarly,
the primary outputs are signals that drive the environment and are needed by
inner network nodes as well. The size of the network is the number of the nodes
(primary inputs and outputs are not considered).

2.2 Limiting the Scope of Boolean Networks

Network scoping represents a key operation to ensure a good scalability of syn-
thesis tools when working with large Boolean networks. In addition, it forms
an integral part of rewriting as well as refactoring. Two approaches have been
proposed to limit the scope of logic synthesis to work only on a small portion of
a Boolean network – windowing and cut computation [2].

The windowing algorithm determining the window for a given node takes a
node and two integers defining the number of logic levels on the fanin/fanout
sides of the node to be included in the window. Two sets are produced as the
result of windowing – leaf set and root set. The window of a Boolean network is
the subset of nodes of the network containing nodes from root set together with
all nodes on paths between the leaf set and the root set. The nodes in the leaf
set are not included in the window. The main problem of this algorithm is that
it is hard to predict how many logic levels have to be traversed to get a window
of the desired size and required number of leaves.

A complementary approach based on computing so called k-feasible cuts is
usually preferred to avoid determining the required number of logic levels. A cut
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of a node, called root node, is a set of nodes of the network, called leaves, such
that each path from PI to the root node passes through at least one leaf. A cut is
k-feasible if the number of nodes (i.e. cut size) in the cut does not exceed k. The
volume of a cut is the total number of nodes encountered on all paths between
the root node and the cut leaves. An example of two different 3-feasible cuts is
shown in Fig. 1. To maximize the cut volume, a reconvergence-driven heuristic is
applied in practice. The problem is that the cut computed using a naive bread-
first-search algorithm may include only few nodes and leads to tree-like logic
structures (see Fig. 1a showing a cut determined by the naive approach and
Fig. 1b showing the output of reconvergence-driven heuristic). Such a structure
does not lead to any don’t cares in the local scope of the node and attempting
optimization using such a cut would be wasted time. A simple and efficient cut
computation algorithm producing a cut close to a given size while heuristically
maximizing the cut volume and the number of reconvergent paths subsumed in
the cut has been introduced in [2]. As our work is based on the reconvergence-
driven cuts, we briefly discuss this algorithm. The algorithm starts with a set
of leaves consisting of a single root node. This set is incrementally expanded
by adding one node in each step of a recursive procedure. If the set consists of
only PIs, the procedure quits. Otherwise, a non-PI node that minimizes a cost
function is chosen from the set of leaves. The chosen node is removed from the
leaf set and all its fanins are included instead of it. This causes expansion of
the cut. If the cut-size limit is exceeded, the procedure quits and returns the
cut before expansion. The cost function returns the number of new nodes that
should be added to the leaf set instead of the removed node.

The k-feasible cuts are important not only for the gate-level logic synthesis
but also for FPGA-based synthesis as a k-feasible cut can be implemented as a
k-input LUT. For resubstitution and FPGA-based mapping, so called maximum

(a) Cut CI = {7, 2, 9} (b) Cut CII = {1, 2, 9}

Fig. 1. Example of two possible 3-feasible cuts for root node m and given Boolean
network. The cut CII is preferred as its volume is four (root node m and contained
nodes 5, 7, and 9). There is only one contained node (node 8) in the case of CI.
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fanout free cone (a subnetwork where no node in the cone is connected to a
node not in the cone) is requested. It means that the cut-based scoping must
always produce a single-output sub-circuits. Otherwise it would be impossible to
replace the whole sub-circuit by a precomputed optimal implementation/a single
LUT. Typically, 4-feasible and 5-feasible cuts are used for rewriting-based logic
synthesis [2,7]. Small k is used not only to make the cut enumeration possible
but also to manage memory requirements to store the precomputed optimal
implementations of all k-input Boolean functions. For FPGA-based mapping, 5-
input and 6-input LUTs are used. Apart from the rewriting, the reconvergence-
driven cuts have been applied to refactoring and resubstitution [2]. Typically, k is
between 5 and 12 for refactoring depending on the computation effort allowed [2].

2.3 Evolutionary Synthesis of Logic Circuits

Evolutionary algorithms (EAs) have been used to synthesize logic circuits since
late nineties [8,9]. Miller et al., the author of Cartesian Genetic Programming
(CGP) [10], is considered as a pioneer in the field of logic synthesis of gate-
level circuits. He utilized his own variant of genetic programming to synthesize
compact implementations of multipliers described by means of a behavioral spec-
ification [11]. Despite of many advantages of this unconventional technique, only
small problem instances were typically addressed. To tackle the limited scala-
bility, various decomposition strategies have been proposed. A good survey of
the existing techniques is provided, for example, in [12]. The projection-based
decomposition approaches such as [13] or [12] helped to increase the complex-
ity of problem instances that can be solved by EAs. Despite of that, the gap
between the complexity of problems addressed by EAs and in industry continued
to widen as the advancements in technology developed. In 2011, the scalability
of CGP has been significantly improved by introducing a SAT-based CGP. The
SAT-based CGP replaces determining of Hamming distance done by exhaustive
simulation with a modern SAT solver [14]. It exploits the fact that the candidate
solutions must be functionally equivalent with their parent in logic optimization
in order to be further accepted. In addition to that, it exploits the knowledge of
differences between parental and candidate circuits. The efficiency of SAT-based
method was further improved by combining a SAT solver with an adaptive high-
performance circuit simulator used to quickly identify the potential functional
non-equivalence. The most advanced SAT-based CGP employs a simulator that
is driven by counterexamples produced by the SAT solver [6]. Neither the origi-
nal nor the latter approach rely on a decomposition. The gate-level circuits are
optimized directly.

Since its introduction, CGP remains the most powerful evolutionary tech-
nique in the domain of logic synthesis and optimization [9]. In this area, a linear
form of CGP is preferred today. CGP models a candidate circuit having ni PIs
and no POs as a linear 1D array of nn configurable nodes. Each node has na

inputs and corresponds with a single gate with up to na inputs. The inputs can
be connected either to the output of a node placed in the previous L columns
or directly to PIs. This avoids a feedback. The function of a node can be chosen
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from a set of nf functions. Depending on the function of a node, some of its
inputs may become redundant. In addition to that, the fixed number of nodes
nn does not mean that all the nodes contribute to the POs. These key features
allow redundancy and flexibility of CGP.

The candidate circuits are encoded as follows. Each PI as well as each node
has associated an unique index. Each node is encoded using na + 1 integers
(x1, · · · , xna

, f) where the first na integers denote the indices of its fanins and
the last integer determines the function of that node. Every candidate circuit is
encoded using nn(na + 1) + no integers where the last no integers specify the
indices corresponding with each PO.

CGP is a population oriented approach which operates with 1 + λ candidate
solutions. The initial population is seeded by the original circuit ought to be
optimized. Every new population consists of the best circuit chosen from the
previous population and its λ offspring created using a mutation operator that
randomly modifies up to h integers. Considering the CGP encoding, a single
mutation causes either reconnection of a gate, reconnection of primary outputs
or change in function of a gate. The selection of the individuals is typically based
on a cost function (e.g. the number of active nodes). In the case that there are
more individuals with the same score, the individual that has not served as a
parent will be selected as the new parent. This procedure is typically repeated
for a predefined number of iterations.

3 The Proposed Method

Let C be a combinational circuit described at the level of common gates repre-
sented by a Boolean network N consisting of |N | nodes. Each node corresponds
with a single gate in C. The pseudo-code of the proposed optimization procedure
based on evolutionary resynthesis is shown in Algorithm 1.

Firstly a node which may potentially lead to the best improvement of N is
determined. Since the identification of this node itself is a nontrivial problem,
some heuristic needs to be implemented. The size of transitive fan-in cone, level
of the node or a more complex information can be used to determine the most
suitable candidate. Then, a working area (window) is extracted from the Boolean
network. This procedure starts with computation of the reconvergence-driven
cut C as described in Sect. 2.2. From the practical reasons, is also beneficial to
limit the size of C to be able to enumerate a large number of sub-circuits in a
reasonable time. Hence, we can define four parameters: cmin and cmax restricting
the volume of C (cmin < cmax), and kmin and kmax (kmin ≤ |C| ≤ kmax) limiting
the size of cut (feasibility).

This step is followed by expansion of the cut C into a window W , i.e. expan-
sion of the set of leaf nodes to a set of contained nodes. In addition to the nodes
inside the cut, we should consider also all nodes that are not contained in the cut
but have fanins inside the cut. Our expansion is similar to that employed in the
resubstitution [2] where transitive fanout of C is considered, however, we do not
impose any limit on the number of included nodes or their maximum level. The
process of cut identification and the subsequent expansion is illustrated in Fig. 2.
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Algorithm 1. EA-based resynthesis

Input: A Boolean network N
Output: Optimized network N ′, cost(N ′) ≤ cost(N)

1 N ′ ← N
2 while terminated condition not satisfied do
3 m ← identify the best candidate root node m ∈ N ′

4 C ← ReconvergenceDrivenCut(m)
5 W ← ExpandCutToWindow(m, C)
6 if W is not a suitable candidate then
7 continue

8 W ′ ← OptimizeNetworkUsingEA(W )
9 if cost((N ′ \ W ) ∪ W ′) < cost(N ′) then

10 N ′ ← (N ′ \ W ) ∪ W ′

11 return N ′

During the expansion, three set of nodes are created: the set of internal nodes
I, the set of leaves L and the set of root nodes R. L contains nodes that will
serve as PIs of the temporary network used in the subsequent optimization.
Similarly R contains nodes whose outputs have to be connected to POs. Note
that R contains not only the root node m but also other nodes whose fanouts
are outside of the window (see Fig. 2). It holds that C ⊆ L since the expansion
may cause that some leaves of C become a fanout of a node inside the window.
Two situations can happen for a leaf node. If all fanins are inside the window,
the leaf can be simply removed from L. Otherwise, all fanins of the original leaf
node need to be added to L (the case of C1 in Fig. 2). This procedure has to
be repeated iteratively to ensure that there are no leaves having a fanin already
included the window.

Resynthesis is then applied to the window. Each window that is not suit-
able for the subsequent optimization is skipped. The motivation is to eliminate
execution of a relatively time-consuming resynthesis for the windows that are
unlikely to lead to any improvement. The identification of the suitable windows
can be based on the size of W (small windows are filtered out) or a combination
of size of C and size of W (thin windows are filtered out). In addition to that,
we can use the information about the difference among level of the root node
and leaves of C.

The resynthesis is performed by means of the CGP. At the beginning, each
node in the window is assigned an unique index and chromosome correspond-
ing with the nodes in the window is created. This chromosome is then used
to seed the initial population. The evolutionary optimization is executed for a
limited number of iterations. The number of iterations should be determined
heuristically. The more iterations are allowed, the higher improvement can be
achieved. On the other hand, many iterations on a small window wastes time.
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Fig. 2. Example of the window created using the proposed algorithm. The set of con-
tained nodes of a 4-feasible cut C = {C1, C2, C3, C4} rooted in node m is highlighted
using the filled nodes. The hatched nodes are added to the window during the expansion
of the cut. As a consequence of that, leave C1 is replaced by C∗

1 . The root and leaves
of the window are denoted as R and L, respectively. The nodes in the window have
assigned an index used to uniquely identify each node in the CGP. One of the many
possibilities how to encode the window using CGP is for example: (2,3,AND) (2,3,OR)
(4,1,INV) (1,5,XOR) (8,2,AND) (3,4,NOR) (9,10,AND) (6,10,OR) (7,8,9,11,12).

Finally, the optimized logic network W ′ is evaluated w.r.t. N ′ and if it performs
better, it replaces all non-leaf nodes included in W . The whole optimization algo-
rithm is terminated when a predefined number of iterations or a given runtime
is exhausted.

Table 1 compares the proposed method with various methods for optimiza-
tion of logic circuits available in the literature. Compared to the conventional
approaches, we consider windows consisting of substantially higher number of
gates. In addition to that, we do not impose any limits on the number of window
inputs and outputs. Compared to the evolutionary approach [3], substantially
larger sub-circuits identified using a different scoping method (windowing based
on reconvergence driven cuts) are considered during resynthesis.

4 Experimental Evaluation

4.1 Experimental Setup

The proposed method was implemented in C++ as a part of Yosys open synthesis
suite [17]. The advantage of this tool, among others, is that it allows us to directly
manipulate with Verilog files and that it integrates ABC [18], a state-of-the-art
academic tool for hardware synthesis and verification.

To evaluate the proposed approach, we used 28 highly optimized real-world
circuits and optimized them by means of the proposed as well as current state-
of-the-art approach. Nineteen Verilog netlists are taken from IWLS’05 Open
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Table 1. Comparison of the optimization approaches according to the applied con-
straints. Parameters kmin and kmax determine the minimum allowed and maximum
acceptable number of inputs of the accepted windows. Parameters cmin and cmax rep-
resent the restrictions applied to the volume of the windows.

Approach kmin kmax cmin cmax Scoping method

Rewriting [2,15] – 4 – – Cut computation

Redundancy removal [2] 6 12 – – Windowing

Conventional resynthesis [16] – – – 3360 (30%) Windowing (various)

Evolutionary resynthesis [3] 1 10 8 50 Radius-based windowing

Proposed approach – – 10 104 Cut-based windowing

Cores benchmarks, the remaining nine netlists represent various arithmetic cir-
cuits1. The circuits were optimized by ABC (several iterations of ABC command
‘resyn’) and mapped to gates using a library of common 2-input gates including
XORs/XNORs gates (ABC command ‘map’). After mapping, optimization by
the proposed and global method was executed and final number of mapped gates
in circuits was examined. All of the optimized circuits were formally verified w.r.t
their original form (ABC command ‘cec’).

The goal of this paper is to evaluate performance of the proposed method
w.r.t. the state-of-the-art EA-based method (denoted as global) applied to the
whole Boolean network and to compare both methods to the best result pro-
duced by the ABC. Both methods operate at the level of optimized and mapped
Boolean networks to avoid the bias of AIG representation. The procedure Opti-
mizeNetworkUsingEA is based on the CGP implemented as described in Sect. 2.3
with the following parameters: na = 2, λ = 1, h = 2, nn = |W |. A single call of
this procedure is executed for the global method (the procedure takes the whole
Boolean network and returns its optimized version). On contrary, several calls of
this procedure are executed in the proposed method. The termination conditions
are designed as follows. The global method terminates when niters iterations are
exhausted. One iteration corresponds with evaluation of a single candidate solu-
tion. In the case of the proposed method a simple divide-and-conquer strategy
is employed. The proposed method is allowed to create ncuts cuts. For each cut,
the OptimizeNetworkUsingEA is allowed to perform niters/ncuts iterations. This
strategy is relatively naive because it supposes that the computation effort does
not depend on the size of the window but it helps to fairly evaluate the impact
of the proposed method. It ensures that exactly the same number of generations
are evaluated in both cases. In this paper, we use niters = 1010 iterations. Only
windows whose volume is larger than 10 and less than 104 nodes are accepted,
i.e. cmin = 10, cmax = 104. The root node m is chosen randomly in this study.
This strategy simplifies the problem but it may lead to degradation of the per-
formance especially if many unacceptable windows are produced. If this happens

1 All the benchmarks are taken from https://lsi.epfl.ch/MIG.

https://lsi.epfl.ch/MIG
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in 10% cases, for example, the total number of effective generations is in fact
reduced to 90%. The only criterion in the fitness function considered in this
paper is the area on a chip expressed as the number of gates. For each method
and each benchmark, five independent runs were executed to obtain statistically
reasonable results.

4.2 Experimental Results

The overall results are summarized in Table 2. The first three columns contain
information related to the benchmarks (name, number of PIs and POs). The
next two columns show parameters of the mapped circuits and those numbers
serve as a baseline for our comparison – the number of gates and logic depth
is provided. Then, the achieved results expressed as the relative reduction with
respect to the baseline are reported for the proposed and global method. For
each method, we report the average and the best obtained improvement. The
numbers are calculated across all independent runs.

The best results are very close to the average ones which suggests that
the both EA-based methods are stable although they are in principle non-
deterministic. According to the number of highlighted cases showing the bet-
ter results, the proposed method performs substantially better considering the
average as well as the best results. It won in 22 out of 28 cases. There are even
cases, when the global method provided none or nearly none improvement (see
e.g. benchmarks DSP, des perf, ethernet, systemcaes and so on). The average
reduction on the IWLS’05 benchmarks is slightly better in favor of the global
method, but it is affected mostly by five cases (mem ctrl, pci spoci ctrl, spi,
systemcdes, and tv80), where the global method provided substantially better
results. Looking at the arithmetic circuits, the global method was able to slightly
improve only two circuits. In other cases, the reduction is negligible. We ana-
lyzed the five cases where the global method outperformed the proposed one and
concluded that the global method works well especially for small instances (less
than 104 gates) that have a reasonable depth (10 to 25 levels). The global opti-
mization of circuits with large depth is unsatisfactory. A substantial improve-
ment is achieved on the arithmetic circuits. The number of gates is reduced
by nearly 15% on average. The highest reduction, 30.1%, is recorded for ham-
ming benchmark. The detailed analysis revealed that this was possible due to
better handling of XORs/XNORs compared to ABC and also by a relatively
huge redundancy of the original circuit optimized by ABC. The relative number
of AND/OR/NAND/NOR gates remained nearly the same (around 74%). The
number of XORs/XNORs increased from 10% to 15%.

A more detailed analysis is shown in Table 3 where we reported the computa-
tional effort required to reduce the benchmark circuits by 1%, 5% and 10%. The
table shows the mean number of generations that have to be evaluated to obtain
a circuit whose number of gates is reduced by a given level. The empty cells mean
that none of the evolutionary runs produced circuit satisfying the required con-
dition. This can happen either because of the insufficient number of generations
or because it is in principle impossible to obtain such a circuit (we are already at
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Table 2. Comparison of the proposed and global method against ABC. The columns
‘Impr. proposed’ and ‘Impr. global’ report the relative improvement in the number of
gates compared to the optimized circuits obtained using ABC. Column ‘ABC’ contains
parameters of the optimized circuits after mapping (‘gates’ is the number of gates, D
is logic depth).

Benchmark PIs POs ABC Impr. proposed Impr. global [6]

Gates D Avg Best Avg Best

DSP 4223 3792 43491 45 3.6% 3.6% 0.0% 0.0%

ac97 ctrl 2255 2136 11433 10 2.9% 2.9% 1.4% 1.4%

aes core 789 532 21128 20 2.9% 2.9% 0.6% 1.7%

des area 368 70 5199 25 6.0% 6.1% 2.1% 2.3%

des perf 9042 1654 78972 16 1.8% 1.8% 0.0% 0.1%

ethernet 10672 10452 60413 23 0.5% 0.5% 0.0% 0.0%

i2c 147 127 1161 12 9.2% 9.2% 10.0% 10.7%

mem ctrl 1198 959 10459 24 7.0% 7.0% 24.8% 25.4%

pci bridge32 3519 3136 19020 21 3.5% 3.5% 0.5% 0.6%

pci spoci ctrl 85 60 1136 15 18.3% 18.5% 34.8% 35.7%

sasc 133 123 746 8 6.2% 6.2% 2.4% 2.8%

simple spi 148 132 822 11 5.5% 5.7% 4.4% 4.6%

spi 274 237 3825 26 5.6% 5.6% 13.5% 20.2%

ss pcm 106 90 437 7 5.7% 6.7% 2.3% 2.3%

systemcaes 930 671 11352 27 11.9% 12.3% 0.0% 0.0%

systemcdes 314 126 2601 25 4.8% 5.0% 9.1% 9.9%

tv80 373 360 8738 39 6.6% 6.9% 11.1% 11.3%

usb funct 1860 1692 15405 23 5.8% 5.9% 2.6% 2.6%

usb phy 113 73 452 9 13.9% 14.0% 12.2% 12.2%

Average (IWLS’05 benchmarks) 15620 20 6.4% 6.5% 7.0% 7.6%

mult32 64 64 8225 42 16.5% 16.6% 0.0% 0.0%

sqrt32 32 16 1462 307 22.3% 24.3% 3.0% 3.0%

diffeq1 354 193 20719 218 11.5% 11.5% 0.0% 0.0%

div16 32 32 5847 152 15.7% 15.8% 0.0% 0.0%

hamming 200 7 2724 80 28.6% 30.1% 14.6% 14.6%

MAC32 96 65 7793 55 7.7% 7.8% 0.0% 0.0%

revx 20 25 8131 171 14.5% 14.5% 0.0% 0.1%

mult64 128 128 21992 190 7.4% 7.4% 0.3% 0.5%

max 512 130 3719 117 5.3% 5.3% 0.7% 0.8%

Average (arithmetic benchmarks) 8956 148 14.4% 14.8% 2.1% 2.1%
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Table 3. The average number of CGP generations needed to achieve 1%, 5%, and 10%
reduction

Benchmark 1% improvement 5% improvement 10% improvement

Global Proposed Global Proposed Global Proposed

DSP >1010 8 · 108 – – – –

ac97 ctrl 45 · 107 7 · 108 – – – –

aes core >1010 1 · 109 – – – –

des area 4 · 107 98 · 107 >1010 11 · 108 – –

des perf >1010 3 · 109 – – – –

i2c 5 · 105 28 · 107 35 · 105 5 · 108 7 · 109 >1010

mem ctrl 5 · 105 27 · 107 5 · 105 45 · 108 5 · 105 >1010

pci bridge32 >1010 78 · 107 – – – –

pci spoci ctrl 5 · 105 107 5 · 105 14 · 107 106 42 · 107

sasc 21 · 106 15 · 105 >1010 43 · 106 – –

simple spi 5 · 106 86 · 106 >1010 72 · 107 – –

spi 5 · 106 416 · 106 65 · 106 3 · 109 72 · 106 >1010

ss pcm 4 · 106 108 >1010 2 · 108 – –

systemcaes >1010 12 · 107 >1010 17 · 108 >1010 7 · 109

systemcdes 65 · 105 17 · 107 55 · 106 >1010 74 · 107 >1010

tv80 5 · 105 231 · 106 26 · 106 3 · 109 18 · 107 >1010

usb funct 94 · 106 575 · 106 >1010 65 · 108 – –

usb phy 5 · 105 12 · 106 25 · 105 19 · 106 55 · 107 17 · 107

Average 2.8 · 109 5.2 · 108 4.6 · 109 2.4 · 109 3 · 109 7.2 · 109

mult32 >1010 72 · 106 >1010 48 · 107 >1010 2 · 109

sqrt32 5 · 105 19 · 106 37 · 105 11 · 107 >1010 39 · 107

diffeq1 >1010 2 · 108 >1010 16 · 108 >1010 67 · 108

div16 >1010 13 · 107 >1010 5 · 108 >1010 24 · 108

hamming 5 · 105 17 · 106 5 · 105 12 · 107 2 · 106 5 · 108

MAC32 >1010 6 · 107 >1010 96 · 107 – –

revx >1010 36 · 107 >1010 94 · 107 >1010 5 · 109

mult64 >1010 39 · 107 >1010 73 · 108 – –

max >1010 91 · 106 >1010 96 · 107 – –

Average 7.7 · 109 2 · 108 7.9 · 109 1.5 · 109 8.3 · 109 2.8 · 109

the optimum or close to the optimum). Looking at the first two columns showing
the computation effort required for reduction by 1%, we can easily identify that
the global method converges faster compared to the proposed method. On the
other hand, it has tendency to stuck at a local optima which is evident especially
on more complex benchmarks (arithmetic circuits having large logic depth and
complex circuits consisting of tens thousands of gates). Nearly none improve-
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(a) sasc (b) hamming

(c) sqrt32 (d) i2c

Fig. 3. Typical convergence curves for four chosen benchmark circuits. The lower value
(number of gates) the better result.

ment was achieved for arithmetic circuits. The only exception is the benchmark
circuit ‘hamming’. The proposed method converges in some cases slowly but it
provides better results when we enable to run it longer. See for example bench-
marks ‘des area’, ‘simple spi’, ‘ss pcm’, ‘usb funct’, or ‘hamming’. In these cases
the proposed method requires more generations to reduce the circuits by 1%,
but substantially less generations are needed on average to achieve 5% reduc-
tion. The effect of slow convergence is especially noticeable on ‘hamming’ circuit,
where approximately 250 times more generations were needed to reduce the orig-
inal circuit by 5% and 10% percent. Despite of that, the proposed method was
able to reach 30.1% reduction while the global method got stuck at 14.6%. The
typical convergence curves for four benchmark circuits are shown in Fig. 3. The
first three plots show how the global methods usually got stuck at local optima.
The last plot depicts the situation where the global method performs better
compared to the proposed one.

We assume that the slow convergence is caused by the fact that each sub-
circuit produced by the proposed windowing algorithm is optimized for a fixed
number of generations independently on its parameters (the number of gates,
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the number of PIs or POs, and so on). This simplifies the problem but leads to
a potential inefficiency. Many generations can be wasted to optimize small cir-
cuits. In order to investigate this fact, we analyzed what is the average volume
of the sub-circuit. The results are summarized in Table 4. The table contains
the average number of leaves, roots and volume of the windows produced by
the proposed windowing algorithm. Despite using a simple strategy for select-
ing a root node, the window parameters are relatively good and sub-circuits of a
reasonable volume are produced. The number of leaves |L| determining the num-
ber of primary inputs of the sub-circuit optimized by evolution is substantially
higher compared to the numbers used in rewriting. Compared to the rewriting,
a relatively complex portions of the original circuits are chosen for subsequent
optimization. This could explain the reason, why the proposed EA-based method
is able to achieve such reduction compared to the conventional state-of-the-art
synthesis.

Table 4. Average number of leaves, roots and volume of the windows produced by the
proposed windowing algorithm. The averages are reported for all windows (first three
columns) and those leading to a reduction (last three columns).

Benchmark Windows

All created Causing reduction

|L| |R| Volume |L| |R| Volume

DSP 32 26 53 46 38 86

mem ctrl 27 25 38 28 26 44

pci spoci ctrl 14 13 21 18 19 32

systemcaes 22 15 35 14 13 26

systemcdes 27 26 51 38 39 78

mult32 20 16 34 26 21 52

sqrt32 33 29 62 20 17 37

diffeq1 30 27 53 28 26 55

div16 32 28 50 25 24 44

hamming 30 26 44 26 24 45

We analyzed all the evolutionary runs across all benchmarks circuits and
determined the maximum number of generations that caused a reduction of a
sub-circuit. For each run of CGP we recorded the last generation that caused a
change in the number of gates together with the volume of the optimized sub-
circuit. The obtained numbers are plotted as a function of sub-circuit volume
using a boxplot in Fig. 4. As expected, the more nodes are there in the sub-
circuit the more CGP generations are typically used to optimize it. We can
also see that the dependence between these two values is exponential – this is
illustrated also by the blue curve representing polynomial interpolation of the
median value. As the volume of the window increases, the number of occurrences
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Fig. 4. Boxplots showing the number of generations that caused removal of a gate.
The numbers above each boxplot show the number of occurrences of the window of a
certain volume.

of such cases decreases (see the numbers above each boxplot showing how many
times we seen a window having volume between X and X + 10). Usually, small
windows are produced. Windows up to 45 nodes were produced in more than
77% cases. Due to this fact, the interpolation is limited to 150 nodes because
there is insufficient number of results for the bigger windows.

5 Conclusion

Compared to the conventional logic synthesis, state-of-the-art EA-based opti-
mization is able to produce substantially better results but at the cost of a higher
run time. Unfortunately, the run time increases with the increasing complexity
of the Boolean networks. This paper addresses this problem by combining the
EA-based optimization with windowing that allows to work on a smaller portions
of the original Boolean network. Even though we used a very simple strategy
of root node selection which may degrade the capabilities of the resynthesis,
the proposed method is able to outperform the original EA-based optimization
applied to the whole Boolean networks. The number of nodes w.r.t the original
method was improved by 9.2% on average. Even though only area was analyzed
in this study, the depth of the optimized circuits is comparable with the original
circuits.

In our future work, we would like to implement an adaptive strategy that
modifies the maximum number of generations according to the size of the opti-
mized logic circuit. In addition to that, we would like to focus on improvement
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of root node selection strategy. The question here is whether the result would
be better if the cut is built from a node near to the previously chosen one.
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